San José State University
Department of Computer Science
CS 156, Introduction to Artificial Intelligence, Section 1, Fall 2019

Course and Contact Information
Instructor: Rula Khayrallah
Office Location: MacQuarrie Hall 218
Telephone: (408) 924-5153
Email: rula.khayrallah@sjsu.edu
Office Hours: Drop-In: Monday 3-4 PM, Thursday 12-1 PM
By appointment only (15-minute slots): Thursday 3-5 PM
To schedule an appointment, please visit https://goo.gl/CXkgsE
Class Days/Time: TuTh: 10:30-11:45 AM
Classroom: SCI 311
Prerequisites: CS 146 and either CS 151 or CMPE 135 with a grade of C- or better in each

Course Format
Class time will be spent in interactive lecture. You are required to bring your wireless laptop to class. Your
laptop must remain closed except for designated activities. We’ll use iClicker to gather your feedback and
check understanding during the lecture. iClicker helps me understand what you know, gives everyone a chance
to participate, and allows you to review the material after class. You must be in the classroom to participate in
the iClicker activity.

Canvas Course Site
Course materials such as syllabus, lecture notes, assignments, questions of the week and exams can be found on
the Canvas Learning Management System course website at http://sjsu.instructure.com. You are responsible for
regularly checking with Canvas to learn of any updates.

Course Description (Required)
Basic concepts and techniques of artificial intelligence: problem solving, search, deduction, intelligent agents,
knowledge representation. Topics chosen from logic programming, game playing, planning, machine learning,
natural language, neural nets, robotics.

Course Learning Outcomes
Upon successful completion of this course, students will be able to:
1. By code or by hand find solution nodes in a state space using the A* algorithm.
2. Explain the advantages and disadvantages of breadth-first search compared to depth-first search.
3. Explain the advantages and disadvantages of informed search, compared to uninformed search.
4. Explain the advantages and disadvantages of hill climbing.
5. Explain the advantages and disadvantages of forward checking in constraint satisfaction.
6. Explain the advantages and disadvantages of alpha-beta pruning.
7. By code or by hand translate sentences in first-order logic to conjunctive normal form (CNF).
8. By code or by hand find proofs by using resolution.
9. Explain the advantages and disadvantages of the PDDL/STRIPS representation for planning.
10. Describe the frame problem.
11. Describe or implement at least one learning algorithm.

Recommended Textbook
ISBN: 9780136042594

Software
Python 3.7 or later available at https://www.python.org/downloads/release/python-374/
PyCharm Professional or Community Edition - recommended IDE

Course Requirements and Assignments

Homework Assignments:
Homework assignments will be posted and submitted on Canvas. For full credit, they must be submitted by the posted due date. A detailed grading rubric is provided for all programming assignments. Please make sure you read and follow the grading rubric to ensure full credit.
Some assignments will be individual work. Other homework will be team assignments. I will make it clear whether the assignment is an individual assignment or a team assignment.
All work submitted on individual assignments must be your own. You may not share or copy code or answers from fellow students or from the web. Infractions will be detected and will lead to an automatic 0. If someone else copies your work, with or without your permission, you will be held responsible.
For team assignments, teams will consist of two students. The work must be done by both team members and both team members will receive the same grade. Teams may not share or copy code from other teams or from the web. Both team members will receive a 0 if that happens regardless of who copied or shared the work.

Questions of the Week:
We will have a single question every week to check your understanding of the previous week's material. I will count the 10 best scores out of the 13 total questions in the semester. You must be in the classroom and must use the LockDown browser to access and answer the question on Canvas. Missed questions cannot be made up.

Midterm Exam:
The midterm exam will take place in the classroom during class time on Thursday October 10.

Class Participation:
You are expected to attend all class meetings as you are responsible for all the material discussed. Since active participation is essential to ensure maximum benefit, we'll use iClicker to give everyone a chance to participate. The iClicker participation points may be used to give your final grade in the course a slight boost.

Workload:
Success in this course is based on the expectation that students will spend, for each unit of credit, a minimum of 45 hours over the length of the course (normally three hours per unit per week) for instruction, preparation/studying, or course related activities, including but not limited to internships, labs, and clinical practica. Other course structures will have equivalent workload expectations as described in the syllabus.
Final Examination
The final exam will take place in the classroom on Friday, December 13 from 9:45 AM-12:00 PM.

Grading Information

Determination of Grades
The final grade in the course will be calculated based on the following percentages:
- Homework Assignments: 40%
- Questions of the Week: 10%
- Midterm: 20%
- Final Exam: 30%

The iClicker participation points may be used to give your final grade a slight boost. Students with the highest participation score will get 1 bonus point. Students who violate the academic integrity policy are not eligible. No extra credit options will be given.

Late Work
Late assignments will be accepted with a 1-point penalty for each day or partial day late. Late days include weekend days. For example, an assignment worth 5 points, due on Tuesday by 11:59 PM will incur a penalty of 1 point if submitted at 8:00 AM on Wednesday. Everyone gets two free 'late days' for the semester. No submissions will be accepted more than 2 days late.

Grade Scale
The letter grade will be determined based on the following scale:

- A+ = 98% - 100%
- A = 93% - 97%
- A- = 90% - 92%
- B+ = 87% - 89%
- B = 83% - 86%
- B- = 80% - 82%
- C+ = 77% - 79%
- C = 73% - 76%
- C- = 70% - 72%
- D = 60% - 69%
- F = below 60

Classroom Protocol
Regular attendance is an integral part of the learning process. Please arrive to class on time and make sure your cell phones are silent during the lecture. Your laptop must remain closed except for designated activities.

University Policies
Per University Policy S16-9, university-wide policy information relevant to all courses, such as academic integrity, accommodations, etc. will be available on Office of Graduate and Undergraduate Programs’ Syllabus Information web page at http://www.sjsu.edu/gup/syllabusinfo/. Make sure to review these policies and resources.
CS 156 Introduction to Artificial Intelligence, Spring 2018, Course Schedule

Please note that this schedule is subject to change with fair notice. Any changes will be announced in class and posted on the Canvas course site.

Course Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Topics</th>
<th>Readings</th>
<th>QoW</th>
<th>HW Due date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aug 22</td>
<td>Course Logistics – What is AI?</td>
<td>Chapter 1</td>
<td></td>
<td>HW1 Aug 27</td>
</tr>
<tr>
<td>2</td>
<td>Aug 27</td>
<td>Python</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Aug 29</td>
<td>Python</td>
<td></td>
<td></td>
<td>HW2 – Sep 5</td>
</tr>
<tr>
<td>3</td>
<td>Sep 3</td>
<td>Intelligent Agents</td>
<td>Chapter 2</td>
<td>Q1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Sep 5</td>
<td>Problem Solving and Search</td>
<td>Sec 3.1-3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Sep 10</td>
<td>Uninformed Search</td>
<td>Sec 3.4</td>
<td>Q2</td>
<td>HW3 Sep 17</td>
</tr>
<tr>
<td>4</td>
<td>Sep 12</td>
<td>Informed Search: greedy, A* search</td>
<td>Sec 3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Sep 17</td>
<td>Heuristics</td>
<td>Sec 3.6</td>
<td>Q3</td>
<td>HW4 Sep 24</td>
</tr>
<tr>
<td>5</td>
<td>Sep 19</td>
<td>Local Search</td>
<td>Sec 4.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Sep 24</td>
<td>Constraint Satisfaction Problems</td>
<td>Chapter 6</td>
<td>Q4</td>
<td>HW5 Oct 1</td>
</tr>
<tr>
<td>6</td>
<td>Sep 26</td>
<td>Constraint Satisfaction Problems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Oct 1</td>
<td>Adversarial Search</td>
<td>Chapter 5</td>
<td>Q5</td>
<td>HW6 Oct 8</td>
</tr>
<tr>
<td>7</td>
<td>Oct 3</td>
<td>Stochastic Games</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Oct 8</td>
<td>Review</td>
<td></td>
<td>Q6</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Oct 10</td>
<td>Midterm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Oct 15</td>
<td>Logical Agents</td>
<td>Chapter 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Oct 17</td>
<td>First-Order Logic</td>
<td>Chapter 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Oct 22</td>
<td>Inference in First-Order Logic</td>
<td>Chapter 9</td>
<td>Q7</td>
<td>HW7 Oct 29</td>
</tr>
<tr>
<td>10</td>
<td>Oct 24</td>
<td>Classical Planning</td>
<td>Chapter 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Oct 29</td>
<td>Uncertainty</td>
<td>Chapter 13</td>
<td>Q8</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Oct 31</td>
<td>Bayes Nets Representation</td>
<td>Sec 14.1-14.4</td>
<td></td>
<td>HW8 Nov 7</td>
</tr>
<tr>
<td>12</td>
<td>Nov 5</td>
<td>Probabilistic Reasoning Over Time</td>
<td></td>
<td>Q9</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Nov 7</td>
<td>Machine Learning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Nov 12</td>
<td>Naïve Bayes Classification</td>
<td>Chapter 20</td>
<td>Q10</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Nov 14</td>
<td>Perceptron</td>
<td>Chapter 18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Nov 19</td>
<td>Neural Nets, Nearest Neighbors</td>
<td></td>
<td>Q11</td>
<td>HW9 Dec 3</td>
</tr>
<tr>
<td>14</td>
<td>Nov 21</td>
<td>Unsupervised Learning: Clustering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Nov 26</td>
<td>Machine Learning Applications</td>
<td></td>
<td>Q12</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Nov 28</td>
<td>Thanksgiving</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Dec 3</td>
<td>Machine Learning Applications</td>
<td></td>
<td>Q13</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Dec 5</td>
<td>Review</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final</td>
<td>Dec 13</td>
<td>Science 311: 9:45 AM-12:00 PM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>