Mars Entry Simulation of Slotted Compression Ramp Probe

A project present to
The Faculty of the Department of Aerospace Engineering
San Jose State University

in partial fulfillment of the requirements for the degree
Master of Science in Aerospace Engineering

By

Anthony DiQuattro

December, 2017

approved by

Dr. Periklis Papadopoulos
Faculty Advisor
The Designated Project Advisor Approves the Thesis Titled

MARS ENTRY SIMULATION OF SLOTTED COMPRESSION RAMP PROBE

by

Anthony DiQuattro

APPROVED FOR THE DEPARTMENT OF AEROSPACE ENGINEERING

SAN JOSÉ STATE UNIVERSITY

December 2017

Dr. P. Papadopoulos Department of Aerospace Engineering Advisor
ABSTRACT

MARS ENTRY SIMULATION OF SLOTTED COMPRESSION RAMP PROBE

by Anthony DiQuattro

This report summarizes aerodynamic simulations and heating analysis performed on the Slotted Compression Ramp (SCRAMP) probe for Mars Entry for polar scientific missions.
TABLE OF CONTENTS

1 INTRODUCTION 1
- 1.1 Background 1
- 1.2 Previous Work 2
- 1.3 Objective 6

2 SIMULATION SETUP 7
- 2.1 Geometry Parameterization 7
- 2.2 Test Case Selection 8
- 2.3 Navier-Stokes Equations 9
- 2.4 Reaction Chemistry 10

3 AERODYNAMIC PROPERTIES 12
- 3.1 Newtonian Approximation 12
- 3.1 Simulation Results 12
- 3.1 Analysis 13

4 THERMAL PROPERTIES 15
- 4.1 Heat Load Calculation 15
- 4.2 Simulation Analysis 16

5 CONCLUSION 18

REFERENCES 19

APPENDIX
- A Simulation Result Data Plots 21
- B Geometry Parameterization Code 29
NOMENCLATURE

A reference area
C_A axial force coefficient
C_P pressure coefficient
k thermal conductivity
P pressure
Pr Prandtl number
Q dynamic pressure
q heat flux
Re Reynolds number
T temperature
V velocity
Θ body angle
ρ density
τ shear stress
(f) forward reaction parameter
(LE) leading edge parameter
(r) reverse reaction parameter
(TE) trailing edge parameter
(∞) free stream parameter
CHAPTER 1
INTRODUCTION

1.1 Background

There is a great scientific interest in exploring Mars for geological data to determine its current and past characteristics. The polar regions are of particular interest because they currently contain water-ice on their surface, which raises the possibility of conditions on Mars surface that support liquid water. Missions involving sending experiments to Mars are both costly and high risk, since only 7 of 14 payloads sent to conduct experiments on the surface functioned after landing successfully [1].

The SCRAMP probe geometry presents a unique opportunity for future experiments. Its geometry provides an atmospheric entry vehicle with an aerodynamic center aft of the center of gravity, it is passively stable. By eliminating active entry control systems such as attitude control thrusters, probability of mission failure is greatly decreased. The probe can be implemented initially as a Space Station sample return vehicle with potential for scalability as a planetary probe. Testing has been performed with this geometry in suborbital reentry experiments, but comprehensive aerodynamic simulations are required to validate the SCRAMP as a solution for Mars atmospheric entry [2].
Figure 1.1 - Slotted Compression Ramp Probe.

A freestream flow Mach number of greater than 5 defines a hypersonic flow, which is significant due to phenomena in the shock region and boundary layer of an aerodynamic body. These high velocities experienced by vehicles entering an atmosphere create a strong upstream shockwave and alters the state of the fluid in its wake. The internal energy of the fluid in the free stream is overshadowed by the great kinetic energy of the free stream flow. Density of the flow around the body increases with the Mach number in the hypersonic regime, which forces the shock layer closer to the body [3].

The high density ratio across the shock wave in a hypersonic flow allows the mass of the fluid to be compressed into a smaller area, thus the thin shock wave [4]. This characteristic can create physical challenges when the shock layer begins interacting with the boundary layer.

Figure 1.2 – Conventional sphere-cone geometry of DS-2 Mars probe [5].

1.2 Previous Work

The NASA Deep Space 2 mission included two small probes that landed on the Martian South Pole with the goal of demonstrating viability and collecting data on the properties of the
atmosphere and surface. Both the probes and the accompanying lander failed to transmit data after landing. The mission was developed and executed with limited time and funding, leading to engineering decisions to bypass testing and make educated assumptions on propulsion and control systems. This lack of testing resulted in an unknown cause of failure. Although entry data was not returned, this experiment provided a great deal of test data and theoretical analysis on Mars entry for small probes [5].

Similarly, the European Space Agency’s Beagle 2 Mars lander mission failed to transmit data following entry and landing on Mars. In 2015, the NASA Mars Reconnaissance Orbiter captured and transmitted images of Beagle 2 on the planet surface. These images provided evidence that the lack of transmission was most likely due to failure of solar panel deployment, blocking the antenna. Confirmation of mission success up to landing shows that the aerodynamic entry modeling was sufficient [6].

The Stardust mission involved a probe spacecraft collecting dust samples from the trail of a comet as well as cosmic dust from within the solar system. The samples were collected in space and returned in a small reentry capsule for analysis. The probe entered at 12.9 km/s and encountered peak deceleration of 34 g, the fastest Earth entry of any scientific mission [7].

The Genesis mission profile, similar to Stardust, sent a probe to deep space for autonomous collection of solar wind particles and return to Earth for analysis. The probe reentered successfully but an error in integration prevented its parachute from deploying, causing damage and contaminating samples [8].

The SCRAMP body concept is a new approach to small probe atmospheric entry. By using passive stabilization methods, utilizing the shock-shock interactions and including multiple probes, probability of success can be increased.
To provide a solution for a given payload, the problem must be defined by the mission profile. This boils down to a given combination of drag, heating and stability requirements for the entry vehicle. The closest successful comparison missions to the potential ATROMOS payload by mass are the DS-2 probes. The Microprobe utilized a blunted cone heatshield fore body and hemispherical aft section to meet mission requirements. In part, the availability of previous flight data on the sphere-cone body from successful Venus and Jupiter probes was a major factor due to limited financial resources for research and testing. The entry vehicle design is flight proven to be dynamically stable if the center of gravity is set toward the cone fore body. Although the body is dynamically unstable when leading with the hemispherical side, the chance of the spacecraft reaching the unstable attitude can be minimized with spin stabilization. The hemispherical back shell also decreases dynamic instability in the transonic regime. The blunt cone fore body is selected for its drag and heating characteristics; the nose radius on the cone is a tradeoff between stability and heating characteristics. By increasing the nose radius, heating at the stagnation point is decreased but stability is lowered. The allowable heating is determined by material properties and volumetric constraints, and finally the entry vehicle can be sized for the desired ballistic coefficient [5].

By choosing a flight proven design, much of the previous research can be applied to the vehicle. We know that at hypersonic conditions above Mach 10, the bow shock has enough energy to disassociate CO₂ molecules. At the microprobe scale, gasses do not equilibrate across the thin shock layer. There is also existing wind tunnel data on sphere-cone probe geometries to predict supersonic aerodynamics, although there is less available in the transonic regime due to difficulties in testing and simulation.
The Mars Pathfinder entry vehicle also provided a usable atmospheric profile estimation from its entry, descent and landing data [10]. A study of wake flow about the Mars Pathfinder entry vehicle determined that accounting for ablation reduced fore body heating by 40-50%, whereas ablation effects on the aft body were nearly identical in ablating non ablating models [11]. A study in uncertainty analysis shows that in chemically reacting hypersonic flow simulations, surface heat flux is the greatest uncertainty. The biggest factor in heat flux uncertainty is variation in gas density, which greatly varies thermal properties at the entry vehicle shoulder and stagnation point [12].

Although NASA typically follows a “test as you fly” methodology for developing flight hardware, this sometimes isn’t the case for reentry vehicles. Full scale flight condition thermal protection system testing is rarely performed due to cost, scheduling and limited facility resources. NASA Ames Research Center has developed a small probe platform named SPRITE (Small Probe Re-entry Investigation of TPS Engineering) for which there is published test data [13]. This serves as a baseline and comparison for a potential SCRAMP probe.

A series of small models were tested in an arc-jet. The objective of the study was to determine feasibility of full scale arc jet testing, perform in situ measurements and use software such as DPLR, FIAT and MARC to predict aerothermal flow properties and ablation effects of the vehicle. There were a few non ideal design compromises in the study. The first was modification of the vehicle geometry in removing the hemispherical back shell from the body for the model to mate with the arc-jet sting arm. This compromise was acceptable because the hypersonic nature of the testing means that results are mostly dictated by the fore body geometry. The design was also compromised by constructing the ablative heat shield out of two machined blank blocks of PICA material available at no cost instead of a single continuous shell.
The results showed excellent agreement between simulated and actual flow separation on the body, which translates to accurate prediction of aerodynamic forces. The discrepancy in heat flux between test results and simulations can be attributed to two known sources of error; the non-uniformity of bulk enthalpy in the flow from the arc-jet, and the software requirement of uniform inflow initial conditions. The non-uniform bulk enthalpy in the flow from the arc-jet has yet to be characterized and the software is not yet capable of non-uniform inflow conditions [14].

1.3 Objective
The objective of this project is to perform simulations of the SCRAMP probe geometry to characterize the aerothermodynamic properties in Mars entry conditions. With this information, its thermal protection system and planned trajectory can be further refined based on ablative effects.

CHAPTER 2

SIMULATION SETUP

2.1 Geometry Parameterization

The first step in the approach is to parameterize the geometry of the SCRAMP body and determine an optimal aerodynamic configuration for entry by performing idealized simulations. Simulations in free molecular flow, supersonic and hypersonic flow with disassociating gasses are required to determine optimized geometry. Once optimal geometry is selected, increase detail of geometry and determine aerodynamic characteristics for nominal flight path.

The geometry parameterization completed in MATLAB script to create a data set of two-dimensional coordinates of the desired body profile in axisymmetric form. This provides a complete geometry for the model with any desired parameter of variables, including the following: nose radius, body length, body ramp angle, fin thickness, fin radius (total width), fin shoulder radius, fin start location, gap distance, aft section type (spherical, conical or truncated), and number of data points along each section of the body. Figure 2.1 shows an example graphic output of the script.
This data can be used in CAD or grid generating software to create a 3D grid model of the full body by rotating about the center.

2.2 Test Case Selection

The flight path of the probe is dependent on the aerodynamic characteristics yet to be determined, so they follow the flight path of the closest comparison, the DS-2 probes.
The cases selected best capture the heating and deceleration profile with a limited number of test points available. Free stream conditions are selected from average values which may vary due to high variance in atmospheric properties with respect to seasons and weather.

Table 2.1 – Selected Mars Entry Profile Case Conditions [16].

<table>
<thead>
<tr>
<th>Case</th>
<th>Alt. (km)</th>
<th>V_∞ (m/s)</th>
<th>T_∞ (K)</th>
<th>P_∞ (Pa)</th>
<th>ρ (kg/m3)</th>
<th>Q_∞ (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>80</td>
<td>7000</td>
<td>129.5</td>
<td>0.046</td>
<td>1.86 E-6</td>
<td>45.57</td>
</tr>
<tr>
<td>B</td>
<td>65</td>
<td>6800</td>
<td>143.0</td>
<td>0.361</td>
<td>1.33 E-5</td>
<td>307.5</td>
</tr>
<tr>
<td>C</td>
<td>50</td>
<td>6000</td>
<td>157.0</td>
<td>2.25</td>
<td>8.26 E-5</td>
<td>1487</td>
</tr>
<tr>
<td>D</td>
<td>35</td>
<td>3000</td>
<td>171.0</td>
<td>13.8</td>
<td>4.25 E-4</td>
<td>1912</td>
</tr>
<tr>
<td>E</td>
<td>20</td>
<td>400</td>
<td>185.0</td>
<td>70.1</td>
<td>2.20 E-3</td>
<td>176.0</td>
</tr>
</tbody>
</table>

Five cases were selected initially, but the highest altitude case would not provide satisfactory simulation results due to low temperature and density properties of the free stream flow. The three geometries tested include a “base” case with a straight 45 degree wing, a variation with a 100 mm radius on the fin, and an increased gap size of 50 mm. All use a reference length of .715 meters.
2.3 Navier-Stokes Equations

The simulation of flow around the body of interest is performed by leveraging the Navier-Stokes Equations. By defining a control volume around the body, the basic laws of conservation of mass and energy are applied to the system. The system control volume is divided into finite volumes small enough to accurately predict flow properties and aerodynamic forces on the body [17].

\[
\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u)}{\partial x} + \frac{\partial (\rho v)}{\partial y} + \frac{\partial (\rho w)}{\partial z} = 0 \tag{2.1}
\]

\[
\frac{\partial (\rho u)}{\partial t} + \frac{\partial (\rho u^2)}{\partial x} + \frac{\partial (\rho u v)}{\partial y} + \frac{\partial (\rho u w)}{\partial z} = -\frac{\delta p}{\delta y} + \frac{1}{\Re} \left[\frac{\delta \tau_{xx}}{\delta x} + \frac{\delta \tau_{xy}}{\delta y} + \frac{\delta \tau_{xz}}{\delta z} \right] \tag{2.2}
\]

\[
\frac{\partial (\rho v)}{\partial t} + \frac{\partial (\rho u v)}{\partial x} + \frac{\partial (\rho v^2)}{\partial y} + \frac{\partial (\rho v w)}{\partial z} = -\frac{\delta p}{\delta y} + \frac{1}{\Re} \left[\frac{\delta \tau_{xy}}{\delta x} + \frac{\delta \tau_{yy}}{\delta y} + \frac{\delta \tau_{yz}}{\delta z} \right] \tag{2.3}
\]

\[
\frac{\partial (\rho w)}{\partial t} + \frac{\partial (\rho u w)}{\partial x} + \frac{\partial (\rho v w)}{\partial y} + \frac{\partial (\rho w^2)}{\partial z} = \frac{\delta |u|}{\delta x} + \frac{1}{\Re} \left[\frac{\delta \tau_{xx}}{\delta x} + \frac{\delta \tau_{xy}}{\delta y} + \frac{\delta \tau_{xz}}{\delta z} \right] \tag{2.4}
\]

\[
\frac{\delta E_T}{\delta t} + \frac{\delta |u| E_T}{\delta x} + \frac{\delta |v| E_T}{\delta y} + \frac{\delta |w| E_T}{\delta z} = \dot{\iota} \tag{2.5}
\]
\[
\frac{\delta |u_p|}{\delta x} + \frac{\delta |v_p|}{\delta y} + \frac{\delta |\omega|}{\delta z} + \frac{1}{\Re} \left[\frac{\delta}{\delta x} \left(u \tau_{xx} + v \tau_{xy} + w \tau_{xz} \right) + \frac{\delta}{\delta x} \left(u \tau_{xx} + v \tau_{xy} + w \tau_{xz} \right) \right] - 1 \frac{\delta |u \tau_{xx}|}{\delta x} \]

To accurately predict properties of the flow in a structured mesh, a cell must have normal faces to preserve the validity of the Navier-Stokes equations. This requirement becomes increasingly difficult to meet with spherical geometries and multiple features on a body. Grids have been simplified greatly by building grids utilizing overlapping Chimera cells on the fin walls in CFD-GEOM.
2.4 Reaction Chemistry

Hypersonic flow encountered in planetary entry will dissociate and partially ionize gases.

To accurately model flow around the SCRAMP, the Park-94 model is utilized [15]. This model has been verified in previous axisymmetric Mars entry simulations [19].

\[
K_f (T) = A_f T^{b_f} \exp \left(-\frac{E_f}{T} \right) \quad [\text{m}^3 / (\text{kmol} \cdot \text{s})]
\]

(2.6)

\[
K_r (T) = A_r T^{b_r} \exp \left(-\frac{E_r}{T} \right) \quad [\text{m}^6 / (\text{kmol}^2 \cdot \text{s})]
\]

(2.7)

Table 2.2 – Reactions and constants for reaction rates [14].

<table>
<thead>
<tr>
<th>#</th>
<th>Reaction</th>
<th>A_f</th>
<th>B_f</th>
<th>E_f</th>
<th>A_r</th>
<th>B_r</th>
<th>E_r</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CO2+O2 ↔ CO+O+O</td>
<td>6.90E18</td>
<td>-1.5</td>
<td>63275</td>
<td>1.14E11</td>
<td>-0.75</td>
<td>535</td>
</tr>
<tr>
<td>2</td>
<td>CO2+O ↔ CO+O+O</td>
<td>1.38E19</td>
<td>-1.5</td>
<td>63275</td>
<td>2.28E11</td>
<td>-0.75</td>
<td>535</td>
</tr>
<tr>
<td>3</td>
<td>CO2+C ↔ CO+O+C</td>
<td>1.38E19</td>
<td>-1.5</td>
<td>63275</td>
<td>2.28E11</td>
<td>-0.75</td>
<td>535</td>
</tr>
<tr>
<td>4</td>
<td>CO2+C ↔ CO+CO+O</td>
<td>6.90E18</td>
<td>-1.5</td>
<td>63275</td>
<td>1.14E11</td>
<td>-0.75</td>
<td>535</td>
</tr>
<tr>
<td>5</td>
<td>CO2+CO2 ↔ CO+O+CO2</td>
<td>6.90E18</td>
<td>-1.5</td>
<td>63275</td>
<td>1.14E11</td>
<td>-0.75</td>
<td>535</td>
</tr>
<tr>
<td>6</td>
<td>CO+O2 ↔ C+O+O2</td>
<td>2.30E17</td>
<td>-1.0</td>
<td>12900</td>
<td>5.13E12</td>
<td>-1.00</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>CO+O ↔ C+O+O</td>
<td>3.40E17</td>
<td>-1.0</td>
<td>12900</td>
<td>7.59E12</td>
<td>-1.00</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>CO+C ↔ C+O+C</td>
<td>3.40E17</td>
<td>-1.0</td>
<td>12900</td>
<td>7.59E12</td>
<td>-1.00</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>CO+CO ↔ C+O+CO2</td>
<td>2.30E17</td>
<td>-1.0</td>
<td>12900</td>
<td>5.13E12</td>
<td>-1.00</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>CO+CO2 ↔ C+O+CO2</td>
<td>2.30E17</td>
<td>-1.0</td>
<td>12900</td>
<td>5.13E12</td>
<td>-1.00</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>O2+C ↔ O+O+C</td>
<td>1.00E19</td>
<td>-1.5</td>
<td>59500</td>
<td>1.00E13</td>
<td>-1.00</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>O2+CO ↔ O+O+CO</td>
<td>2.00E18</td>
<td>-1.5</td>
<td>59500</td>
<td>2.00E12</td>
<td>-1.00</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>O2+CO2 ↔ O+O+CO2</td>
<td>2.00E18</td>
<td>-1.5</td>
<td>59500</td>
<td>2.00E12</td>
<td>-1.00</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>CO+CO ↔ CO+O</td>
<td>2.33E6</td>
<td>0.5</td>
<td>65710</td>
<td>4.60E9</td>
<td>-0.25</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>CO+O ↔ O2+C</td>
<td>3.90E10</td>
<td>-0.18</td>
<td>69200</td>
<td>1.34E11</td>
<td>-0.43</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>CO2+O ↔ O2+CO</td>
<td>2.10E10</td>
<td>0.0</td>
<td>27800</td>
<td>4.11E7</td>
<td>0.50</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>O2+O2 ↔ O+O+O2</td>
<td>2.00E18</td>
<td>-1.5</td>
<td>59500</td>
<td>2.00E12</td>
<td>-1.00</td>
<td>23800</td>
</tr>
<tr>
<td>18</td>
<td>O2+O ↔ O+O+O</td>
<td>1.00E19</td>
<td>-1.5</td>
<td>59500</td>
<td>1.00E13</td>
<td>-1.00</td>
<td>0</td>
</tr>
</tbody>
</table>
CHAPTER 3
AERODYNAMIC RESULTS

3.1 Newtonian Approximation

Due to the high entry velocity of the probe, a modified Newtonian approximation of the
drag can be performed to calculate an estimate of the drag forces at hypersonic velocities [4].
This is built into the geometry parameterization code due to the nature of this method relying
solely on the geometry of the body in axisymmetric flow.

\[
C_p = C_{p,\text{Max}} \sin^2 \Theta
\]

(6.1)

\[
C_{p,\text{Max}} = \frac{1}{2} p_{\infty} V_{\infty}^2
\]

(6.2)

\[
C_a = \frac{1}{y} \int_0^y \iota \, dy
\]

(6.3)

3.2 Simulation Results

Computational results of the axisymmetric simulations provide three dimensional axial
force coefficients. The passively stable nature of the planned trajectory assumes little or no
angle of attack.

Table 3.1 – Axial force coefficient results.

<table>
<thead>
<tr>
<th>Reference Area (m²)</th>
<th>Cₐ Newtonian</th>
<th>Cₐ B</th>
<th>Cₐ C</th>
<th>Cₐ D</th>
<th>Cₐ E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Gap Shoulder</td>
<td>0.807</td>
<td>0.986</td>
<td>.749</td>
<td>0.884</td>
<td>0.957</td>
</tr>
<tr>
<td></td>
<td>0.906</td>
<td>0.930</td>
<td>1.037</td>
<td>0.919</td>
<td>1.070</td>
</tr>
<tr>
<td></td>
<td>0.807</td>
<td>0.950</td>
<td>.704</td>
<td>.899</td>
<td>0.902</td>
</tr>
</tbody>
</table>
3.2 Analysis

Cases in which the shock layer is deflected entirely by the wing section exhibit properties similar to a conventional reentry geometry as shown in Figure 3.1. A higher drag coefficient is experienced in conditions where the shock layer partially flows through the gap section, seen in figure 3.2. This can be explained by viscous interactions behind the shock. Temperature profiles of the flow at the wall also appear much higher in these cases. These characteristics may vary greatly with different geometry at the aft section of the body in future work.

Figure 3.1 – Gap case C Mach contour.
Desirable aerodynamic characteristics may vary based on the planned trajectory. A higher drag design may benefit cases where atmospheric temperatures are relatively low. Lower drag designs would be more beneficial for high velocity entries in which the total heat load is required to be minimized.
CHAPTER 4

THERMAL PROPERTIES

4.1 Stagnation Point Heating

The point of greatest interest with respect to heating and ablation is the stagnation point on the hemispherical nose since it experiences the greatest effects and can be used to estimate other conditions. The Sutton-Graves heating equation provides an approximation for convective stagnation point heat flux on a spherical forebody entering Mars atmosphere [5].

\[q_{\text{convective}} = 1.9027 \times 10^{-4} \sqrt{\frac{\rho_\infty}{R_{\text{nose}}}} V_\infty^3 \] (4.1)

Table 4.1 – Stagnation point heat flux approximation.

<table>
<thead>
<tr>
<th>Test Case</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q) (W/cm(^2))</td>
<td>29.3</td>
<td>71.9</td>
<td>123</td>
<td>34.9</td>
<td>0.188</td>
</tr>
</tbody>
</table>

These values can be curve fit and integrated to provide the total stagnation point heat load with refined results. Current calculations assume all significant heat flux to occur over 100 to 150 seconds as shown in other Mars entry profiles.
Figure 4.1 – Heat pulse approximation.

Table 4.2 - Comparison of small probe thermal properties.

<table>
<thead>
<tr>
<th>Probe</th>
<th>Mass (kg)</th>
<th>Stagnation Point Heat Load (J/cm²)</th>
<th>Peak Heat Flux (W/cm²)</th>
<th>Peak Deceleration (G)</th>
<th>Ballistic Coefficient (kg/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS-2</td>
<td>2.5</td>
<td>7,165</td>
<td>200</td>
<td>12.6</td>
<td>27</td>
</tr>
<tr>
<td>Beagle 2</td>
<td>60</td>
<td>2,100</td>
<td>75</td>
<td>15</td>
<td>70</td>
</tr>
<tr>
<td>Stardust</td>
<td>45.8</td>
<td>30,000</td>
<td>1100</td>
<td>34</td>
<td>13</td>
</tr>
<tr>
<td>Genesis</td>
<td>193</td>
<td>16,750</td>
<td>515</td>
<td>27.2</td>
<td>70</td>
</tr>
<tr>
<td>SCRAMP</td>
<td>20</td>
<td>6,490</td>
<td>123</td>
<td>TBD</td>
<td>41</td>
</tr>
</tbody>
</table>

4.2 Analysis

The values obtained through Sutton-Graves calculations appear to be proportional to comparable Mars entry missions. Although heating calculations for the spherical nose are identical since there was no variation in the fore body radius parameter, heating characteristics vary in simulations on the wing surface. It should be noted that the wing section of the geometry
experiences temperatures very similar to the stagnation point. In cases where the shock layer captured by the wing section, flow density is nearly equal to that of the stagnation point as shown in Figure 4.2. The highest density in the flow occurs at the shock-shock interaction at a small distance from the wall.

Figure 4.2 – Gap case C density contour

These properties of the flow show that ablative analysis should be performed on the wing surface as well as the spherical nose. Analysis using ablative material in the fore body in a similar Mars entry study reduced the max heating rate by roughly 50 percent, while use of ablative material on the trailing side had a negligible effect [5].
CHAPTER 5
CONCLUSION

This analysis has provided aerodynamic and thermal properties suitable for a first iteration of a mission design. For mission specific analysis, two or more design iterations would be ideal. In addition to ablation analysis, Monte Carlo simulations would be valuable due to uncontrollable atmospheric interface conditions and variable atmospheric properties including temperature, pressure, species and dust composition. Use of Monte-Carlo simulations in combination with CFD simulations has been shown to provide results accurate to mission experiments [11]. These results can also be used to refine future simulations by designing grids to capture the shock layer and shock-shock interactions in closer detail.
REFERENCES

APPENDIX A

SIMULATION SURFACE PLOTS

Case B – Near Body

![Edge Pressure Graph](image-url)
Case B – Near Wing

![Edge Pressure Graph](image-url)
Case C – Near Body
Case C – Near Wing
Case D – Near Body
Case D – Near Wing
Edge Pressure

- Pressure (Pa)
- LE Distance (m)

Edge Temperature

- Temperature (K)
- LE Distance (m)
Case E – Near Body

Skin Friction Coefficient

Edge Pressure
Case E – Near Wing
APPENDIX B

BODY PARAMETERIZATION MATLAB SCRIPT

```matlab
% TDRV  = [Nose Radius,     # points on nose radius
%          Body Length,     # points on cyl body
%          Body Angle,     # points on fin
%          Fin Angle,      Fin Radius
%          Shoulder Radius, # points on shoulder
%          Gap Distance,    Fin Thickness
%          Aft type - note # points on aft
%          #Points rear shoulder      0   ]
%
%  TDRV  =   [R_nose,  n_nose;
%             l_body,  n_body;
%             t_body,  n_fin;
%             t_fin,   r_fin;
%             r_shld,  n_shld;
%             d_gap,   d_fin
%             n_shld2, n_aft
%             aft,     0
%             n_shld2         ]
%
%  aft code
%  0    none
%  1    spherical
%  2    conical
%  3    straight

clear all
clc
TDRV = [92   100;  % Nose Radius   n Points on Nose
623  20;      % Body Length   n Points on Body
0    25;      % Body Angle    n Points on Fin
45   507;     % Fin Angle     Total Body radius
0    10;      % shld radius   n points on shoulder
20   10;       % Gap distance  Fin Rad / half thickness
3    20;       % Aft type      n Points aft section
5    0];      % n rear shoulder blank - Units in M
Cpmax  = 1.87;

r_nose = TDRV(1,1); n_nose = TDRV(1,2);
l_body = TDRV(2,1); n_body  = TDRV(2,2);
t_body = TDRV(3,1); n_fin  = TDRV(3,2);
t_fin  = TDRV(4,1); r_fin  = TDRV(4,2);
r_shld = TDRV(5,1); n_shld = TDRV(5,2);
d_gap  = TDRV(6,1); d_fin  = TDRV(6,2);
aft    = TDRV(7,1); n_aft  = TDRV(7,2);
n_shld2= TDRV(8,1);

offset = 0;  

for n = 1:1:n_nose
    theta_nose(n) = (n-1)*90/(n_nose-1);
    x_nose(n) = r_nose - r_nose*cosd(theta_nose(n));
```
\[y_{\text{nose}}(n) = r_{\text{nose}} \times \sin(\theta_{\text{nose}}(n)) \]
\[\text{for } n = 1:1:n_{\text{body}} \]
\[x_{\text{body}}(n) = r_{\text{nose}} + n \times l_{\text{body}}/n_{\text{body}}; \]
\[y_{\text{body}}(n) = r_{\text{nose}} + n \times l_{\text{body}} \times \tan(\theta_{\text{body}})/n_{\text{body}}; \]
\[\text{end} \]
\[\text{if } \text{aft} == 1 \]
\[\text{disp('Spherical aft body')} \]
\[xaftinge = x_{\text{body}}(n_{\text{body}}); \]
\[yafthinge = 0; \]
\[r_{\text{aft}} = r_{\text{nose}} + l_{\text{body}} \times \sin(\theta_{\text{body}}); \]
\[\text{for } n = 1:1:n_{\text{aft}} \]
\[\theta_{\text{aft}}(n) = (n-1)*90/(n_{\text{aft}}-1); \]
\[x_{\text{aft}}(n) = xaftinge + r_{\text{aft}} \times \sin(\theta_{\text{aft}}(n)); \]
\[y_{\text{aft}}(n) = r_{\text{aft}} \times \cos(\theta_{\text{aft}}(n)); \]
\[\text{end} \]
\[\text{elseif } \text{aft} == 2 \]
\[\text{disp('Conical aft body')} \]
\[r_{\text{aft}} = r_{\text{nose}} + l_{\text{body}} \times \sin(\theta_{\text{body}}); \]
\[\text{for } n = 1:1:n_{\text{aft}} \]
\[x_{\text{aft}}(n) = x_{\text{body}}(n_{\text{body}}) + r_{\text{aft}} \times (n/n_{\text{aft}}); \]
\[y_{\text{aft}}(n) = y_{\text{body}}(n_{\text{body}}) - r_{\text{aft}} \times (n/n_{\text{aft}}); \]
\[\text{end} \]
\[\text{elseif } \text{aft} == 3 \]
\[\text{disp('Straight aft body')} \]
\[\text{for } n=1:1:n_{\text{aft}} \]
\[x_{\text{aft}}(n) = x_{\text{body}}(n_{\text{body}}); \]
\[y_{\text{aft}}(n) = y_{\text{body}}(n_{\text{body}}) \times (1 - (n/n_{\text{body}})); \]
\[\text{end} \]
\[\text{else} \]
\[\text{disp('Aft input not valid')} \]
\[\text{end} \]
\[\% \text{Start and End Centerpoints for fin radius} \]
\[SBx = l_{\text{body}} + 2 \times r_{\text{nose}}; \]
\[SBy = r_{\text{fin}} - d_{\text{fin}}; \]
\[SAy = r_{\text{nose}} + \tan(\theta_{\text{body}}) \times \text{offset} + d_{\text{fin}} + d_{\text{gap}}; \]
\[SAx = SBx - (SBy - SAy)/\tan(\theta_{\text{fin}}); \]
\[\% \text{**********Straight Fin Generation********************} \]
\[\text{if } r_{\text{shld}} == 0 \]
\[\text{for } n = 1:1:n_{\text{shld}}+1 \]
\[t_{\text{shld}}(n) = \theta_{\text{fin}} - 90 - 180 \times (n-1)/n_{\text{shld}}; \]
\[x_{\text{tipa}}(n) = SAx + d_{\text{fin}} \times \cos(\theta_{\text{shld}}(n)); \]
\[y_{\text{tipa}}(n) = SAy + d_{\text{fin}} \times \sin(\theta_{\text{shld}}(n)); \]
\[\text{end} \]
\[\text{for } n = 1:1:n_{\text{shld}}+1 \]
\[t_{\text{shld}}(n) = \theta_{\text{fin}} + 90 - 180 \times (n-1)/n_{\text{shld}}; \]
\[x_{\text{tipb}}(n) = SBx + d_{\text{fin}} \times \cos(\theta_{\text{shld}}(n)); \]
\[y_{\text{tipb}}(n) = SBy + d_{\text{fin}} \times \sin(\theta_{\text{shld}}(n)); \]
\[\text{end} \]
\[cle = \cos(\theta_{\text{fin}}+90); \% \text{Initialize angles for fin surfaces} \]
sle = sind(t_fin+90);
ctime = cosd(t_fin-90);
ste = sind(t_fin-90);

for n = 1:1:n_fin
 xfinab(n) = SAx + (SBx-SAx)*(n)/n_fin; % Fin center coords
 yfinab(n) = SAy + (SBy-SAy)*(n)/n_fin;
 xLE(n) = xfinab(n) + d_fin*cle; % Leading side
 yLE(n) = yfinab(n) + d_fin*sle;
 xTE(n) = xfinab(n) + d_fin*cte; % Trailing side
 yTE(n) = yfinab(n) + d_fin*ste;
end

% Newtonian Drag (straight fin)***
Cp = zeros(n_nose,1); Cp(1) = 2; cdn = 0; t_cp(1) = 90;
for n = 2:1:n_nose % Nose
 dy(n) = y_nose(n) - y_nose(n-1);
 dx(n) = x_nose(n) - x_nose(n-1);
 t_cp(n) = 180 - atand(dy(n)/dx(n));
 Cp(n) = Cpmax*sind(t_cp(n))*sind(t_cp(n));
 cdn = cdn + Cp(n) * dy(n) / r_fin ;
end

cdt = 2 * cdn * d-fin/r_nose; % Fin Tips
Cd_fin = 2 * sind(180 - t_fin)^2; % Fin Body

cdf = Cp_fin * (yLE(n_fin) - yLE(1)) / r_fin ;

Cd_Newt = cdf+cdt+cdn
% **

x1a = xtipa; y1a = ytipa; % Organize & Concat. Surfaces
x1b = xLE; y1b = yLE;

x1c = xtipb; y1c = ytipb;

x1d = fliplr(xTE); y1d = fliplr(yTE);

x1 = horzcat(x1a,x1b,x1c,x1d);
y1 = horzcat(y1a,y1b,y1c,y1d);

else % ********** Rounded Fin Generation ********************************
 Sbx = SBx; % Trailing Edge Tip Hinge
 Sby = SBy - r_shld;
 for n = 1:1:n_shld
 t_rad(n)= 90 + t_fin - (n-1)*t_fin/n_shld; % Fin spine angle
 xrad(n) = Sbx + r_shld*cosd(t_rad(n)); % Shoulder centerline
 yrad(n) = Sby + r_shld*sind(t_rad(n));
 xfin(n) = xrad(n) + d_fin*cosd(t_rad(n)); % LE Shoulder Surface
 yfin(n) = yrad(n) + d_fin*sind(t_rad(n));
 xfinr(n) = xrad(n) + d_fin*cosd(t_rad(n)+180); % TE ""
 yfinr(n) = yrad(n) + d_fin*sind(t_rad(n)+180);
 end

 for n = 1:1:n_shld+1
 t_shld(n) = 180 - 180*(n-1)/n_shld; % TE side tip
 xtipb(n) = Sbx + d_fin*sind(t_shld(n));
 ytipb(n) = SBy + d_fin*cosd(t_shld(n));
 end

 SAy = r_nose + d_gap + d_fin; % LE shoulder hinge
 SAx = xfin(1) - (yfin(1) - SAy)/tand(t_fin);
 for n = 1:1:n_shld+1
 t_shld(n) = t_fin - 90 - 180*(n-1)/n_shld;
 end

xtipa(n) = SAx + d_fin*cosd(t_shld(n)); % LE Tip surface
ytipa(n) = SAy + d_fin*sind(t_shld(n));
end
cle = cosd(t_fin+90); % Initialize fin surface angles
sle = sind(t_fin+90);
cle = cosd(t_fin-90);
ste = sind(t_fin-90);
for n = 1:1:n_fin
xfinab(n) = SAx +(xrad(1)-SAx)*(n)/n_fin; % Fin centerline
yfinab(n) = SAy +(yrad(1)-SAy)*(n)/n_fin;
xLE(n) = xfinab(n) + d_fin*cle; % Leading edge coords
yLE(n) = yfinab(n) + d_fin*sle;
xTE(n) = xfinab(n) + d_fin*cte; % Trailing edge coords
yTE(n) = yfinab(n) + d_fin*ste;
end

% Newtonian Drag (rounded fin)**
Cp = zeros(n_nose,1); Cp(1) = 2; cdn = 0; t_cp(1) = 90;
for n = 2:1:n_nose % Nose
dy(n) = y_nose(n) - y_nose(n-1);
dx(n) = x_nose(n) - x_nose(n-1);
t_cp(n) = 180 - atand(dy(n)/dx(n));
Cp(n) = Cpmax*sind(t_cp(n))*sind(t_cp(n));
cdn = cdn + Cp(n) * dy(n) / r_fin ;
end
cdt = cdn * d_fin/r_nose; % Tip
Cd_fin = 2 * sind(180 - t_fin)^2;
cdf = Cp_fin * (yLE(n_fin) - yLE(1)) / r_fin ; % Fin Body
Cp = zeros(n_shld,1); Cp(1) = Cp_fin; cds = 0; t_cp(1) = t_fin;
for n = 2:1:n_shld
dy(n) = yfin(n) - yfin(n-1);
dx(n) = xfin(n) - xfin(n-1);
t_cp(n) = 180 - atand(dy(n)/dx(n));
Cp(n) = Cpmax*sind(t_cp(n))*sind(t_cp(n));
cds = cds + Cp(n) * dy(n) / r_fin ; % Shoulder
end
Cd_Newt = cdf+cdt+cdn+cds % Total Cd
% **
end

% **
x = horzcat(x_nose, x_body, x_aft);
y = horzcat(y_nose, y_body, y_aft);
plot(x,y,x1,y1) % Plot Results
axis([0 1.5*l_body 0 1.5*r_fin])
zlength = length(vertcat(x',x1'));
z = zeros(zlength,1);
data = [vertcat(x',x1') vertcat(y',y1') z];
a = length(data');
b = 1;
fileID = fopen('TDRVlin.lin','w');
fprintf(fileID, '%6u %6u\n', a,b);
fprintf(fileID, '%6.5f %6.5f %6.5f\n', data');
fclose(fileID);

zlength = length(x');
z = zeros(zlength,1);
data = [x',y',z];
a = length(data');
b = 1;
fileID = fopen('TDRVlinA.lin','w');
fprintf(fileID, '%6u %6u\n', a,b);
fprintf(fileID, '%6.5f %6.5f %6.5f\n', data');
fclose(fileID);

zlength = length(x1');
z = zeros(zlength,1);
data = [x1',y1',z]
 x1(1) y1(1) 0];
a = length(data');
b = 1;
fileID = fopen('TDRVlinB.lin','w');
fprintf(fileID, '%6u %6u\n', a,b);
fprintf(fileID, '%6.5f %6.5f %6.5f\n', data');
fclose(fileID);