**Instructor**

Dr. Nikos J. Mourtos  
nikos.mourtos@sjsu.edu  
www.sjsu.edu/ae/faculty_staff/nikos_mourtos/

**Class Days / Time**  
TR 18:00 – 19:15

**Final Project Presentations**  
14 December 2017, 5:15 pm

**Classroom**  
Engr.164

**Prerequisite**  
Graduate standing in AE or instructor consent

**Credit**  
3 units

**GWAR**  
This course satisfies the Graduation Writing Assessment Requirement (GWAR)

**Textbook**  

**Required Reading**


**Other References**


Aerospace Engineering

AE 271 – Advanced Aircraft Design

Dr. Nikos J. Mourtos

Description
This is a project course in which students complete the preliminary design of an airplane of their choice. The design process involves defining the mission requirements, weight sizing, performance sizing, fuselage design, wing, high-lift system and lateral controls design, landing gear design, weight and balance, stability and control, drag polars, final drawings. In their final report students will also discuss any environmental, economic and safety considerations for their airplane.

Goals
1. To provide graduate level experience in airplane design.
2. To develop students' creative abilities in solving open-ended, airplane design problems.
3. To develop an appreciation of the interrelationships between aerodynamics, propulsion, structures, flight mechanics, stability & control, manufacturing, maintenance, and cost in an integrated airplane design.
4. To develop students' engineering judgment as well as their confidence in making and accepting responsibility for design decisions.

Learning Objectives
Each student completing AE271 will be able to:

1. Describe the pros and cons of unconventional aircraft configurations such as canards, 3-surface, swept-forward wings, flying wings, tailless, V/STOL, stealth, etc.
3. Design the fuselage, the wing, the empennage, and the landing gear of an airplane.
4. Perform weight and balance analysis of an airplane.
5. Perform a stability and control analysis of an airplane.
6. Compute the drag polars of an airplane.
7. Construct the V-n diagram of an airplane.

Grading
Design reports* = 60%
1st oral progress report & oral exam = 20%
Final oral presentation & examination = 20%

850 points < A-, A, A+
700 points < B-, B, B+
650 points < C

Reports
Reports will be graded for English (grammar, spelling, punctuation, etc.) as well as for technical content. Please see general guidelines for professional reports below. Written reports not meeting minimum writing proficiency standards will be returned without a grade. Revised reports may be re-submitted (once each) with a penalty of 20 points in the scale of 1 to 100.
If your report is returned for English please seek help from the SJSU Writing Center <http://www.sjsu.edu/writingcenter/tutoring/index.html>

Approximate Weekly Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Lecture Topic(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 August</td>
<td>Aircraft design overview.</td>
</tr>
<tr>
<td>29 August</td>
<td>Mission requirements. Figures of merit. Weight sizing.</td>
</tr>
<tr>
<td>06 September</td>
<td>Weight sensitivities, trade studies.</td>
</tr>
<tr>
<td>12 September</td>
<td>Performance sizing.</td>
</tr>
<tr>
<td>19 September</td>
<td>Configuration design – conventional configurations.</td>
</tr>
<tr>
<td>26 September</td>
<td>Configuration design – unconventional configurations.</td>
</tr>
<tr>
<td>Date</td>
<td>Topic</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------------------------------------------------------</td>
</tr>
<tr>
<td>03 October</td>
<td>1st Briefing (10 min) – Mission, configuration, weight sizing,</td>
</tr>
<tr>
<td></td>
<td>Performance sizing.</td>
</tr>
<tr>
<td>10 October</td>
<td>1st Briefing (cont’d) – Mission, configuration, weight sizing,</td>
</tr>
<tr>
<td></td>
<td>Performance sizing.</td>
</tr>
<tr>
<td>17 October</td>
<td>Fuselage, wing &amp; empennage design.</td>
</tr>
<tr>
<td>24 October</td>
<td>Landing gear design. Weight &amp; balance.</td>
</tr>
<tr>
<td>31 October</td>
<td>Longitudinal stability &amp; control.</td>
</tr>
<tr>
<td>07 November</td>
<td>Lateral stability &amp; control.</td>
</tr>
<tr>
<td>14 November</td>
<td>Directional stability &amp; control.</td>
</tr>
<tr>
<td>21 November</td>
<td>Green Aviation</td>
</tr>
<tr>
<td></td>
<td>(No Class On 24 November - Thanksgiving)</td>
</tr>
<tr>
<td>28 November</td>
<td>Possibilities for green aviation</td>
</tr>
<tr>
<td>05 December</td>
<td>6 &amp; 8 December – Final Design Briefings</td>
</tr>
<tr>
<td>19 December</td>
<td>Final Exam &amp; Final Design Review: 14:45 – 17:00</td>
</tr>
</tbody>
</table>
GENERAL COMMENTS ON PROFESSIONAL REPORT WRITING

Each report must meet minimum standards of professionalism. Unprofessional reports will be severely downgraded even if the technical content is correct. The following items explain some of the features of a professional report.

1. All reports must be prepared with a word processor.
2. Organize reports using a decimal numbering system. The chapters, Sections, Sub-Sections should be indicated as follows:
   4. TITLE OF CHAPTER
      4.1 TITLE OF SECTION
      4.1.1 Title of Sub-Section
      4.1.1.1 Title of sub-sub-section
3. Many reports require calculations. At least one “hand” calculation must be performed and documented for each case in a separate sub-section. If they are lengthy (i.e. more than 2 pages), they should be placed in a separate appendix but the results should be discussed in the main body of the report.
4. All pages must be numbered. Start the introduction at page 1. Pages in the main body of the report are numbered: 1, 2, 3, etc. Preliminary pages such as Table of Contents, List of Symbols etc. are numbered sequentially: i, ii, iii, iv, etc.
5. A minimum margin of one inch must be observed on all pages including graphs, figures, tables, computer print-outs, etc.
6. The report must be written in good English. All words must be properly spelled. You are expected to proofread your reports before handing them in.
7. Avoid using sentences longer than 2 lines. If you do not, your report will have a high ”Fog Index” (i.e. it will be difficult to read).
8. Do not use I, You, We, They, etc. in a technical report. Also, do not treat an airplane or airplane components as persons, i.e., DO NOT write: the airplane's landing gear is of the retractable type. Instead, write: the landing gear of the Cessna 182 is of the retractable type or, even better, the airplane has a retractable landing gear.
9. Do not use the words: 'in order to ...'. Remember, the words 'in order' are nearly always out of order!
10. Make use of the technique called "bulletizing". Instead of: in this chapter, the results of calculations of wing-loading, maximum lift coefficients, thrust-to-weight ratio, lift-to-drag ratio and cruise lift coefficients are presented. Write: In this chapter the following characteristics of the Spartan Jet are presented:
   • Wing Loading
   • Maximum Lift Coefficients
   • Thrust-to-Weight Ratio
   • Lift-to-Drag Ratio
   • Cruise Lift Coefficient
11. Make sure that no symbols are omitted from your equations. Again, it is important to proofread your reports before handing them in!
12. All equations must be numbered and numbered sequentially. Within a chapter use a decimal numbering system. For example:
    \[ X = Y + Z \] \hspace{1cm} (4.17)
13. All references must be numbered sequentially as they appear in your report. See examples below (1 is a book, 2 is a technical report, 3 is a journal article, 4 is a conference paper, 5 is an internet reference). In your report refer to each of them with a number in a bracket. For example: The vortex increases the lift of the flat plate [2] or Mourtos [2] found that the existence of the vortex increased the lift on the flat plate at any given angle-of-attack.


14. All **figures** and **graphs** must be numbered and numbered sequentially. They must also have descriptive **titles**. Titles must appear **below** the figure. All **axes** must have scale and descriptive **labels** including **units** whenever appropriate. **Curves** must also have descriptive **labels**. All lettering must be at least 3 mm high to be legible! For example:

![Figure 3.1](image)

**Figure 3.1** – Coffee temperature decline in various cups.

15. All **tables** must be numbered and numbered sequentially. They must also have descriptive **titles**. Titles must appear **above** the table. Again, all lettering must be at least 3 mm high to be legible!

<table>
<thead>
<tr>
<th>Type</th>
<th>MTOW [tons]</th>
<th>MLW [tons]</th>
<th>TOR [m]</th>
<th>LR [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antonov An-225</td>
<td>640</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airbus A380-800F</td>
<td>590</td>
<td>427</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boeing 747-8I</td>
<td>439.985</td>
<td>306.175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antonov An-124</td>
<td>405</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airbus A340-500</td>
<td>368</td>
<td>240</td>
<td>3050</td>
<td>2010</td>
</tr>
<tr>
<td>Boeing 777-300ER</td>
<td>351.535</td>
<td>251.29</td>
<td>3115</td>
<td>2118</td>
</tr>
<tr>
<td>MD-11</td>
<td>273.314</td>
<td>195.04</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Ilyushin IL-96M</td>
<td>270</td>
<td>175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boeing 787-9</td>
<td>244.94</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-1011-500</td>
<td>231.54</td>
<td>166.92</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
16. When presenting aerodynamic data in a table, graph or figure it is mandatory that you include the following information:
   • Reference geometries: S, c and b in ft (or inches) and m (or cm).
   • Moment center information in fractions of the m.g.c.
   • Airplane weight consistent with the presentation of the data.
   • Airplane configuration information, such as:
     - Clean
     - Flaps down, gear up
     - Flaps down, gear down
     - Thrust or power setting
     - Speed brake deployment
     - Flight condition
     - C.g. location in fractions of m.g.c.

17. Remember: tables, graphs and figures are much easier to understand than prose so use them as much as possible.

18. Do not put lengthy derivations in the main body of the report. Put such material in an appendix (or appendices) and summarize the result in the main part of the report.

19. Plagiarism will result in total loss of credit for the entire report! If you decide to use material, which was not generated by you, clearly identify the source of such material. Give credit where credit is due!

20. A list of symbols must be included in your report. This list must define all symbols used anywhere in the report (including figures, appendices, etc.). Do not include symbols which are not used in your report! Do not copy a list of symbols from another reference! The list of symbols must be presented in the following manner:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Units (SI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>Weight</td>
<td>lbs (N)</td>
</tr>
</tbody>
</table>

Greek Symbols

α Angle of attack deg or rad

Subscripts

TO Takeoff -------

Acronyms

APU Auxiliary Power Unit -------

21. Never make an unsubstantiated claim! Example: if you claim that you have optimized airplane weight, you are expected to prove it. If you cannot, do not make the claim!

22. Avoid the use of superlatives, (e.g. this is the best airplane ever designed or the wing area selected is the smallest possible for this type of airplane).

23. If you extrapolate data or if you extrapolate existing technology, discuss the consequences to your design of not being able to achieve the extrapolated characteristics.

24. Include units (both systems) with all your results.

25. Appendices must be sequenced using capital letters and must have specific titles. For example:
   Appendix A - Hand Calculations
   Appendix B - Design Parameters of Comparable Aircraft