San José State University
Department of Computer Science
CS 47, Section 01
Introduction to Computer Systems
Fall 2018

Course and Contact Information

Instructor: Kaushik Patra
Office Location: DH 282
Telephone: (408) 924-5161
Email: kaushik.patra@sjsu.edu
Office Hours: M 4:30 pm – 5:45 pm
Class Days/Time: MW 6:00 pm – 7:15 pm (Sec01)
Classroom: DH 135

Prerequisites: CS 46B or CS49J or equivalent (with a grade of "C-" or better)

Course Format
This course uses hybrid style. In general students are expected to have computer systems with internet connection. A tool ‘MARS’ will be used to study assembly programing concept. The materials are uploaded in Canvas prior to class. Students are encouraged to review the lecture note before coming to class. During class hour it is expected that students bring their laptop with internet connection to download some program material to work on during class hour if needed. All the homework and assignments are to be uploaded in Canvas.
Course Description

Instruction sets, assembly language and assemblers, linkers and loaders, data representation and manipulation, interrupts, pointers, function calls, argument passing, and basic gate-level digital logic design.

Course Topics:

Computer organization, Number representation, programming a computer, assemblers, linker, loader, MIPS assembly language programming, run time memory stack, interrupt & exceptions, Boolean algebra, integer mathematics, logic gates & logic design.

Course Objectives:

- To get introduced to the organization of a computer system
- To get familiarized with instruction sets and assembly programming
- To experience extensive programming practice that reinforces binary data representation, assembly instructions, addressing modes, and run time stack organization
- To get extensive lab practice using computer simulation.
- To appreciate how the computer hardware supports systems programming and high-level languages

Learning Outcomes and Course Goals

Course Goal:

The course consists of an introduction to computer hardware organization and the hardware/software interface. Programming assignments are used to reinforce concepts of data representation, addressing modes, memory organization, run time stacks, and interfacing with high-level languages.

Course Learning Outcomes (CLO):

Upon successful completion of this course, students should be able to:

- To be familiar with the architectural components of a computer system: CPU (registers, ALU), memory, buses
- To be able to convert between decimal, binary, and hexadecimal notations.
- To work with two's complement integers, floating-point numbers, and character encodings
- To be able to write assembly programs that use load/store, arithmetic, logic, branches, call/return and push/pop instructions.
- To understand the gate-level operations of basic ALU
**BS in Computer Science Program Outcomes Supported:**

These are the BSCS Program Outcomes supported by this course:

a) An ability to apply knowledge of computing and mathematics to solve problems.

b) An ability to analyze a problem, to identify and define the computing requirements appropriate to its solution.

c) An ability to design, implement, and evaluate a computer-based system, process, component, or program to meet desired needs.

i) An ability to use current techniques, skills, and tools necessary for computing practice.

j) An ability to apply mathematical foundations, algorithmic principles, and computer science theory in the modeling and design of computer-based systems in a way that demonstrates comprehension of the tradeoffs involved in design choices.

**Required Texts/Readings**

**Textbook**

COMPUTER ORGANIZATION and DESIGN | Edition: 5  
Author: DAVID A. PATTERSON  
ISBN:9780124077263  
Publication Date:10/10/2013  
Publisher:ELSEVIER

**Other Readings**

LOGIC & COMPUTER DESIGN FUNDAMENTALS  
Author: MANO & KIME  
ISBN: 9780131989269  
Publication Date: 06/15/2007  
Publisher: PEARSON

**Other technology requirements / equipment / material**

You will be **required** to bring a [wireless laptop](#) to all classes.

**Course Requirements and Assignments**

- Each student is expected to be present, punctual, and prepared at every scheduled class and lab session. It is assumed that the students already have basic knowledge of digital Boolean logic and fundamentals of assembly language machine programming.

- Attendance is **NOT** optional. Individual participation is also required. There will be no make-ups for missed midterm or assignments, unless any special arrangements is made with the instructor beforehand.

- All student **must complete** the *Syllabus agreement* through by **Jan 26, 2018 11:59 pm**. Any one **failed** to do so will be **dropped** from the class. This agreement will be sent to individual email as ‘*CS47,01 PreReg-Survey*’ from [https://sjsu.qualtrics.com](https://sjsu.qualtrics.com).
- There will be 2 home works, 8 programming assignments and 1 individual project, one midterm and final exam. All home works, programming assignments and projects should be submitted through Canvas. No scanned copy of handwritten solution is allowed. Allowed document type is PDF only.

Project report should contain the following:
- Introduction containing objective.
- Requirement.
- Design and Implementation.
- Testing
- Conclusion
- Make sure to
  1. Include clear diagrams for requirement and design.
  2. Include code snippet to explain implementation.
  3. Include screen shots of testing results.
  4. Upload source code and test program as zip archive.

Project reports are encouraged to be submitted in IEEE format.
[http://www.ieee.org/conferences_events/conferences/publishing/templates.html ]

10% of the obtained marks in project will be awarded as extra points in project evaluation if report submitted in proper IEEE format.

Final Examination or Evaluation
There shall be an appropriate final examination and evaluation at the scheduled time as indicated in University calendar, unless specifically exempted by the college dean who has curricular responsibility of the course. The examination is expected to have descriptive, problem analysis and problem solving style questions to answer.

Grading Information
1. Homework carries 20% towards final score. Average of 2 score from homework will be contributed.
2. Quiz carries 30% towards final score.
3. Programming assignment carries 10% towards final score. Average of 8 scores from programming assignments will be contributed.
4. Project carries 20% towards final score.
5. Midterm carries 10% towards final score.
6. Final carries 10% towards final score.

Submission is allowed till 11:59 pm on due date. Zero delay tolerance for the submission, i.e. NO late submission is permitted, unless you make special arrangements with your instructor beforehand.

You will receive a numeric score for the midterm, the final, each of the total homework, and each project submission. Letter grade, which is your class grade, will be obtained by adding the numeric scores and weighing with the percentages given below. Fraction in percentage will be converted into nearest integer value (’>= 0.5’ will be moved to next integer number, ‘< 0.5’ will be moved to previous integer number).
### Classroom Protocol

1. **You must come to class on time!** Students entering the classroom late disrupt the lecture and/or the students already in class who may be engaged in lab or discussion. Late students will not be accepted in class.

2. If you miss a lecture you are still responsible for any material discussed or assignments given. A large portion of each class will be used for hands-on lab/discussion. All students are expected to participate in class activities. Students who are often absent will find themselves at a disadvantage during the tests.

3. No audio/video recording or photography in the classroom without prior permission of instructor.

4. It is individual **student responsibility** to **check validity** of their homework, assignment, project, submission (format error, blank files, corrupted files, and many more such) and re-submit within deadline if needed. Once the grading is started there will be no consideration for resubmit. **If the submission found to have any logistics issue at grading time (format error, blank files, corrupted files, and many more such) it will be evaluated as 0.**

5. No personal discussion or cell phone activity during class time. Please set the cell phone on **silent/vibrate** mode.

6. All e-mail communication to the instructor must have the subject line start with **[CS47,01]**

7. Email to be sent to the instructor’s SJSU email ID (**kaushik.patra@sjsu.edu**) only.

### University Policies

Per University Policy S16-9, university-wide policy information relevant to all courses, such as academic integrity, accommodations, etc. will be available on Office of Graduate and Undergraduate Programs’ [Syllabus Information web page](http://www.sjsu.edu/gup/syllabusinfo/) at **http://www.sjsu.edu/gup/syllabusinfo/**
**Course Schedule** – *subject to change by instructor with due notice.*

<table>
<thead>
<tr>
<th>Date</th>
<th>Lecture</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>08/22/18</td>
<td>Green Sheet Review</td>
<td></td>
</tr>
<tr>
<td>08/27/18</td>
<td>Introduction to Computer</td>
<td>HW01 is published</td>
</tr>
<tr>
<td>08/29/18</td>
<td>Computer Organization</td>
<td>Last day to drop course 08/31</td>
</tr>
<tr>
<td>09/03/18</td>
<td><strong>Labor Day (Campus Closed)</strong></td>
<td></td>
</tr>
<tr>
<td>09/05/18</td>
<td>Number Representation</td>
<td>Add code will be sent through e-mail by September 3, 2018</td>
</tr>
<tr>
<td>09/10/18</td>
<td>Programming a computer</td>
<td>Last day to add course</td>
</tr>
<tr>
<td>09/12/18</td>
<td>Assembler / Linker /Loader</td>
<td></td>
</tr>
<tr>
<td>09/17/18</td>
<td>SPIM simulator</td>
<td>Quiz-01</td>
</tr>
<tr>
<td>09/19/18</td>
<td>Memory Usage I</td>
<td>Programming assignment 1 Submission</td>
</tr>
<tr>
<td>09/24/18</td>
<td>Memory Usage II</td>
<td>Programming assignment 2 Submission</td>
</tr>
<tr>
<td>09/26/18</td>
<td>Memory Usage III</td>
<td>Programming assignment 3 Submission</td>
</tr>
<tr>
<td>10/01/18</td>
<td>MIPS Assembly Language, Arithmetic &amp; Logic Instructions</td>
<td>Programming assignment 4 Submission Quiz-02</td>
</tr>
<tr>
<td>10/03/18</td>
<td>Comparison, branch &amp; jump Instruction</td>
<td></td>
</tr>
<tr>
<td>10/08/18</td>
<td>Procedure Call</td>
<td>Programming assignment 5 Submission Quiz-03</td>
</tr>
<tr>
<td>10/10/18</td>
<td>Example 'print' procedure call</td>
<td></td>
</tr>
<tr>
<td>10/15/18</td>
<td>Midterm Review I</td>
<td>Programming assignment 6 Submission</td>
</tr>
<tr>
<td>10/17/18</td>
<td>Midterm Review II</td>
<td>HW01 Submission, Programming assignment 7 Submission</td>
</tr>
<tr>
<td>10/22/18</td>
<td><strong>Midterm Exam (during your class meeting time)</strong></td>
<td></td>
</tr>
<tr>
<td>10/24/18</td>
<td>Boolean Algebra I</td>
<td>Project is published; , HW02 is published</td>
</tr>
<tr>
<td>10/29/18</td>
<td>Boolean Algebra II</td>
<td>Programming assignment 8 Submission Quiz-04</td>
</tr>
<tr>
<td>10/31/18</td>
<td>Logic gates</td>
<td></td>
</tr>
<tr>
<td>11/05/18</td>
<td>Logic Circuit Design</td>
<td></td>
</tr>
<tr>
<td>11/07/18</td>
<td>Logic Design Components</td>
<td></td>
</tr>
<tr>
<td>11/12/18</td>
<td><strong>Veterans Day (Campus Closed)</strong></td>
<td></td>
</tr>
<tr>
<td>11/14/18</td>
<td>Addition / Subtraction Logic</td>
<td>Quiz-05</td>
</tr>
<tr>
<td>11/19/18</td>
<td>Multiplication Logic</td>
<td></td>
</tr>
<tr>
<td>11/21/18</td>
<td><strong>Pre-Thanksgiving Day (Non-instructional Day)</strong></td>
<td></td>
</tr>
<tr>
<td>11/26/18</td>
<td>Division Logic</td>
<td></td>
</tr>
<tr>
<td>11/28/18</td>
<td>Floating Point Number Representation</td>
<td>HW02 Submission</td>
</tr>
<tr>
<td>12/03/18</td>
<td>Exceptions &amp; Interrupts</td>
<td>Project Submission</td>
</tr>
<tr>
<td>12/05/18</td>
<td>Review I</td>
<td>Quiz-06</td>
</tr>
<tr>
<td>12/10/18</td>
<td>Review II</td>
<td></td>
</tr>
<tr>
<td>12/12/18</td>
<td><strong>Final Exam 5:15 pm – 7:30 pm</strong></td>
<td></td>
</tr>
</tbody>
</table>