San Jose State University
Department of Aerospace Engineering

AE 173 – Unmanned Air Vehicle (UAV) Design

Fall 2018

INSTRUCTOR: Dr. Sean Swei
NASA Ames Research Center
(650) 604-0314 (O)
seanswei@gmail.com

TIME/ROOM: MoWe 04:30 – 05:45pm Eng. 164
OFFICE HOUR: MoWe 05:45 – 06:30pm Eng. 272

PRE/CO-REQUISITE: Basic knowledge of flight dynamics and controls, and familiarity of simulation tools, such as MATLAB/Simulink.

TEXTBOOK: Class Notes

DESCRIPTION: Introduction of unmanned aircraft systems (UAS) and relevant design and operation considerations. Vehicle dynamics and flight controls. UAS flight path planning and optimization. Computer simulations.
GOALS: The goals of this course are to study:
- Unmanned air vehicle (UAV) design and analysis for flight missions
- UAV models
- Flight control design utilizing successive loop closure
- UAV sensors and actuators
- Advanced UAV configurations

EXPECTATIONS: Students are expected to work on projects of their choice. In addition, they are encouraged to dovetail their own graduate research with the class projects.

GRADING: Grading is based on the following:
- **Homework:** 30% (due before the class, *no late HW!*)
- **Project:** 70%
 - Literature survey: 15%
 - Mid-term review: 15%
 - Final presentation/report: 40%

GRADING SCALE: A+: 100 – 97%; A: 96.9 – 93%; A-: 92.9 – 90%; B+: 89.9 – 87%; B: 86.9 – 83%; B-: 82.9 – 80%; C+: 79.9 – 77%; C: 76.9 – 73%; C-: 72.9 – 70%; D+: 69.9 – 67%; D: 66.9 – 63%; D-: 62.9 – 60%; F: < 59.9%.
TOPICS TO BE COVERED:

<table>
<thead>
<tr>
<th>Item</th>
<th>Lecture Topic(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Introduction</td>
</tr>
<tr>
<td>02</td>
<td>Euler angles and coordinate transformation</td>
</tr>
<tr>
<td></td>
<td>- Kinematics</td>
</tr>
<tr>
<td></td>
<td>- Quaterions</td>
</tr>
<tr>
<td>03</td>
<td>Derivation of equations of motion</td>
</tr>
<tr>
<td></td>
<td>- Linear models</td>
</tr>
<tr>
<td></td>
<td>- Quadcopter dynamics</td>
</tr>
<tr>
<td>04</td>
<td>Flight control design</td>
</tr>
<tr>
<td></td>
<td>- Inner-loop</td>
</tr>
<tr>
<td></td>
<td>- Successive loop closure</td>
</tr>
<tr>
<td>05</td>
<td>Mid-Term Project Review</td>
</tr>
<tr>
<td>06</td>
<td>Guidance control design</td>
</tr>
<tr>
<td></td>
<td>- Outer-loop</td>
</tr>
<tr>
<td></td>
<td>- Waypoint following</td>
</tr>
<tr>
<td></td>
<td>- Trajectory/path planning</td>
</tr>
<tr>
<td>07</td>
<td>Avionic sensors – Data fusion</td>
</tr>
<tr>
<td></td>
<td>- IMU/GPS</td>
</tr>
<tr>
<td></td>
<td>- LIDAR/RADAR</td>
</tr>
<tr>
<td>08</td>
<td>State-Estimation</td>
</tr>
<tr>
<td></td>
<td>- Dynamic observer design</td>
</tr>
<tr>
<td></td>
<td>- Kalman filter</td>
</tr>
<tr>
<td>09</td>
<td>Summary & future application</td>
</tr>
<tr>
<td>10</td>
<td>Project presentation</td>
</tr>
</tbody>
</table>