AE 030 - Computer Programming for Aerospace Engineers

Instructor Information: Professor Long Lu

Long.Lu@sjsu.edu

Credit: 2 units

Class Times & Locations: Section 01 (Lecture): M 16:30-17:20 in CL 226

Section 02 (Lab): M 17:30-20:20 in ENG 407 Section 03 (Lab): W 17:30-20:20 in ENG 407

Office Hours & Locations: M and W 20:20-21:20 in ENG 407

Prerequisites: None

Textbooks: [1] Attaway, Stormy, MATLAB: A Practical Introduction to

Programming and Problem Solving, 3rd ed., Elsevier Inc., 2013.

[2] Kernighan, Brian W., and Ritchie, Dennis M., *The C Programming Language*, 2nd ed., Prentice Hall, NJ, 1988.

Course Description:

Introduction to the fundamentals of programming in MATLAB/Simulink and C. Topics in MATLAB programming include variables, characters and encoding, vectors and matrices, inputs and outputs, user-defined functions, selection and loop statements, modular programming, debugging, and plotting techniques. Topics in Simulink include block diagrams and libraries, wiring techniques, modeling, and simulations. Topics in C programming include variables, data types, operators, expressions, statements, inputs and outputs, arrays, functions, arguments, control flow, and program structure.

Course Goals:

Introduce students to:

- 1. Developing algorithms, pseudocode, and flowcharts
- 2. Writing, compiling, analyzing, and debugging computer programs in MATLAB/Simulink and C
- 3. Applying computer programming in solving aerospace engineering problems

Course Learning Objectives (CLOs):

Upon successful completion of this course, students should be able to:

- 1. Develop algorithms, pseudocode, and flowcharts
- 2. Define and manipulate variables in MATLAB
- 3. Define, index, and manipulate vectors and matrices in MATLAB
- 4. Write, compile, analyze, and debug user-defined functions in MATLAB
- 5. Incorporate selection and loop statements in MATLAB
- 6. Utilize modular programming to write a program in MATLAB
- 7. Plot and interpret data in MATLAB
- 8. Draw and interpret block diagrams
- 9. Derive transfer functions from block diagrams
- 10. Construct block diagrams in Simulink
- 11. Model and simulate dynamic systems in Simulink
- 12. Define variables, data types, operators, and expressions in C
- 13. Define and utilize control flow in C
- 14. Write, compile, analyze, and debug programs in C
- 15. Work effectively in teams to define, propose, and solve an aerospace engineering problem utilizing MATLAB/Simulink programming

Course Relationship to BSAE Program Outcomes¹:

CLOs	A	В	C	D	E	F	G	Н	I
1, 4, 6, 8, 10-11, 14	**		***	ナ	ナ				**
2-3, 5, 7,9,12-13	**								**
15	**		***	*	ナ	ナ	ナ	**	***

- **: skill level 3 or 4 in Bloom's taxonomy²
- ***: skill level 5 or 6 in Bloom's taxonomy
- *****: skill addressed but not assessed

 $^{^{1}\} BSAE\ Program\ Outcomes:\ available\ at < http://www.sjsu.edu/ae/programs/bsae/bsae_program_outcomes/> \\ [20pt]$

² Bloom's Taxonomy: available at < https://cft.vanderbilt.edu/guides-sub-pages/blooms-taxonomy/>

Grading:

Laboratory reports (12x40 points):

Examinations (2x100 points):

Course project:

480 points
200 points
320 points

Project proposal presentation:
Project progress presentation:
Final project presentation:
Final project report:
200 points

Total: 1000 points

Grading Scale:

 \geq 950 points: A+ \geq 670 points: C+ \geq 900 points: A \geq 650 points: C \geq 850 points: A- \geq 630 points: C- \geq 800 points: B+ \geq 600 points: D \leq 750 points: B- \leq 600 points: F

Course Project:

- Students will be working in groups to provide computer-programming support, utilizing MATLAB/Simulink and/or C, to one of our senior design teams (aircraft or spacecraft teams depending on their interest and the availability of senior projects). Details will be announced during class throughout the semester.
- Students must follow the <u>AIAA technical conference paper format</u> for their final project reports.
- Each group must submit a final project report to Canvas for originality check.
- Each group must also submit a zipped code folder which contains all MATLAB/Simulink and/or C files to Canvas for verification.
- The deadline to submit your final project reports and code folders to Canvas is **Tuesday** 12/12/2017 by 11:59 PM.

Notes:

- 1. All examinations must be taken in order to receive a passing grade.
- 2. No make-up examinations will be granted without a valid reason and proof.
- 3. Laboratory assignments will be posted on Canvas after Monday lectures and typically due the following Friday by 11:59 PM to Canvas. Please check our class schedule for more details.
- 4. No late submissions will be accepted.

Approximate Schedule

	Lecture	Laboratory	Note
Week 1 W 08/23			
Week 2 M 08/28 W 08/30	Lecture 1: Algorithms, Pseudocode, and Flowcharts	Lab 1: Algorithms, Pseudocode, and Flowcharts	
Week 3 M 09/04 W 09/06	M 09/04: Labor Day-Campus Closed	Lab 1: Algorithms, Pseudocode, and Flowcharts (cont.)	
Week 4 M 09/11 W 09/13	Lecture 2: Introduction to MATLAB	Lab 2: Introduction to MATLAB	Lab 1 report due F 09/15 by 11:59 PM to Canvas
Week 5 M 09/18 W 09/20	Lecture 3: Vectors and Matrices	Lab 3: Vectors and Matrices	Lab 2 report due F 09/22 by 11:59 PM to Canvas
Week 6 M 09/25 W 09/27	Lecture 4: Introduction to MATLAB Programming	Lab 4: Introduction to MATLAB Programming	Lab 3 report due F 09/29 by 11:59 PM to Canvas
Week 7 M 10/02 W 10/04	Lecture 5: Selection Statements in MATLAB	Lab 5: Selection Statements in MATLAB	Lab 4 report due F 10/06 by 11:59 PM to Canvas
Week 8 M 10/09 W 10/11	Lecture 6: Loop Statements and Vectorizing Code in MATLAB	Project Proposal Presentations Lab 6: Loop Statements and Vectorizing Code in MATLAB	Lab 5 report due F 10/13 by 11:59 PM to Canvas
Week 9 M 10/16 W 10/18	Lecture 7: MATLAB Programs and Plotting Techniques	Lab 7: MATLAB Programs and Plotting Techniques	Lab 6 report due F 10/20 by 11:59 PM to Canvas
Week 10 M 10/23 W 10/25	Lecture 8: Introduction to Dynamical Systems and Simulink	Lab 8: Introduction to Dynamical Systems and Simulink	Lab 7 report due F 10/27 by 11:59 PM to Canvas
Week 11 M 10/30 W 11/01	Lecture 9: Introduction to C Programming	Exam 1 (MATLAB & Simulink) Lab 9: Introduction to C Programming	Lab 8 report due F 11/03 by 11:59 PM to Canvas
Week 12 M 11/06 W 11/08	Lecture 10: Conditional Statements in C	Project Progress Presentations Lab 10: Conditional Statements in C	Lab 9 report due Sat 11/11 by 11:59 PM to Canvas
Week 13 M 11/13 W 11/15	Lecture 11: Loop Statements in C	Lab 11: Loop Statements in C	Lab 10 report due F 11/17 by 11:59 PM to Canvas

Week 14 M 11/20 W 11/22	Lecture 12: Functions and Modular Programming in C	Lab 12: Functions and Modular Programming in C (No lab on W 11/22: non- instructional day)				
Week 15 M 11/27 W 11/29	In-class activities	Exam 2 (C Programming) Lab 12: Functions and Modular Programming in C (cont.)	Lab 11 report due F 12/01 by 11:59 PM to Canvas			
Week 16 M 12/04 W 12/06	Project Q&A	Final Project Presentations	Lab 12 report due F 12/08 by 11:59 PM to Canvas			
Week 17 M 12/11 T 12/12	No class on Monday 12/11/2017. Please work on your project. Final project reports and code folders are due <u>Tuesday 12/12/2017 by 11:59 PM</u> to Canvas.					

SJSU & AE Department Policies:

- Per University Policy S16-9, university-wide policy information relevant to all courses, such as academic integrity, accommodations, etc. will be available on Office of Graduate and Undergraduate Programs' Syllabus Information web page at http://www.sjsu.edu/gup/syllabusinfo/>.
- AE Department and SJSU policies are also posted at http://www.sjsu.edu/ae/programs/policies.