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and test ideas and analytical formulas relating to signal extraction schemes. It was

also extensively used in the tabletop prototype experiment of Chapter 4 to predict the

state of the interferometer as well as design and debug the experiment. It is available

through the STAIC website.[49]

3.2 The RSE Interferometer

Figure 3.6 shows the RSE interferometer, along with the labels relevant to this section.

There are five longitudinal degrees of freedom in RSE. “Longitudinal” indicates that
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Figure 3.6: The optical layout of the RSE interferometer. rprm, rbs, and rsem are the
reflectivities of the power recycling mirror, the beamsplitter, and the signal mirror,
respectively. rac1 and rac2 are the reflectivities of the inline and perpendicular arm
cavities. Sign conventions for the mirrors are indicated.

the degree of freedom is along the axis of the laser beam, as opposed to the angular

degrees of freedom, which are related to the tilting motions of the mirrors. The five

degrees of freedom are comprised of four cavity phases plus the dark fringe Michelson

condition. The four cavities are the power recycling cavity and signal extraction

cavity, as well as the two arm cavities. The two arm cavities are represented in terms



Cavity Locking

Laser field must resonate in the cavities for 
interferometer to operate as intended

External disturbances cause cavity length and laser 
frequency to fluctuate, thus active sensing and control is 
required to keep laser resonant in the cavities

Microwave technique for locking cavities developed by 
Pound was adapted to optical cavities by Drever and 
Hall, and used by Jan Hall for advances in laser 
stabilization that won he and Ted Hansch the 2005 
Nobel prize in Physics

Pound-Drever-Hall technique for cavity locking 
(alternatively laser frequency stabilization) is widely 
used



Conceptual Model

Treat the input mirror as having a reflectivity of r1>0 
when seen from inside the cavity, and the end mirror as 
having a reflectivity of r2>0 when seen from inside the 
cavity.  

The cavity reflectance is

Consider a Fabry-Perot cavity illuminated by a laser of 
frequency f, slightly detuned from the cavity resonance 
by  δf=f-fres
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rcav(f) = −r1 −
t21r2e2ikL

1− r1r2e2ikL



-1.5 -1 -0.5 0 0.5 1 1.5

0.5

1

Conceptual Model
Cavity Reflectance

resonance with the cavity, you can’t tell just by looking at
the reflected intensity whether the frequency needs to be in-
creased or decreased to bring it back onto resonance. The
derivative of the reflected intensity, however, is antisymmet-
ric about resonance. If we were to measure this derivative,
we would have an error signal that we can use to lock the
laser. Fortunately, this is not too hard to do: We can just vary
the frequency a little bit and see how the reflected beam
responds.
Above resonance, the derivative of the reflected intensity

with respect to laser frequency is positive. If we vary the
laser’s frequency sinusoidally over a small range, then the
reflected intensity will also vary sinusoidally, in phase with
the variation in frequency. !See Fig. 2."
Below resonance, this derivative is negative. Here the re-

flected intensity will vary 180° out of phase from the fre-
quency. On resonance the reflected intensity is at a mini-
mum, and a small frequency variation will produce no
change in the reflected intensity.
By comparing the variation in the reflected intensity with

the frequency variation we can tell which side of resonance
we are on. Once we have a measure of the derivative of the
reflected intensity with respect to frequency, we can feed this
measurement back to the laser to hold it on resonance. The
purpose of the Pound–Drever–Hall method is to do just this.
Figure 3 shows a basic setup. Here the frequency is modu-
lated with a Pockels cell,20 driven by some local oscillator.
The reflected beam is picked off with an optical isolator !a
polarizing beamsplitter and a quarter-wave plate makes a
good isolator" and sent into a photodetector, whose output is

compared with the local oscillator’s signal via a mixer. We
can think of a mixer as a device whose output is the product
of its inputs, so this output will contain signals at both dc !or
very low frequency" and twice the modulation frequency. It
is the low frequency signal that we are interested in, since
that is what will tell us the derivative of the reflected inten-
sity. A low-pass filter on the output of the mixer isolates this
low frequency signal, which then goes through a servo am-
plifier and into the tuning port on the laser, locking the laser
to the cavity.
The Faraday isolator shown in Fig. 3 keeps the reflected

beam from getting back into the laser and destabilizing it.
This isolator is not necessary for understanding the tech-
nique, but it is essential in a real system. In practice, the
small amount of reflected beam that gets through the optical
isolator is usually enough to destabilize the laser. Similarly,
the phase shifter is not essential in an ideal system but is
useful in practice to compensate for unequal delays in the
two signal paths. !In our example, it could just as easily go
between the local oscillator and the Pockels cell."
This conceptual model is really only valid if you are dith-

ering the laser frequency slowly. If you dither the frequency
too fast, the light resonating inside the cavity won’t have
time to completely build up or settle down, and the output
will not follow the curve shown in Fig. 2. However, the
technique still works at higher modulation frequencies, and
both the noise performance and bandwidth of the servo are
typically improved. Before we address a conceptual picture
that does apply to the high-frequency regime, we must estab-
lish a quantitative model.

Fig. 1. Transmission of a Fabry–Perot cavity vs frequency of the incident

light. This cavity has a fairly low finesse, about 12, to make the structure of

the transmission lines easy to see.

Fig. 2. The reflected light intensity from a Fabry–Perot cavity as a function

of laser frequency, near resonance. If you modulate the laser frequency, you

can tell which side of resonance you are on by how the reflected power

changes.

Fig. 3. The basic layout for locking a

cavity to a laser. Solid lines are optical

paths and dashed lines are signal paths.

The signal going to the laser controls

its frequency.
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Modulation of the round trip phase 
(by modulating laser frequency or 
cavity length) at a frequency fm 
produces a modulation on the 
reflected power at fm if cavity is 
off-resonance

rcav(f) = −r1 −
t21r2e2ikL

1− r1r2e2ikL
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Carrier-Sideband Picture

A (phase) modulated beam has a carrier and sidebands spaced by 
frequency the modulation frequency fm, as long as fm≠nffsr, the 
modulation frequency is not an integer multiple of the cavity’s free 
spectral range (ffsr=c/2L), the sidebands will reflect off the cavity with 
high efficiency, while the carrier will “see” a much lower reflection 
coefficient due ot the frequency dependence of the reflection coefficient

carrier

f0
P(f)

sidebandsideband

f0+fmf0-fm

R(f)
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Carrier-Sideband Picture

The phase shift upon reflection from the cavity is essentially 0 for the 
sidebands, but the carrier has a phase shift that is a strong function of 
the detuning of the cavity (i.e. the difference between the cavities 
resonant frequency and the carrier frequency) when the carrier is near 
resonance (within a linewidth Δf=ffsr/F).  Near resonance it has a slope 
of 2πF/ffsr, when measured as a function of frequency

carrier

f0
P(f)

sidebandsideband

f0+fmf0-fm

φr(f)

f/ffsr



resonance with the cavity, you can’t tell just by looking at
the reflected intensity whether the frequency needs to be in-
creased or decreased to bring it back onto resonance. The
derivative of the reflected intensity, however, is antisymmet-
ric about resonance. If we were to measure this derivative,
we would have an error signal that we can use to lock the
laser. Fortunately, this is not too hard to do: We can just vary
the frequency a little bit and see how the reflected beam
responds.
Above resonance, the derivative of the reflected intensity

with respect to laser frequency is positive. If we vary the
laser’s frequency sinusoidally over a small range, then the
reflected intensity will also vary sinusoidally, in phase with
the variation in frequency. !See Fig. 2."
Below resonance, this derivative is negative. Here the re-

flected intensity will vary 180° out of phase from the fre-
quency. On resonance the reflected intensity is at a mini-
mum, and a small frequency variation will produce no
change in the reflected intensity.
By comparing the variation in the reflected intensity with

the frequency variation we can tell which side of resonance
we are on. Once we have a measure of the derivative of the
reflected intensity with respect to frequency, we can feed this
measurement back to the laser to hold it on resonance. The
purpose of the Pound–Drever–Hall method is to do just this.
Figure 3 shows a basic setup. Here the frequency is modu-
lated with a Pockels cell,20 driven by some local oscillator.
The reflected beam is picked off with an optical isolator !a
polarizing beamsplitter and a quarter-wave plate makes a
good isolator" and sent into a photodetector, whose output is

compared with the local oscillator’s signal via a mixer. We
can think of a mixer as a device whose output is the product
of its inputs, so this output will contain signals at both dc !or
very low frequency" and twice the modulation frequency. It
is the low frequency signal that we are interested in, since
that is what will tell us the derivative of the reflected inten-
sity. A low-pass filter on the output of the mixer isolates this
low frequency signal, which then goes through a servo am-
plifier and into the tuning port on the laser, locking the laser
to the cavity.
The Faraday isolator shown in Fig. 3 keeps the reflected

beam from getting back into the laser and destabilizing it.
This isolator is not necessary for understanding the tech-
nique, but it is essential in a real system. In practice, the
small amount of reflected beam that gets through the optical
isolator is usually enough to destabilize the laser. Similarly,
the phase shifter is not essential in an ideal system but is
useful in practice to compensate for unequal delays in the
two signal paths. !In our example, it could just as easily go
between the local oscillator and the Pockels cell."
This conceptual model is really only valid if you are dith-

ering the laser frequency slowly. If you dither the frequency
too fast, the light resonating inside the cavity won’t have
time to completely build up or settle down, and the output
will not follow the curve shown in Fig. 2. However, the
technique still works at higher modulation frequencies, and
both the noise performance and bandwidth of the servo are
typically improved. Before we address a conceptual picture
that does apply to the high-frequency regime, we must estab-
lish a quantitative model.

Fig. 1. Transmission of a Fabry–Perot cavity vs frequency of the incident

light. This cavity has a fairly low finesse, about 12, to make the structure of

the transmission lines easy to see.

Fig. 2. The reflected light intensity from a Fabry–Perot cavity as a function

of laser frequency, near resonance. If you modulate the laser frequency, you

can tell which side of resonance you are on by how the reflected power

changes.

Fig. 3. The basic layout for locking a

cavity to a laser. Solid lines are optical

paths and dashed lines are signal paths.

The signal going to the laser controls

its frequency.
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Phase shift of carrier transforms phase 
modulation into amplitude modulation

Carrier-Sideband Picture

negative phase shift no phase shift positive phase shift

resonancewiththecavity,youcan’ttelljustbylookingat
thereflectedintensitywhetherthefrequencyneedstobein-
creasedordecreasedtobringitbackontoresonance.The
derivativeofthereflectedintensity,however,isantisymmet-
ricaboutresonance.Ifweweretomeasurethisderivative,
wewouldhaveanerrorsignalthatwecanusetolockthe
laser.Fortunately,thisisnottoohardtodo:Wecanjustvary
thefrequencyalittlebitandseehowthereflectedbeam
responds.

Aboveresonance,thederivativeofthereflectedintensity
withrespecttolaserfrequencyispositive.Ifwevarythe
laser’sfrequencysinusoidallyoverasmallrange,thenthe
reflectedintensitywillalsovarysinusoidally,inphasewith
thevariationinfrequency.!SeeFig.2."

Belowresonance,thisderivativeisnegative.Herethere-
flectedintensitywillvary180°outofphasefromthefre-
quency.Onresonancethereflectedintensityisatamini-
mum,andasmallfrequencyvariationwillproduceno
changeinthereflectedintensity.

Bycomparingthevariationinthereflectedintensitywith
thefrequencyvariationwecantellwhichsideofresonance
weareon.Oncewehaveameasureofthederivativeofthe
reflectedintensitywithrespecttofrequency,wecanfeedthis
measurementbacktothelasertoholditonresonance.The
purposeofthePound–Drever–Hallmethodistodojustthis.
Figure3showsabasicsetup.Herethefrequencyismodu-
latedwithaPockelscell,20drivenbysomelocaloscillator.
Thereflectedbeamispickedoffwithanopticalisolator!a
polarizingbeamsplitterandaquarter-waveplatemakesa
goodisolator"andsentintoaphotodetector,whoseoutputis

comparedwiththelocaloscillator’ssignalviaamixer.We
canthinkofamixerasadevicewhoseoutputistheproduct
ofitsinputs,sothisoutputwillcontainsignalsatbothdc!or
verylowfrequency"andtwicethemodulationfrequency.It
isthelowfrequencysignalthatweareinterestedin,since
thatiswhatwilltellusthederivativeofthereflectedinten-
sity.Alow-passfilterontheoutputofthemixerisolatesthis
lowfrequencysignal,whichthengoesthroughaservoam-
plifierandintothetuningportonthelaser,lockingthelaser
tothecavity.

TheFaradayisolatorshowninFig.3keepsthereflected
beamfromgettingbackintothelaseranddestabilizingit.
Thisisolatorisnotnecessaryforunderstandingthetech-
nique,butitisessentialinarealsystem.Inpractice,the
smallamountofreflectedbeamthatgetsthroughtheoptical
isolatorisusuallyenoughtodestabilizethelaser.Similarly,
thephaseshifterisnotessentialinanidealsystembutis
usefulinpracticetocompensateforunequaldelaysinthe
twosignalpaths.!Inourexample,itcouldjustaseasilygo
betweenthelocaloscillatorandthePockelscell."

Thisconceptualmodelisreallyonlyvalidifyouaredith-
eringthelaserfrequencyslowly.Ifyouditherthefrequency
toofast,thelightresonatinginsidethecavitywon’thave
timetocompletelybuilduporsettledown,andtheoutput
willnotfollowthecurveshowninFig.2.However,the
techniquestillworksathighermodulationfrequencies,and
boththenoiseperformanceandbandwidthoftheservoare
typicallyimproved.Beforeweaddressaconceptualpicture
thatdoesapplytothehigh-frequencyregime,wemustestab-
lishaquantitativemodel.

Fig.1.TransmissionofaFabry–Perotcavityvsfrequencyoftheincident

light.Thiscavityhasafairlylowfinesse,about12,tomakethestructureof

thetransmissionlineseasytosee.

Fig.2.ThereflectedlightintensityfromaFabry–Perotcavityasafunction

oflaserfrequency,nearresonance.Ifyoumodulatethelaserfrequency,you

cantellwhichsideofresonanceyouareonbyhowthereflectedpower

changes.

Fig.3.Thebasiclayoutforlockinga

cavitytoalaser.Solidlinesareoptical

pathsanddashedlinesaresignalpaths.

Thesignalgoingtothelasercontrols

itsfrequency.
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Experimental Schematic

Modulation of the laser frequency 
is accomplished by a pockels cell 
driven by a sinusoidal oscillator.

Any modulation at fm on the light 
reflected from the cavity is 
detected (by mixing with the local 
oscillator) and used to provide 
feedback to the cavity (or laser).

Laser Pockels Cell

      (PC)

Cavity

Photodetector

MixerLocal Oscillator

       (LO)
Servo Amp

Actuator

Figure 1: The basic layout for locking a cavity to a laser. Solid lines are optical paths, and dashed

lines are signal paths. The signal going to the far mirror of the cavity controls its position.

2 A conceptual model

Fig. 1 shows a basic Pound-Drever-Hall setup. This arrangement is for locking a cavity to a laser, and

it is the setup you would use to measure the length noise in the cavity.1 You send the beam into the

cavity; a photodetector looks at the reflected beam; and its output goes to an actuator that controls the

length of the cavity. If you have set up the feedback correctly, the system will automatically adjust

the length of the cavity until the light is resonant and then hold it there. The feedback circuit will

compensate for any disturbance (within reason) that tries to bump the system out of resonance. If you

keep a record of how much force the feedback circuit supplies, you have a measurement of the noise

in the cavity.

Setting up the right kind of feedback is a little tricky. The system has to have some way of telling

which way it should push to bring the system back on resonance. It can’t tell just by looking at the

1Locking the laser to the cavity follows essentially the same design, the only difference being that you would feed

back to the laser, rather than the cavity.
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resonance with the cavity, you can’t tell just by looking at
the reflected intensity whether the frequency needs to be in-
creased or decreased to bring it back onto resonance. The
derivative of the reflected intensity, however, is antisymmet-
ric about resonance. If we were to measure this derivative,
we would have an error signal that we can use to lock the
laser. Fortunately, this is not too hard to do: We can just vary
the frequency a little bit and see how the reflected beam
responds.
Above resonance, the derivative of the reflected intensity

with respect to laser frequency is positive. If we vary the
laser’s frequency sinusoidally over a small range, then the
reflected intensity will also vary sinusoidally, in phase with
the variation in frequency. !See Fig. 2."
Below resonance, this derivative is negative. Here the re-

flected intensity will vary 180° out of phase from the fre-
quency. On resonance the reflected intensity is at a mini-
mum, and a small frequency variation will produce no
change in the reflected intensity.
By comparing the variation in the reflected intensity with

the frequency variation we can tell which side of resonance
we are on. Once we have a measure of the derivative of the
reflected intensity with respect to frequency, we can feed this
measurement back to the laser to hold it on resonance. The
purpose of the Pound–Drever–Hall method is to do just this.
Figure 3 shows a basic setup. Here the frequency is modu-
lated with a Pockels cell,20 driven by some local oscillator.
The reflected beam is picked off with an optical isolator !a
polarizing beamsplitter and a quarter-wave plate makes a
good isolator" and sent into a photodetector, whose output is

compared with the local oscillator’s signal via a mixer. We
can think of a mixer as a device whose output is the product
of its inputs, so this output will contain signals at both dc !or
very low frequency" and twice the modulation frequency. It
is the low frequency signal that we are interested in, since
that is what will tell us the derivative of the reflected inten-
sity. A low-pass filter on the output of the mixer isolates this
low frequency signal, which then goes through a servo am-
plifier and into the tuning port on the laser, locking the laser
to the cavity.
The Faraday isolator shown in Fig. 3 keeps the reflected

beam from getting back into the laser and destabilizing it.
This isolator is not necessary for understanding the tech-
nique, but it is essential in a real system. In practice, the
small amount of reflected beam that gets through the optical
isolator is usually enough to destabilize the laser. Similarly,
the phase shifter is not essential in an ideal system but is
useful in practice to compensate for unequal delays in the
two signal paths. !In our example, it could just as easily go
between the local oscillator and the Pockels cell."
This conceptual model is really only valid if you are dith-

ering the laser frequency slowly. If you dither the frequency
too fast, the light resonating inside the cavity won’t have
time to completely build up or settle down, and the output
will not follow the curve shown in Fig. 2. However, the
technique still works at higher modulation frequencies, and
both the noise performance and bandwidth of the servo are
typically improved. Before we address a conceptual picture
that does apply to the high-frequency regime, we must estab-
lish a quantitative model.

Fig. 1. Transmission of a Fabry–Perot cavity vs frequency of the incident

light. This cavity has a fairly low finesse, about 12, to make the structure of

the transmission lines easy to see.

Fig. 2. The reflected light intensity from a Fabry–Perot cavity as a function

of laser frequency, near resonance. If you modulate the laser frequency, you

can tell which side of resonance you are on by how the reflected power

changes.

Fig. 3. The basic layout for locking a

cavity to a laser. Solid lines are optical

paths and dashed lines are signal paths.

The signal going to the laser controls

its frequency.
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PDH schematic for locking a cavity onto a laser

PDH schematic for locking a laser onto a cavity

low pass
filter



Quantitative Model

Recall that the phasor amplitude for phase modulated light can 
be written as

where m is the modulation depth, Ω=2πfm is the modulation 
frequency and ω=2πf0 is the carrier frequency.  The field 
reflected from the cavity is 

which can be approximated by

when the carrier is near resonance, the sidebands are far off-
resonance and r1,r2≈1.  Here r0 is the magnitude of the cavity 
reflection on resonance and δf is the detuning of the laser from 
the cavity

E ≈ E0

(
−r0J0(m)ei(ωt+2πFδf/ffsr) + iJ1(m)

(
ei(ωt−Ωt) + ei(ωt+Ωt)

))

Ein ≈ E0

(
J0(m)eiωt + iJ1(m)

(
ei(ωt−Ωt) + ei(ωt+Ωt)

))

Er ≈ E0

(
r(ω)J0(m)eiωt + iJ1(m)

(
r(ω − Ω)ei(ωt−Ωt) + r(ω + Ω)ei(ωt+Ωt)

))



Quantitative Model
The relative intensity detected by a photodetector is proportional to the magnitude of 
the field squared

giving

or E∗E = DC terms + 2ω terms

+ 2E2
0r0J0(m)J1(m)

(
sin (2πFδf/ffsr + Ωt) + sin (2πFδf/ffsr − Ωt)

)

E∗E = DC terms + 2ω terms
+ 4E2

0r0J0(m)J1(m) sin(2πFδf/ffsr) cos(Ωt)

This is the amplitude of the modulated power at the modulation 
frequency, near resonance (δf<<ffsr/F) this is proportional to δf

E ≈ E0

(
−r0J0(m)ei(ωt+2πFδf/ffsr) + iJ1(m)

(
ei(ωt−Ωt) + ei(ωt+Ωt)

))

I ∝ E∗E = E2
0

(
r2
0J

2
0 (m) + 2J2

1 (m)

− ir0J0(m)J1(m)

((
ei(2πFδf/ffsr+Ωt) − e−i(2πFδf/ffsr+Ωt)

)

+
(
ei(2πFδf/ffsr−Ωt) − e−i(2πFδf/ffsr−Ωt)

) )

+ J1(m)2
(
e2iΩt + e−2iΩt

)
)



Demodulation

Consider a detected photocurrent 
of the form 

it gets “mixed” with a “local oscillator” 
of the form Vlo=cos(Ωt) which is equivalent to multiplication

the mixed signal is then low pass filtered to get

Vdet = V0 + VΩ cos(Ωt) + V2Ω cos(2Ωt)

Laser Pockels Cell

      (PC)

Cavity

Photodetector

MixerLocal Oscillator

       (LO)
Servo Amp

Actuator

Figure 1: The basic layout for locking a cavity to a laser. Solid lines are optical paths, and dashed

lines are signal paths. The signal going to the far mirror of the cavity controls its position.

2 A conceptual model

Fig. 1 shows a basic Pound-Drever-Hall setup. This arrangement is for locking a cavity to a laser, and

it is the setup you would use to measure the length noise in the cavity.1 You send the beam into the

cavity; a photodetector looks at the reflected beam; and its output goes to an actuator that controls the

length of the cavity. If you have set up the feedback correctly, the system will automatically adjust

the length of the cavity until the light is resonant and then hold it there. The feedback circuit will

compensate for any disturbance (within reason) that tries to bump the system out of resonance. If you

keep a record of how much force the feedback circuit supplies, you have a measurement of the noise

in the cavity.

Setting up the right kind of feedback is a little tricky. The system has to have some way of telling

which way it should push to bring the system back on resonance. It can’t tell just by looking at the

1Locking the laser to the cavity follows essentially the same design, the only difference being that you would feed

back to the laser, rather than the cavity.

3

Vdet
Vlo

Vmix = VloVdet = V0 cos(Ωt) + VΩ cos2(Ωt) + V2Ω cos(2Ωt) cos(Ωt)

low pass
filter

Vmix Vlpf

Vlpf ≈ lim
T→∞

1
T

∫ t

t−T
Vmixdτ =

1
2
VΩ

This is   
and provides a measure of the detuning of 
the laser from the cavity (or vice versa)

4E2
0r0J0(m)J1(m)δf



Error Signal

The demodulated (and low pass filtered signal) is 
a measure of the laser’s detuning from the 
cavity resonance and is called an “error signal”

In this case, if !!!! our dc signal vanishes! If we want to
measure the error signal when the modulation frequency is
low we must match the phases of the two signals going into
the mixer. Turning a sine into a cosine is a simple matter of
introducing a 90° phase shift, which we can do with a phase
shifter "or delay line#, as shown in Fig. 3.
In practice, you need a phase shifter even when the modu-

lation frequency is high. There are almost always unequal
delays in the two signal paths that need to be compensated
for to produce two pure sine terms at the inputs of the mixer.
The output of the mixer when the phases of its two inputs are
not matched can produce some odd-looking error signals
"see Bjorklund7#, and when setting up a Pound–Drever–Hall
lock you usually scan the laser frequency and empirically
adjust the phase in one signal path until you get an error
signal that looks like Fig. 7.

IV. UNDERSTANDING THE QUANTITATIVE

MODEL

A. Slow modulation: Quantifying the conceptual model

Let’s see how the quantitative model compares with our
conceptual model, where we slowly dithered the laser fre-
quency and looked at the reflected power. For our phase
modulated beam, the instantaneous frequency is

$" t #!
d

dt
"$t"% sin!t #!$"!% cos!t .

The reflected power is just P ref!P0!F($)!2, and we

might expect it to vary over time as

P ref"$"!% cos!t #&P ref"$#"
dP ref

d$
!% cos!t

&P ref"$#"P0

d!F!2

d$
!% cos!t .

In the conceptual model, we dithered the frequency of the
laser adiabatically, slowly enough that the standing wave in-
side the cavity was always in equilibrium with the incident
beam. We can express this in the quantitative model by mak-
ing ! very small. In this regime the expression

F"$#F*"$"!##F*"$#F"$#!#

&2 Re"F"$#
d

d$
F*"$## !&

d!F!2

d$
! ,

which is purely real. Of the ! terms, only the cosine term in
Eq. "3.3# survives.
If we approximate !PcPs&P0%/2, the reflected power

from Eq. "3.3# becomes

P ref&"constant terms#"P0

d!F!2

d$
!% cos!t

""2! terms#,

in agreement with our expectation from the conceptual
model.
The mixer will filter out everything but the term that var-

ies as cos!t. "We may have to adjust the phase of the signal
before we feed it into the mixer.# The Pound–Drever–Hall
error signal is then

'!P0

d!F!2

d$
!%&2!PcPs

d!F!2

d$
! .

Figure 6 shows a plot of this error signal.

B. Fast modulation near resonance: Pound–Drever–
Hall in practice

When the carrier is near resonance and the modulation
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assume that the sidebands are totally reflected, F($$!)
&#1. Then the expression
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Fig. 7. The Pound–Drever–Hall error signal, '/2!PcPs vs $/*+ fsr , when
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In this case, if !!!! our dc signal vanishes! If we want to
measure the error signal when the modulation frequency is
low we must match the phases of the two signals going into
the mixer. Turning a sine into a cosine is a simple matter of
introducing a 90° phase shift, which we can do with a phase
shifter "or delay line#, as shown in Fig. 3.
In practice, you need a phase shifter even when the modu-

lation frequency is high. There are almost always unequal
delays in the two signal paths that need to be compensated
for to produce two pure sine terms at the inputs of the mixer.
The output of the mixer when the phases of its two inputs are
not matched can produce some odd-looking error signals
"see Bjorklund7#, and when setting up a Pound–Drever–Hall
lock you usually scan the laser frequency and empirically
adjust the phase in one signal path until you get an error
signal that looks like Fig. 7.

IV. UNDERSTANDING THE QUANTITATIVE
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error signal as a function of 
detuning (for small tuning range)

error signal as a function of 
detuning (for large tuning range)



Negative Feedback

G inv

noise

system

δx
x1

Gx1

-Gx1

In the steady state we must have 
% % % δx-Gx1=x1

giving

meaning the noise is suppressed by a factor of 1+G.  The 
“noise” can be laser frequency or cavity length fluctuations

x1 =
δx

1 + G



Cavities in LIGO
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77

range. This ensures the carrier frequency is at an anti-resonant node, such that

resonance is satisfied when the arm cavities resonate as well.

f1 = (2n1 + 1)
ffsrprc

2
(3.40)

where n1 is an integer, and ffsrprc = c/(2lprc). This argument applies to each of

the modulation frequencies, with a different integer, n2 for the second RF sideband.

Clearly the difference of the two frequencies will be some integer multiple of the free

spectral range.

It’s desired that one of the RF sideband frequencies resonates in the signal cavity,

while the other does not. The non-resonant RF sideband then acts as a local oscillator

for the resonant RF sideband, thus providing a signal extraction port for the φs

degree of freedom. An example solution is shown in Figure 3.10, where f2 = 3f1. For

ff0

Input spectrum

f spectral schematic
Signal cavity

spectral schematic
Power recycling cavity

f

−f2 −f1 +f1 +f2

Figure 3.10: Power and signal cavity spectral schematic for broadband RSE. The RF
sidebands are related by f2 = 3f1.

broadband RSE, some care must be taken as to which frequency is resonant in the

signal cavity. For example, in the f2 = 3f1 case, clearly if f1 were resonant in the

signal cavity, f2 would be resonant as well.

The constraint on which frequency is resonant in the signal cavity doesn’t usually

apply to a detuned RSE interferometer. Since both the frequency of one of the RF

sidebands, and the frequency of the detuning must be resonant in the signal cavity,4

4Note that this is not the detuned frequency for the gravitational wave.
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and test ideas and analytical formulas relating to signal extraction schemes. It was

also extensively used in the tabletop prototype experiment of Chapter 4 to predict the

state of the interferometer as well as design and debug the experiment. It is available

through the STAIC website.[49]

3.2 The RSE Interferometer

Figure 3.6 shows the RSE interferometer, along with the labels relevant to this section.

There are five longitudinal degrees of freedom in RSE. “Longitudinal” indicates that

Φ− = φ3 − φ4

φ+ = φ0 + (φ1 + φ2)/2
φ− = (φ1 − φ2)/2
φs = φ5 + (φ1 + φ2)/2

φ4

φ2

Φ+ = φ3 + φ4

φ5

SEM
PD1 PD2

PD3

ETM1ITM1PRM

ITM2

ETM2

Laser
φ3

φ0

φ1

rac2

rac1+

+

−

−

+− rbs

rsem

rprm

Figure 3.6: The optical layout of the RSE interferometer. rprm, rbs, and rsem are the
reflectivities of the power recycling mirror, the beamsplitter, and the signal mirror,
respectively. rac1 and rac2 are the reflectivities of the inline and perpendicular arm
cavities. Sign conventions for the mirrors are indicated.

the degree of freedom is along the axis of the laser beam, as opposed to the angular

degrees of freedom, which are related to the tilting motions of the mirrors. The five

degrees of freedom are comprised of four cavity phases plus the dark fringe Michelson

condition. The four cavities are the power recycling cavity and signal extraction

cavity, as well as the two arm cavities. The two arm cavities are represented in terms



LIGO Input Spectrum

Various frequency components are necessary for 
length and alignment sensing of the many 
cavities and interferometers in the LIGO 
detector

phase modulation sidebands for locking “power recycling 
cavity” and Michelson interferometer (9 MHz)

phase modulation sidebands for locking the arms (180 MHz)
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carrier

f

P(f) 9 MHz sidebands

180 MHZ sidebands



LIGO Modulators

Initial LIGO

LiNbO3  slabs with 10mm x 10mm clear aperture for Initial 
LIGO (operates with up to 10W of power)

Transverse modulation

resonant circuit geometry 

9MHz phase modulation sidebands for interferometer 
sensing

Advanced LIGO

RTP (RbTiOPO4) (operates with up to 300W of 
power) 

9 MHz and 180 MHz PM sidebands for interferometer 
Sensing
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Role of Modulation Sidebands

19

carrier

f

P(f) 9 MHz sidebands

180 MHZ sidebands

-1.5 -1 -0.5 0 0.5 1 1.5

|r(f)|

f/ffsr

Cavity Reflectance rcav(f) = r − t2

1− r2ei2πf/ffsr

Sideband frequencies are such that only one component  is resonant in the cavity of interest
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Role of Modulation Sidebands
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carrier

f

P(f) 9 MHz sidebands

180 MHZ sidebands

φr=arg(r(f))

f/ffsr

Cavity Reflectance rcav(f) = r − t2

1− r2ei2πf/ffsr

Component that resonates in the cavity acquires a phase shift upon reflection that is a 
function of the cavities detuning. 



Higher Order Sidebands

21

Demodulation gives the sum of all frequency 
components spaced by flo.  Higher order modulation 
harmonics and sidebands-of-sidebands can produce 
unwanted contributions

P(f)

f

Higher order modulation harmonics

P(f)

f

sidebands of sidebands



Unintended Sidebands

Higher order (for example 18 MHZ sidebands 
from the 9 MHz modulator)sidebands are 
problematic because the intermodulation they 
produce can obscure intended signals

Solutions:

Low modulation depth

Sideband cancellation

Parallel modulation

22



Serial Modulation

For small modulation depth J1(m)≈m/2 and J2(m)≈m/24 
so intermodulation depth is m1m2/48

23

9 MHz   180 MHz

Power spectrum after 
9 MHz modulator

Power spectrum after 
9 MHz and 180 MHz 
modulators



Harmonic Compensation
Through proper adjustment of amplitude and 
phase of 189 and 171 MHz signals, the 
intermodulation harmonics can be cancelled

9 MHz   180 MHz x

Power spectrum after 
9 MHz and 180 MHz 
modulators

Modulation spectrum 
from third modulator

Power spectrum after 
9 MHz and 180 MHz 
modulators

- =



Parallel Modulation

A Mach-Zehnder interferometer can 
be used to combine modulation 
sidebands from two independent 
modulators

Drawbacks include reduction in 
effective modulatin depth by a 
factor of 2 due to sidebands 
lost to the unused port and 
increased complexity of maintaining 
Mach-Zehnder interference 
condition

25

9 MHz

  180 MHz



Single Sideband Generation

Some control and readout schemes require a 
“Single sideband” rather than a pair of phase 
modulated sidebands or amplitude modulated 
sidebands

Example: mapping out the frequency response 
of a detuned interferometer

26



Phase modulation produces a pair of sidebands at 
the modulation frequency that are each in phase 
with the carrier (at some instant in time)

Amplitude modulation produces a pair of 
sidebands a the modulation frequency with one 
in phase with the carrier while the other is π 
out-of-phase with the carrier.

Combining amplitude and phase modulation at the 
same frequency, one sideband in a pair can be 
enhanced while the other is suppressed.

Single Sideband Generation



Single Sideband ProductionSub-Carrier Generation

An alternative way 
to generate a single 
sideband is to phase 
lock two lasers with 
a given frequency 
offset.  This had 
been proposed for 
Advanced LIGO
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Advanced LIGO modulators

Three sets of modulation electrodes on one 
crystal
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Modulator Crystals

To avoid interference effects from reflections off 
the modulator faces, the crystal has a 2x2.8° 
wedge

The wedge leads to polarization dependent 
transmission angle, and thus the modulator also 
acts like a polarizer

30



Resonant Circuit

The resonant circuit is designed to have 50Ω 
impedance at the resonant frequency, but high 
impedance at DC and low frequencies.

31

186 APPENDIX B. ELECTRONICS

Figure B.10: Alternative resonant transformer circuit with a capacitive voltage divider.

the example, the capacitor C needs to have about 1.6 nF. It behaves differently from
the previously discussed circuits in so far as there are now two resonances close to
each other (a parallel resonance and a series resonance). Figure B.11 shows the input
impedance of this circuit. The presence of the two resonances makes the adjustment
more difficult. On the other hand, it may be an advantage that at low frequencies the
input impedance is very high (instead of a short circuit as in Figure B.9).

1
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Figure B.11: Input impedance of the alternative resonant transformer circuit with a capacitive
voltage divider.

B.3 The automatic lock acquisition circuit

Overview of the function: The function of the automatic lock acquisition circuit
can best be explained with Figure B.12.

The topmost trace (labelled ‘PD5’) represents the light power that is transmitted
through the reference cavity, which is detected by photodiode PD5 in Figure A.1.
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