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14.

Phase Velocity

For a sinusoidal wave, or a waveform comprised of 
many sinusoidal components that all propagate at 
the same velocity, the waveform will move at the 
phase velocity of the sinusoidal components

We’ve seen already that the phase velocity is 

vp=ω/k

What happens if the different components of the 
wave have different phase velocities (i.e. because 
of dispersion)?
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14.

Phase and Group Velocity
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14.

Group Velocity

When the various frequency components of a 
waveform have different phase velocities, the 
phase velocity of the waveform is an average of 
these velocities (the phase velocity of the 
carrier wave), but the waveform itself moves at 
a different speed than the underlying carrier 
wave called the group velocity.
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14.

Group vs Phase velocity

An analogy that may be useful for understanding 
the difference comes from velodrome cycling:
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Riders race as a team 
and take turns as 
leader with the old 
leader peeling away 
and going to the back 
of the pack

As riders make their way from the rear of the 
pack to the front they are moving faster than the 
group that they are in



14.

Group Velocity

The phase velocity of a wave is          

and comes from the change in the position of the 
wavefronts as a function of time

The waveform moves at a rate that depends on the 
relative position of the component wavefronts as a 
function of time.  This is the group velocity and is

which can be found if you have
" " " " " " " " " giving
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14.

Slow Light

How slow can light be made to go?

In a Bose-Einstein Condensate light tuned to the 
atomic resonance tremendous dispersion and has 
been slowed to a speed of…
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See Hau, et al. “Light speed reduction to 17 
metres per second in an ultracold atomic 
gas”, Nature 397, 594 - 598 (18 February 

1999)
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14.

Example

Given the dispersion equation

where fj is the fraction of electrons that have a 
resonant frequency of ω0j, find the phase 
velocity and group velocity of high frequency 
electromagnetic waves (ω>>ωoj)

9

n2(ω) = 1 +
Ne2

ε0me

∑

j
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fj

ω2
0j − ω2
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14.

Example

The phase velocity is v=c/n so
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n2(ω) = 1 +
Ne2

ε0me

∑

j

(
fj

ω2
0j − ω2

)

The group velocity can be found from

vg =
dω

dk

v =
c√

1 + Ne2

ε0me
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Example
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n2(ω) = 1 +
Ne2

ε0me

∑
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∑
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14.

Modulated Light

The difference between group velocity and phase 
velocity is most relevant for light that is 
modulated at high frequencies or for pulses of 
light.

Light that is modulated is by definition non-
sinusoidal, however it can be thought of as the 
sum of many sinusoidal components consider, 
consider the Fourier transform…
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12.

Fourier Transforms

When adding up the fields from an infinite 
number of monochromatic waves we can describe 
the field as an amplitude as a function of time 
(or space), or we can describe it by the 
amplitude and frequency (or wave-vector) of the 
waves that were added to produce it.

The function E(ω) is called the Fourier 
Transform of E(t)
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E(t) =
∫ ∞

−∞
E(ω)eiωtdω



12.

Fourier Transforms
E(ω)can be found from E(t) as follows:
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multiply both sides by e-iωt and integrate over all time

The oscillating function ei(ω-ω’)t integrates to zero unless ω=ω’ so 
the integral is a delta function δ(ω-ω’) 

Ẽ(ω) =
∫ ∞

−∞
E(t)e−iωtdt

∫ ∞

−∞
e−iω′tE(t)dt = δ(ω − ω′)

∫ ∞

−∞
Ẽ(ω)ei(ω−ω′)tdω

∫ ∞

−∞
e−iω′tE(t)dt = Ẽ(ω′)

∫ ∞

−∞
e−iω′tE(t)dt =

∫∫ ∞

−∞
Ẽ(ω)ei(ω−ω′)tdωdt

∫ ∞

−∞
e−iω′tE(t)dt =

∫ ∞

−∞
e−iω′t

∫ ∞

−∞
Ẽ(ω)eiωtdωdt

E(t) =
∫ ∞

−∞
Ẽ(ω)eiωtdω

simplify the right hand side



12.

Spectral Density
In mathematics E(ω) is called the Fourier 
transform of the function E(t)

A more physical interpretation comes from calling 
it the spectral density of the electric field

Consider the units

E(t) → V/m

E(ω) → (V/m) s → (V/m)/Hz

15

Ẽ(ω) =
∫ ∞

−∞
E(t)e−iωtdt
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t
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Ẽ(ω)



12.

Spectral Density
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Ẽ(ω)

E(t)

t

ω
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12.

Power Spectrum

A plot of the spectral density shows the 
amplitude of the electric field as a function of 
frequency.  It is often useful to consider the 
irradiance of a wave as a function of frequency, 
this is given by the power spectral density, aka 
the power spectrum of a light source.   
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P̃ (ω) =
∣∣∣Ẽ(ω)

∣∣∣
2

spectral power distribution - HeNe laserspectral power distribution - 3400k Blackbody laser



Prism Spectrometer

Principle: incident light is refracted by a dispersive 
prism.  The angle of refraction is a function of the 
wavelength and can me measured.

Basic Components: 

Input slit to constrain the spatial width of 
the image 
Lenses to image the slit at the output and 
fully illuminate the prism 
Dispersive prism

Instrumental Properties:

Speed
Spectral Transmission
Resolving Power
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Spectral Resolving Power

Spectral Resolving Power - the ability to resolve 
spectral features (it is the inverse of the spectral 
resolution)

Using the “Rayleigh Criterion” two (diffraction limited)
lines are just resolvable if the peak of one line 
coincides with the first minimum of another line.

The diffraction pattern of a uniformly illuminated 
aperture of width a is 

which after being imaged by a lens of focal length f2 
has a width from the central max to the first 
minimum of
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ΔL=2L+δLsin(φ(t))

L

t y

φ(t)

It(ΔL/λ)

Scanning Confocal Fabry-Perot

A Fabry-Perot is used as a wavelength 
selective filter

Mirrors of the cavity are “confocal” R1=R1=L so 
that transmitted intensity I(t) is only a 
function of ΔL(t)/λ (and does not depend on 
transverse modes in cavity produced by poor 
alignment)

One mirror is scanned back and forth to dither 
the length by up to a full free spectral range

Transmission of cavity is plotted versus cavity 
length (on an oscilloscope) to see the spectrum 
of the input light

Most useful for CW sources when all of the 
power in the spectrum is within one free 
spectral range of the center wavelength

saw tooth 
function generator

Calibrated by relating the time to scan 
through one free spectral range, to the 

known free spectral range of the 
instrument based on its length
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Summary

The wavefronts of a wave propagate at the 
phase velocity v=ω/k

The waveform of a wave propagates at the 
group velocity vg=dω/dk

In dispersive media v≠vg

Waveforms can be deconstructed into sinusoidal 
components through Fourier analysis to obtain 
the spectral density and power spectrum
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