San José State University
Aerospace Engineering
AE110 Advanced Space Systems Engineering, Fa11 2017

Instructor Info
Dr. Periklis Papadopoulos
(408) 924-7168
periklis.papadopoulos@sjsu.edu

Office Hours
MW 4:30 p.m. – 5:30 p.m.

Credit
3 units

Class Days / Time
MW 3:00 pm - 4:15 pm

Classroom
ENG 164

Prerequisite
Grade of “C-” or better in AE 165

Textbook
Understanding Space: An Introduction to Astronautics
3rd ed., Space Technology Series

References
Fundamentals of Space Systems
Vincent Pisacane & Robert Moore, Oxford Press.

Description
Introduction to design, analysis and operation of spacecraft power, communications, attitude determination/control, structures, propulsion, thermal management systems. Typical payload systems
design and operation, including remote Earth sensors. System integration issues. Lab experiments and field trips.

Goals

1. Provide descriptions of the various elements comprising a space system.
2. Expose students to the challenge of integrating space system elements.
3. Provide an in-depth exposure to at least one spacecraft subsystem groups.
4. Educate students in the area of analysis and optimization of multidisciplinary space systems during the conceive and design phases.
5. Become familiar with the basic concepts of multi-objective optimization.
Learning Objectives

Students completing AE110 should be able to:

1. Identify each element of a space system.
2. Identify each subsystem of a spacecraft.
3. Perform a systems-level analysis of spacecraft subsystems including communication, power, thermal, attitude control, structures, guidance and navigation.
4. Formulate a high-level spacecraft design given basic design parameters, involving trade-offs between competing subsystems demands.
5. Study a single spacecraft subsystem in detail within a team of 2-3 students and present their findings in class in a series of lectures.
6. Support the product development process of complex, multidisciplinary engineering systems.
7. Rationalize and quantify a system architecture or product design problem by selecting appropriate objective functions, design parameters and constraints.
8. Subdivide a complex system into smaller disciplinary models, manage their interfaces and reintegrate them into an overall system model.
9. Use traditional numerical optimization algorithms.
10. Perform a critical evaluation and interpretation of analysis and optimization results, including sensitivity analysis and exploration of performance, cost and risk tradeoffs.
11. Develop and codify a prescriptive approach to multidisciplinary modeling and quantitative assessment of new or existing system/product architectures.
Approximate Weekly Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction, Course Overview, Mission Analysis and Design</td>
</tr>
</tbody>
</table>
| 2 | Space System characterization:
| | i. Identification of objectives, design variables, constraints, subsystems
| | ii. System-level coupling and interactions |
| 3 | Subsystem model development:
| | i. Model partitioning, interface control
| | ii. Subsystem model selection: fidelity versus expense |
| 4 | Space system design optimization and exploration techniques:
| | i. Review of linear and nonlinear programming
| | ii. Design Space Exploration: Design of Experiments (DOE) |
| 5 | Design sensitivity analysis, trade-off studies and approximations |
| 6 | Multi-objective system level optimization, spacecraft design and sizing |
| 7 | Launch vehicles and space environment
| | Subsystem presentations:
| | 7 Communications, Command and Data Handling
| | 8 Power
| | 9 Thermal
| | 10 Propulsion
| | 11 Attitude Dynamics and Control
| | 12 Structures
| | 13 Guidance, Navigation, and Control
| | 14 Mission Operations, Spacecraft Integration
| | 15 Miscellaneous Topics, Summary, Review |

Grading:

<table>
<thead>
<tr>
<th>Component</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework</td>
<td>300</td>
</tr>
<tr>
<td>1st Midterm</td>
<td>350</td>
</tr>
<tr>
<td>Final Project</td>
<td>350</td>
</tr>
</tbody>
</table>

Grading Scale:

- **A+** minimum score 950
- **A** minimum score 900
- **A-** minimum score 850
- **B+** minimum score 775
- **B** minimum score 725
- **B-** minimum score 700
- **C+** minimum score 675
- **C** minimum score 625
- **C-** minimum score 600
- **D** minimum score 500
- **F** below 500