San José State University
College of Science/Department of Chemistry
Chem 1B Sec. 2 Spring 2018

Course and Contact Information

Instructor: Dr. Karen A. Singmaster
Office Location: DH 16
Email: Karen.Singmaster@sjsu.edu
Telephone: Best by email
Office Hours: TBD
Class Days/Time: MWF 8:30 – 9:20
Classroom: DH 135
Prerequisites: CHEM 001A (with a grade of "C" or better; "C-") not accepted.

OBJECT AND SCOPE OF THE COURSE

The student is expected to gain knowledge of elementary principles and facts of chemistry and their application to problem solving. While Chem. 1A emphasized inorganic, organic and qualitative chemistry, Chemistry 1B covers mainly physical chemistry (kinetics, thermodynamics, equilibria, electrochemistry, colligative properties) in lecture and quantitative chemistry in the laboratory. This semester will require greater use of your mathematical abilities in problem solving.

THINGS YOU MUST DO THIS FIRST WEEK OF CLASS

1) Attend your lab section to claim your space. **Miss your first lab, we drop you from the course!**

Also attend the first seminar on 1/26!

2) Read this greensheet thoroughly. It is the rules of the game. Best to know the rules before you start.

3) If you purchased the manual, read pages i – xii of the lab manual before attending the first seminar session. You can also find most of this in the Chemical Safety rules in the Chem Dept. website.

4) If you decide to drop the course, please give Dr. Singmaster a note with your name indicating that you will be dropping the course. It will allow us to add people efficiently.

5) Turn off your cell phone and/or pager, unless you have a family member with a serious medical condition (critical care, spouse in 9th month of pregnancy, etc.) or you are a fireman/policeman/FBI agent/…

6) Do the calculator practice in your lab manual. It is your responsibility to know how to use your calculator. Instructors will not assist you during an exam or quiz!

7) Do the review of significant figures, units, etc. in your lab manual.

8) Do Quiz 0 which is review from Chem 1A. The quiz is near the end of this greensheet and will be posted through Canvas for submission, with the exception of the graph, which you give to Dr. Singmaster.

9) Start working on the concentration and stoichiometry problems in Exp. 13!

BOOKS/SUPPLIES/COURSES
BS/BA Chem Program Learning Outcomes Covered by Chem 1B
Chem 1A provides basic, introductory support for the following degree outcomes.

PLO #1 - Demonstrate understanding of core concepts and to effectively solve problems in inorganic chemistry.

PLO #2 - Demonstrate understanding of core concepts and to effectively solve problems in organic chemistry.

PLO #3 - Demonstrate understanding of core concepts and to effectively solve problems in analytical chemistry.
chemistry.
PLO #4 - Demonstrate understanding of core concepts and to effectively solve problems in physical chemistry.
PLO #5 - Demonstrate understanding of core concepts and to effectively solve problems in biochemistry.
PLO #6 - Answer questions regarding safe practices in the laboratory and chemical safety.
PLO #7 - Demonstrate safe laboratory skills (including proper handling of materials and chemical waste) for particular laboratory experiments.

CHEM 1B COURSE LEARNING OUTCOMES

The detailed learning outcomes are at the end of this greensheet.

UNIVERSITY POLICIES – Greensheet Quiz might require that you go read these…

Per University Policy S16-9, university-wide policy information relevant to all courses, such as academic integrity, accommodations, etc. will be available on Office of Graduate and Undergraduate Programs’ Syllabus Information web page at http://www.sjsu.edu/gup/syllabusinfo/

ATTENDANCE/WORKLOAD

Regular attendance to lecture and lab are required. Lecture material will not necessarily reiterate text material. It is a serious mistake either to depend on a classmate's notes or exclusively on the textbook. It is essential to keep up with class work, homeworks and laboratories to succeed in this course. The instructor is not responsible for covering material you missed due to unexcused absences. We do not give xeroxed copies of the instructor’s notes if you are absent. **Absences to lab can and will result in an F grade for the FULL course** (two unexcused absences from lab are sufficient for me to drop or fail you!!). We do have in class quizzes! Please remember that missing lecture or lab to study for another class is not an acceptable excuse. You signed up for your course load, you are now responsible for fulfilling the obligations that come with that course load.

Please remember this is a 5 unit course, it will require a great deal of your time. Seldom does a student who works and carries a full course load succeed in this class. Make arrangements now, don't wait until you are behind. **The university guidelines are three hours of study time per unit per week.**

Please email/call me if you are going to be absent from class for a legitimate reason. You can also email/call me if you are unable to reach your lab instructor to let him or her know that you will be absent from lab. To attend another lab section so as to complete work, you will need the consent of the section's lab instructor. They are not required to accept you in their lab, particularly if their lab is full! I strongly encourage you to not be absent from lab.

GRADING

Lecture Exams and Final

Three fifty-minute exams (100 points each), will be given approximately every fourth week. Scheduled dates for the exams are attached. The exams might include a take-home problem. Plan ahead. The final exam (200 points) will be 2 hours long. The final is a comprehensive multiple choice test that covers Chem. 1A and 1B topics. Most of the test is a standardized American Chemical Society test used at many universities. More details on this will be provided in lecture. The course lecturer reserves the right to give both in class quizzes and take home quizzes. There will be no make-ups for lecture exams. Should you miss an exam because of illness or equally compelling reasons, you should inform me of the fact as soon as possible, and hopefully before the exam is given. You can do so by calling or emailing me. You will need to provide me with written evidence (doctors’ note, police report, etc.) for your excuse. If I accept your excuse, I will use the score on the final as your missing exam score. An unexplained or unsatisfactory excuse for missing a lab or exam will result in a grade of zero. You may take the exam a day early if you have a planned, excused absence for the day of the exam.

Quizzes

Several unannounced in class or take home quizzes will be given. No make-ups for missed quizzes.

Laboratory

The total lab grade constitutes 40% of the final grade. **Failing lab (55.0% or less) or lack of attendance to lab will result in an F grade for the FULL COURSE, irrelevant of how well you are doing in lecture.** Do not miss labs!! Details regarding the lab grade will be provided in the lab greensheet.
Grading Scale

At the end of the semester you will receive a single grade for the course. The following grade scale is for the full course, including lab.

above 97.0 % A+ 96.9 - 91.0 % A 90.9 - 88.0 % A-
87.9 - 84.0 % B+ 83.9 - 79.0 % B 78.9 - 76.0 % B-
75.9 - 71.0 % C+ 70.9 - 64.0 % C 63.9 - 60.0 % C-
59.9 - 56.0 % D+ 55.9 - 53.0 % D 52.9 - 50.0 % D-
Below 50.0% F

Incompletes will not be given unless a strong compelling reason with proof is furnished to support the need for an incomplete. Incompletes will not be granted just because the university won’t late drop you or because the low grade will disqualify you, put you on probation or increase your car insurance payment! Incompletes do not remove past scores in exams! Incompletes are only given to persons who have completed at least 80% of the course. Incompletes are removed by completing pending tasks. I do not provide special projects to make up incompletes.

PLEASE note we do NOT provide extra credit work at the end of the semester for students who are doing poorly.

Roughly the % weight of each lecture graded item is: 11% for each lecture exam, 22% for the final and 5% for the lecture Canvas quizzes; with lab covering the remaining 40%.

MISCONDUCT

Students are to do only those laboratory experiments assigned. Certain chemicals when improperly used are very dangerous. You are responsible for disposing chemical wastes safely; the lab instructor will inform you on particular waste disposal issues for each experiment. If they forget to inform you, ASK THEM!! Any student found preparing anything that may in any way endanger her/his safety or the safety of others will be immediately dropped from the course with an F grade. Any student found disposing of wastes incorrectly is also in danger of being dropped from the course or failed. Students are expected to behave maturely and honorably in the lab and lecture course.

While taking exams or quizzes, the student should keep his/her eyes down on his/her own paper. No whispering or talking is allowed. You are not allowed to share a calculator or periodic table during exams or quizzes. If your calculator fails inform the instructor. They can then decide a course of action. You may not use your cell phone or PDA as a calculator; these should be stored in your backpack or on the floor beneath your seat. You may not answer the phone during a test. You cannot have headphones/earphones in your ears irrelevant of what you are listening to. All printed or written material (notebooks, textbooks, etc.) should be placed under the seat, left outside the room or placed near the lecturer’s table, at the front of the room. Failure to comply will cause the instructor to pick up the exam and give a grade of F for the exam and/or course. Willful solicitation, procurement or conveyance of exams/quizzes/unknowns will also result in failure of the course. The instructor can and will bring the person caught cheating to the attention of the university committee in charge of student misconduct.

EMERGENCIES/EVACUATIONS

If you hear a continuously sounding alarm, or are told to evacuate by Emergency Coordinators (colored badge identities), walk quickly to the nearest stairway (end of each hall). Take your personal belongings with you as you may not be immediately allowed to return. Follow instructions of Coordinators. Be quiet so you can hear. Once outside, move away from the building. Do not return to the building unless the Police or Coordinators announce that it is permissible. If an alarm should occur during an exam or quiz, please attempt to give your instructor the paper.

MISCELLANEOUS

1) You must bring the lab manual to each lab class and lecture (just in case you need to look at one of the handouts); however you do not need to bring the textbook to lecture.

2) Safety glasses must be worn at all times during the lab experiments; if they fog up, take them off outside the room!! SJSU provides you with goggles in your lab drawer but you might consider buying your own at the bookstore.

3) Keep track of your scores. Also keep your exams, quizzes, etc. At the end of the semester compare your grade sheet with the lecturer and lab instructor's grade sheets to make sure we have transcribed and adjusted you grades correctly. You have only 9 days from the day a quiz or exam is returned to ask for a regrade of your exam or quiz. I will not do regrades after nine days have passed. I do not return the Scantrons for exams/quizzes, so I
strongly suggest you circle your choices on the exam.

4) Do not believe any sign written on the board saying the Chem. 1B class is canceled. You are expected to wait for me until 8:45. If I am late, but get to class by or before that time, I will lecture.

5) Each exam in lecture will require that you sign a statement indicating that you have behaved in an honorable manner while taking the exam. This means that you have not used crib sheets, programmed equations, etc. in your calculator, requested information from a classmate, etc. The statement will also indicate that you are not aware of any other classmate cheating, etc. during the course of the exam. Although you might not be required to sign such a pledge in your lab quizzes, honorable behavior is still expected. Please be aware that you have classmates that do not tolerate cheating and will most likely inform the instructor if they observe such behavior. If you feel that you are unable to sign such a pledge, talk to me.

6) If a fire alarm were to interrupt an exam please do the following: Leave the room via the door closest to the instructor and give the instructor your quiz or exam. Provide assistance to any disabled students. Take your books with you since there is some chance you might need to go to your next class before you are allowed in the room. Please note that if the cause of evacuation is a bomb threat, the Dean will request that I give him and UPD a list of students absent from the exam.

7) Please remember that you must check out of the lab even if you drop the course. A $25 charge will be billed to you if you do not check out.

8) Any student with a disability requiring special testing conditions must show the necessary documentation from the university to the instructor within the first two weeks of class.

9) It might be useful to keep a second copy of your raw data for each experiment in those papers I suggested you staple and keep in your lab drawer. That way, if you lose you lab manual or misplace the data, you have a safe copy in your drawer and you do not need to start the experiment over. All you need to copy is the raw data, you can always redo the calculations. Some labs take three periods and would require you redoing everything to get a final result.

10) You get your own two lockers in Chem. 1B. You do not share these. Once you check in you are financially responsible for any breakage or loss. More details in lab.

OFFICE HOURS

TBD - Subject to change if my teaching responsibilities change after the printing of this greensheet. From Jan 24 – Feb 5, I will be in and out of my office due to management of enrollment for 1A/B. My office is located in the basement level of Duncan Hall (Room 16, only two of the elevators make it down to the basement!). Grades are posted in the Canvas in the FILES section. Please be efficient and organized when you come to ask questions during office hours. I might have to limit the amount of time I spend with you if there are several students waiting. If the selected office hours do not match your schedule, set up an appointment. Please note the bonus question on the first exam will be what is the color of the piece of paper titled “Dr. Singmaster’s Schedule Spring 2018” that will be placed on the glass portion of the door to DH16. This paper will be placed on the door by Feb. 9th so wait until then to go look. If you can’t find my office, ask me for help.

On occasions I will have to cancel office hours due to medical appointments or important committee meetings. I'm sorry for the inconvenience. Please see if you can get assistance from one of the lab instructors or tutors.

RESOURCES FOR HELP

1) Dr. Singmaster (Lab and Lecture)
2) Lab instructors (Lab predominantly, although some can also provide excellent help for lecture)
3) Academic Excellence Workshops (Lecture) – You must be enrolled! Please note these are not tutoring sessions. They are organized, collaborative study times.
4) CoSAC - (DH 213) Tutoring and advising center for the College of Science.
5) Peer Connections – More information at the end of the greensheet
6) ASPIRE – Student Resource Center – 10th Street Garage – Services are limited to low income, first generation college students or students with disabilities. Not sure if they have funding for tutors this year.
7) Counseling Services - They might have brochures or workshops on how to deal with test anxiety, if that is an issue you are having. More information at the end of the greensheet
8) Private tutors – Cost $$$. You might find ads in SAACS and in the hallways were Chemistry courses are taught (5th floor of DH, 1st floor of Sci).
9) If you feel that you are unable to keep up with the class even though you have all the prerequisites; if you are spending ample time studying yet you never have time to finish exams and quizzes and/or if this class, for some reason, is testing your abilities to learn, you might consider paying a visit to the Accessible Education Center. They might be
able to test you to determine whether you have a learning disability.

Rules for an exam in lecture

1) You must sit in the seat you are assigned! Check the seating chart well before the exam date! It will be posted a week before, both in lecture and in the glass cabinet near the lab. Find the seat in the lecture hall a few days before the exam so that you do not waste time looking for it! If you reach your seat and it is broken, please come tell me and I will find another one. No sitting on the floor in the back of the lecture hall or on the stairs!
2) No programmable calculators, PDAs or cell phones. No sharing of calculators. (This applies to lab also!)
3) No caps, hats, etc. unless required by a physician. Then they need to be turned around.
4) No head phones or other devices in ears unless they are prescribed hearing aids!
5) Ask for scratch paper. Do not pull it from your backpack.
6) Place backpacks under your seat so as to make sure that others don’t trip trying to get out. No open books, notes, etc. on the floor at your feet!
7) No talking during an exam, even if you have handed in your exam. Wait until you leave the room.
8) Leave by the door at the base of the room that we will open, not the back door, so that I can keep track of who is leaving and whether they have handed in the exam.

Lecture Schedule

10th or 11th edition
<table>
<thead>
<tr>
<th>Dates</th>
<th>Topic</th>
<th>Textbook Chapter</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/24 - 1/26</td>
<td>Greensheet, Concentration, Stoichiometry</td>
<td>3.6, 3.7, 4.5, 4.6, 5.6, 5.7, 13.4</td>
<td>13, 14, 16, 19, 23, 24</td>
</tr>
<tr>
<td>1/29 - 2/2</td>
<td>Heat of reaction, Entropy, Gibbs</td>
<td>19</td>
<td>15</td>
</tr>
<tr>
<td>2/5 - 2/9</td>
<td>Gibbs, Rate of reaction</td>
<td>19, 14</td>
<td></td>
</tr>
<tr>
<td>2/12 - 2/16</td>
<td>Rate laws, half-life</td>
<td>14</td>
<td>17</td>
</tr>
<tr>
<td>2/19 - 2/23</td>
<td>Exam I, Activation Energy, Mechanisms</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>2/26 - 3/2</td>
<td>Equilibrium constant, Q</td>
<td>15</td>
<td>18</td>
</tr>
<tr>
<td>3/5 - 3/9</td>
<td>Le Chatelier, Acids and bases, pH</td>
<td>15,16</td>
<td></td>
</tr>
<tr>
<td>3/12 - 3/16</td>
<td>Weak acid.base, hydrolysis</td>
<td>16, 17</td>
<td>20</td>
</tr>
<tr>
<td>3/19 - 3/23</td>
<td>Exam II, Buffers</td>
<td>17</td>
<td>25</td>
</tr>
<tr>
<td>4/2 - 4/6</td>
<td>Solubility</td>
<td>17</td>
<td>21</td>
</tr>
<tr>
<td>4/9 - 4/13</td>
<td>Solubility, Electrochemistry</td>
<td>4.4, 20</td>
<td></td>
</tr>
<tr>
<td>4/16 - 4/20</td>
<td>Electrochem</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>4/23 - 4/27</td>
<td>Electrochem</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>4/30 - 5/4</td>
<td>Exam III, Nuclear Chem</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>5/7 - 5/1</td>
<td>Nuclear Chem, Colligative</td>
<td>21, 13.5</td>
<td>23</td>
</tr>
<tr>
<td>14-May</td>
<td>Closing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The first problems you should try are in the lab manual with the experiments or occasionally towards the back of the manual in the Practice Problem section. We will also mention problems from the text are suitable.

Exam Dates

Exam I – Wed, February 21st – Concentration, stoichiometry, thermodynamics, review
Exam II – Mon. March 19th – Kinetics, General Equilibrium (might also include SA/SB)
Exam III – Wed. April 25th - Acid-base and solubility equilibria
Final – Tues. May 22nd, 7:15 AM – Electrochemistry and nuclear, with ACS exam
(Make-up day for emergencies is Wed. May 23rd)

Exams I, II and III have a take home problem.

Chem. 1B Final Exam – ACS Standardized Test

It is important that to note that the final will be a comprehensive standardized test covering the FULL year of General Chemistry. It will be multiple choice. The test is written by the American Chemical Society (ACS) and is given at many universities. The test provides some of the equations, and often the calculations
required for it are easier than what I require in 1A/B exams. I have done this the last two times I taught Chem 1B and the average on the ACS test has been higher then the average on my old 1B final exam! The test has:

- 25 Chem. 1B questions - 4 points each
- 19 Chem. 1A questions - 2 points each
- 6 questions not covered in 1A/B - 1 bonus point each if you get it correct.

In addition, I will be adding in an additional 20 multiple choice questions at 4 points each to cover topics not cover by one of the lecture exams (electrochem and nuclear typically).

The standardized test is for 55 minutes. I won’t be enforcing that time but rather you have two hours to complete the test as well as the additional Chem. 1B multiple choice questions. Time should is not be a problem for the final.

The Chemistry Clubs sells the ACS booklet for General Chemistry to help you review for the test. They will be selling it at the start of the semester for a price that is lower than if you attempt to purchase it yourself because the ACS charges an $8 handling fee that they don’t charge the club.

In looking over the book I thought it was an excellent book to purchase at the start of Chem. 1B because it provides you with review as well as multiple choice questions. That way you can use it for the full semester. In addition, I suspect it is a really good book to use to review for MCAT, DAT or other standardized tests that require knowledge of General Chemistry. (By the way they also have one for the full year of Organic Chemistry which will help in Chem. 112B because they to will give you the full year standardized test at the end of Organic!)

Grade Record for Chem. 1B Students

<table>
<thead>
<tr>
<th>Lecture (60% of grade)</th>
<th>Lab (40% of grade) (You must pass the lab with 55% or better to pass the course!)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam I _________/100</td>
<td>Lab Exam I __________/100 Reports ______/10</td>
</tr>
<tr>
<td>Exam II __________/100</td>
<td>Lab Exam II __________/100</td>
</tr>
<tr>
<td>Exam III __________/100</td>
<td></td>
</tr>
<tr>
<td>Quizzes __________/10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COURSE LEARNING OUTCOMES FOR CHEM 1B

If a specific objective is also partially addressed with an experiment, then the experiment number has been in parenthesis. Please note that for many of the topics in this course real world examples are used and are analyzed by students. Also, on occasion, the topics result in brief discussions of economic or societal issues.
The student will be able to:
1) calculate concentration using different units and convert between different concentration units (molarity, %, ppm, g/L, etc.) (Exp. 13, 16, 19, 23)

2) calculate concentration changes associated with dilution (Exp. 13, 20, 22, 24)

3) solve stoichiometry problems using concentration or mass including balancing redox, combustion and double displacement reactions, and calculations with known or unknown limiting reagents (Exp. 16, 19, 21)

4) predict heats of reaction using bond energies and compare these values to heat of reaction obtained from Hess’ Law or heats of formation calculations

5) define entropy and evaluate the sign of entropy for compounds, physical processes and chemical reactions (Exp 15)

6) calculate the entropy for a reaction given molar entropies for the compounds

7) evaluate whether a chemical reaction will occur using predictions for the sign of heat of reaction and entropy and whether altering the temperature of the reaction will affect product formation (Exp. 15)

8) calculate Gibbs free energy using data for heat of reaction and entropy or Gibbs free energy of formation for compounds

9) explain the effect concentration, temperature, presence of a catalyst and physical state have on the rate of a reaction and predict what effect changing these variables will have on the rate of reaction (Exp. 17)

10) derive the rate law for chemical and non chemical systems using data and then use the rate law to obtain half life and determine the amount of product formed at a given time or vice versa

11) apply Arrhenuis’ equation to chemical systems to obtain activation energy and explain the effect of temperature on chemical reaction rate at molecular level (Exp. 17)

12) construct a rate law using a reaction mechanism and evaluate reaction mechanisms to predict whether they are plausible based on rate law information.

13) define the terms catalysis and inhibitor; and compare data for reaction rates to determine whether a reaction is catalyzed or inhibited by selected compounds (Exp. 17)

14) construct the mathematical expression for an equilibrium constant given a chemical equilibrium and use thermodynamic or experimental data to find the value of the equilibrium constant (Exp. 18, 20, 21)

15) use reaction quotient to determine the direction a chemical system must shift to reach equilibrium

16) calculate equilibrium concentrations given initial concentrations and an equilibrium constant

17) use Le Chatelier’s principle to explain the effect changes in temperature, pressure, volume and addition/removal of a reagent will have on a system at equilibrium; use this principle to plan how to get an equilibrium to produce more products
18) define and identify acids and bases based on their types (conjugate, weak, strong, Arrhenius, etc.)

19) calculate an equilibrium constant for a weak acid or base given pH data (Exp. 20)

20) analyze acid base equilibria so as to determine the type of equilibrium and utilize this information to calculate the pH of the solution

21) define a buffer clearly describing how it works and why buffers are important; given a buffer system calculate the pH (Exp. 20, 25)

22) design a buffer system given the pH region where it must serve as a buffer and the total concentration of ions needed (Exp. 25)

23) calculate the equilibrium constant for an insoluble salt given solubility data and vice versa, calculate the solubility of a insoluble substance when given Ksp (Exp. 21)

24) use the solubility product to determine whether a precipitate will form when solutions are mixed, including the effect pH might have on the given system

25) organize compounds in order of increasing strength as acids or solubility given equilibrium constants

26) calculate standard cell potentials for any redox reaction and combine this information with concentration data to determine the effect concentration will have on the cell potential (Exp. 22)

27) draw a redox cell diagram given cell notation, identify all the components, reactions occurring and, if applicable, the roles selected components play (Exp. 22)

28) determine cell potentials using thermodynamic data

29) cite the differences between chemical reactions and nuclear reactions; list the biological effects of radiation exposure

30) balance nuclear reactions identifying which nuclear particles are involved in the process and use the neutron to proton ratio to predict the possible types of nuclear decay an isotope could undergo

31) calculate mass differences and binding energies for nuclei and nuclear reactions; use this information to identify species that can undergo fusion or fission

32) calculate kinetic parameters for nuclear decay including applications to radioactive dating

33) list the colligative properties of solutions, explaining how and why each property is affected by an increase in the amount of solute (Exp. 23)

34) calculate the osmotic pressure of a solution.

OTHER SERVICES PROVIDED BY SJSU (which you pay for with fees, so use them as needed?)

Student Technology Resources
Computer labs for student use are available in the Academic Success Center at http://www.sjsu.edu/at/asc/
located on the 1st floor of Clark Hall and in the Associated Students Lab on the 2nd floor of the Student Union. Additional computer labs may be available in your department/college. Computers are also available in the Martin Luther King Library. A wide variety of audio-visual equipment is available for student checkout from Media Services located in IRC 112. These items include DV and HD digital camcorders; digital still cameras; video, slide and overhead projectors; DVD, CD, and audiotape players; sound systems, wireless microphones, projection screens and monitors.

SJSU Peer Connections
Peer Connections, a campus-wide resource for mentoring and tutoring, strives to inspire students to develop their potential as independent learners while they learn to successfully navigate through their university experience. You are encouraged to take advantage of their services which include course-content based tutoring, enhanced study and time management skills, more effective critical thinking strategies, decision making and problem-solving abilities, and campus resource referrals.

In addition to offering small group, individual, and drop-in tutoring for a number of undergraduate courses, consultation with mentors is available on a drop-in or by appointment basis. Workshops are offered on a wide variety of topics including preparing for the Writing Skills Test (WST), improving your learning and memory, alleviating procrastination, surviving your first semester at SJSU, and other related topics. A computer lab and study space are also available for student use in Room 600 of Student Services Center (SSC).

Peer Connections is located in three locations: SSC, Room 600 (10th Street Garage on the corner of 10th and San Fernando Street), at the 1st floor entrance of Clark Hall, and in the Living Learning Center (LLC) in Campus Village Housing Building B. Visit Peer Connections website at http://peerconnections.sjsu.edu for more information.

SJSU Counseling Services
The SJSU Counseling Services is located on the corner of 7th Street and San Fernando Street, in Room 201, Administration Building. Professional psychologists, social workers, and counselors are available to provide consultations on issues of student mental health, campus climate or psychological and academic issues on an individual, couple, or group basis. To schedule an appointment or learn more information, visit Counseling Services website at http://www.sjsu.edu/counseling.

Chem. 1B Take-Home Quiz 0 Singmaster
Due on Jan 30, 11 PM through Canvas (except the graph, which is due in lecture). It is worth 5 points. The graph should be handed in separately for 1 pt. If by Scantron, due by 7:30 AM to the door of DH 16 on Jan. 31st. Late Scantrons will not be accepted. If there is a last minute emergency, Canvas does not work, you can email your choices to Dr. S but only one emergency per semester. Email due by 7:30 AM on Jan 30.

Select the best answer. In italics you will find a description of the Chem. 1A or math topics you should have covered so as to correctly answer this question. All this material is expected knowledge.
1) How many atoms of C are there in 25.0 g of pentane? \((\text{Atoms-molecules-moles-mass conversions; organic chem})\)
\[1.25 \times 10^{23} \quad 2.09 \times 10^{23} \quad 1.74 \quad 1.04 \times 10^{24} \quad 3.01 \times 10^{24} \]

2) Barium nitrate is combined with sodium phosphate. When the balanced net ionic equation is constructed for this reaction the stoichiometric coefficient for the barium ion will be: \((\text{nomenclature, solubility and dissociation rules and net ionic equations})\)
\[\text{a) 1} \quad \text{b) 2} \quad \text{c) 3} \quad \text{d) 4} \quad \text{e) 6} \]

3) When 5.0 g of propane are reacted with \(O_2\), carbon dioxide and water are produced. How many grams of \(H_2O\) can be produced by the complete reaction of those 5.0 g of propane with excess oxygen? \((\text{simple stoichiometry, basic organic and balancing equations})\)
\[\text{a) 8.2 g} \quad \text{b) 2.04 g} \quad \text{c) 20 g} \quad \text{d) 0.45 g} \quad \text{e) 1.1 g} \]

4) A piece of sodium reacts explosively with acid. A piece of lead reacts slowly with acid. A piece of copper does not react with acid. Organize the following four species in **increasing** strength as an oxidizing agent. \(\text{Na}^+, \text{H}^+, \text{Pb}^{2+}, \text{Cu}^{2+}\) \((\text{activity series, redox reactions})\)
\[\text{a) Na}^{2+}, \text{Pb}^{2+}, \text{H}^+, \text{Cu}^{2+} \quad \text{b) Na}^+, \text{H}^+, \text{Pb}^{2+}, \text{Cu}^{2+} \quad \text{c) Na}^+, \text{Pb}^{2+}, \text{H}^+, \text{Cu}^{2+} \quad \text{d) Na}^+, \text{Pb}^{2+}, \text{Cu}^{2+}, \text{H}^+ \]

5) Which one of the following lists three salts that are soluble? \((\text{solubility rules and nomenclature})\)
\[\text{a) AgNO}_3, \text{AgCl}, \text{Ag}_2\text{SO}_4 \quad \text{b) MgSO}_4, \text{Mg(OH)}_2, \text{MgS} \quad \text{c) iron(II) bromide, iron(III) sulfate, iron(II) hydroxide} \quad \text{d) lead(II) nitrate, lead(IV) chloride, lead(IV) sulfate} \quad \text{e) CuSO}_4, \text{CuS}, \text{CuCl}_2 \]

6) The aluminum foil in a package containing 75 square feet of foil weighs 12 ounces. Aluminum has a density of 2.70 g/cm\(^3\). What is the approximate thickness of the foil in mm? \((\text{high school math, units, and dimensional analysis})\)
\[\text{a) 1.8 x 10}^{-2} \quad \text{b) 5.5 x 10}^{-1} \quad \text{c) 1.3 x 10}^{-1} \quad \text{d) 2.2 x 10}^{-2} \quad \text{e) 3.2 x 10}^{-2} \]

7) What is the logarithm of 10\(^{-4}\)? \((\text{high school math})\)
\[\text{a) 1} \quad \text{b) -3} \quad \text{c) -4} \quad \text{d) -6.9} \quad \text{e) -9.2} \]

8) Two trains are headed towards each other on the same track unbeknownst to the engineers. One is departing San Francisco. Its average speed is 55 miles per hour. The other is departing Seattle. Its average speed is 65 miles per hour. The length of track separating the two locations is 860 miles. How many minutes before the two trains collide if they depart at the same exact time? \((\text{high school math})\)
\[\text{a) 860 min.} \quad \text{b) 7.17 min.} \quad \text{c) 430 min.} \quad \text{d) 794 min.} \quad \text{e) problem can’t be done} \]

9) Find the numerical value of \(x\) if: \(x^6 + 25x = 86x\) \((\text{high school math or algebra})\)
\[\text{a) 2.28} \quad \text{b) 10.2} \quad \text{c) 1.98} \quad \text{d) 844.5 million} \quad \text{e) 61} \]

10) When the following redox reaction is balanced the stoichiometric coefficient for water is: \((\text{redox rxns.})\)
\[\text{MnO}_4^{2-} + \text{C}_2\text{O}_4^{2-} \rightarrow \text{CO}_2 + \text{Mn}^{2+} \]
\[\text{a) 2} \quad \text{b) 3} \quad \text{c) 4} \quad \text{d) 8} \quad \text{e) 6} \]

11) Graph the following data and submit in lecture on Feb 2nd. Make sure graph has your name. Remember to follow good graphing techniques. \((1 \text{ pt, all or nothing})\) Can be done in Excel. Please note data points need to be connected in the proper fashion, not by connect-a-dot, must pick independent/dependent axis correctly, labels, title, etc. Perfect to get the point… I have graph paper near my door if you need some

<table>
<thead>
<tr>
<th>Altitude (feet)</th>
<th>0</th>
<th>1000</th>
<th>2000</th>
<th>3000</th>
<th>4000</th>
<th>5000</th>
<th>10000</th>
<th>15000</th>
<th>18000</th>
<th>20000</th>
<th>25000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude (feet)</td>
<td>Pressure (inches of Hg)</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>30000</td>
<td>29.92</td>
<td></td>
</tr>
<tr>
<td>35000</td>
<td>28.86</td>
<td></td>
</tr>
<tr>
<td>40000</td>
<td>27.82</td>
<td></td>
</tr>
<tr>
<td>45000</td>
<td>26.82</td>
<td></td>
</tr>
<tr>
<td>50000</td>
<td>25.84</td>
<td></td>
</tr>
<tr>
<td>60000</td>
<td>24.89</td>
<td></td>
</tr>
<tr>
<td>100000</td>
<td>20.58</td>
<td></td>
</tr>
<tr>
<td>100000</td>
<td>16.88</td>
<td></td>
</tr>
<tr>
<td>110000</td>
<td>14.94</td>
<td></td>
</tr>
<tr>
<td>110000</td>
<td>13.75</td>
<td></td>
</tr>
<tr>
<td>110000</td>
<td>11.10</td>
<td></td>
</tr>
</tbody>
</table>

For downloadable graphing paper if you want to draw the graph by hand you can visit http://incompetech.com/graphpaper-lite/ *(Squares no larger than 0.2 cm for good Chem 1B graphs! 85 x 120 squares is a good choice because it leaves you a margin like a frame to write your values but you can chose. I usually go for medium and gray.)* http://incompetech.com/graphpaper/multiwidth/ *(Fancier with blocks of ten squares marked off with a bolder line. Settings: Grid line weight – Largest 0.8 pt, smallest 0.3 pt; Grid Spacing – Largest 0.5, smallest 5. Set the mediums to 0. Color light gray)*

You can always play around remembering that the smallest squares can be no bigger than 0.2 cm!

Please note the graph is grade either 1 pt or 0 points. Either it is perfectly done on good graphing paper and properly labeled, etc or it gets a zero. By this stage you should know how to graph well. You can also ask me to criticize it before the due date. Many points in lab are for graphs so best to get this done well know and learn what to do that to keep messing up graphs.