TABLES AND FIGURES

Note that these tables and figures follow APA formatting (requiring italics), but other style guides will use other formats. What is important is that table information is at the top of the table, figure information is below it.

Table 2

Axial Load on Each Vertical and Battered Pile

<table>
<thead>
<tr>
<th>BENT Type</th>
<th>No. of Piles</th>
<th>Load per Vertical Pile (kips)</th>
<th>Pile Batter Angle (degree)</th>
<th>Load per Battered Pile (kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BENT I</td>
<td>4</td>
<td>75.6</td>
<td>18</td>
<td>79.5</td>
</tr>
<tr>
<td>BENT II</td>
<td>5</td>
<td>60.5</td>
<td>18</td>
<td>63.6</td>
</tr>
<tr>
<td>BENT III</td>
<td>6</td>
<td>50.4</td>
<td>18</td>
<td>53</td>
</tr>
</tbody>
</table>

Note. The axial load on each pile was calculated by dividing the total axial load on the pile group by the number of piles in each pile group.

Extra space - should be deleted.

Degree of fixity of pile. In order to determine the degree of fixity of each pile, the American Concrete Institute (ACI) has provided ACI 318-14, Table 25.4.2.2 to calculate the development length for different bar sizes in order to obtain 100% fixity (see Appendix A, Table A3).

According to the specification ASTM-A15, grade 33 and 40 rebar were used between 1911 and 1966. Appendix A, Table A4 presents all the parameters needed to calculate the development length for the bars to achieve 100% fixity at the pile cap. Accordingly, the existing development length (24 inches) provides 92% fixity with grade 33 bars, and 76% fixity with grade 40 bars (Table 3).

Correct spacing between table and body of thesis

Table 3

Degree of Fixity of Pile at Pile Cap

<table>
<thead>
<tr>
<th>Rebar Grade</th>
<th>Development Length (in) 100% fixity</th>
<th>Existing Development Length (in)</th>
<th>Degree of Fixity</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>26.1</td>
<td>24</td>
<td>92%</td>
</tr>
<tr>
<td>40</td>
<td>31.6</td>
<td>24</td>
<td>76%</td>
</tr>
</tbody>
</table>

Note. Existing development length (24 inches) provides 92% fixity with grade 33 bars, and 76% fixity with grade 40 bars.

Keep table titles as simple as possible. Use "notes" below the table for specificity. Table titles belong ABOVE the table. Note that the table is referenced before its placement. Some science fields require extended table titles when conforming to a journal format.
Aqueduct No. 3 alignment. Three sets of LiDAR data were selected from the Delta area database (Figure 11):

1. Top of the aqueduct (purple line)
2. Top of the pile cap (blue line)
3. 10-foot offset from the aqueduct centerline (red line)

![Aqueduct No. 3 LiDAR data 2007. Adapted from EBMUD GIS Online Mapping Center by Esri, 2013.](image)

Selected sets of data were used to produce Figure 12, and noisy data were eliminated.

In addition, survey data (EBMUD, 2010; and EBMUD, 2015) were added. Due to the short time frame from 2007 to 2010 and 2015, the average subsidence is not visible.

Figure 13 presents the overall view of Aqueduct No. 3, including pile tip elevation.
Figure 3. Study area in the Delta. The map is adapted from Google maps.

Figure 2. Location of Delta area crossings. The map is adapted from EBMUD GIS Online Mapping Center by EBM, 2013.

If you cannot fit your figure on a portrait page, you can use a landscape page, but you must still adhere to...