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Maxwell’s Equations

Electric field (E) and magnetic field (H) in free-
space can be generalized to the electric 
displacement (D) and the magnetic induction (B) 
that include the effects of matter.  Maxwell’s 
equations relate these vectors

!∇× !E +
∂ !B

∂t
= 0

!∇× !H − ∂ !D

∂t
= !J

!∇ · !D = ρ
!∇ · !B = 0

→ →

→→

Faraday’s law

Ampere’s law

Gauss’ law (for electricity)
Gauss’ law (for magnetism)

What do each of these mean? 3



!∇× !E +
∂ !B

∂t
= 0
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Faraday’s Law

The Curl of the electric field is caused by 
changing magnetic fields

A changing magnetic field can produce electric 
fields with field lines that close on themselves

4



!∇× !H − ∂ !D

∂t
= !J
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Ampere’s  Law

The Curl of the magnetic field is caused by 
current of charged particles (J) or of the field 
they produce (dD/dt)

A changing electric field can produce magnetic 
fields (with field lines that close on themselves)

For all cases considered in this class, J=0

5



!∇ · !D = ρ
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Gauss’ Law

Electrical charges are the source of the electric field

 

For all cases considered in this class, ρ=0

ε is a 3x3 tensor not a scalar (unless the material is 
isotropic)!

ε may be a function of E and H! (giving rise to non-
linear optics)

ε can be determined via measurements on a parallel 
plate capacitor filled with a given material using the 
equation C=εA/d

6

!D = ε !E = ε0 !E + !P
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Gauss’  Law for Magnetism

There are no source of magnetic fields 

No magnetic monopoles

Magnetic field lines can only circulate

 

μ is a 3x3 tensor not a scalar (unless the material is 
isotropic)!

μ may be a function of E and H! (giving rise to non-
linear optics)

μ can be measured using the Biot-Savart law
7

!B = µ !H = µ0
!H + !M
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Waves and Maxwell’s Equations

A charged particle is a source of an electric field

When that particle moves it changes the (spatial 
distribution of) the electric field

When the electric field changes it produces a 
circulating magnetic field

If the particle accelerates this circulating magnetic 
field will change

A changing magnetic field produces a circulating 
electric field

The circulating electric field becomes the source of 
a circulating magnetic field 8
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When an EM wave propagates across an 
interface, Maxwell’s equations must be satisfied 
at the interface as well as in the bulk 
materials.  The constraints necessary for this to 
occur are called the “boundary conditions”

ε1, µ1 ε2, µ2

Boundary Conditions

∮
!D · d !A =

∫
σdA

∮
!H · d!s =

∫
!J · d !A +

d

dt

∫
!D · d !A

∮
!B · d !A = 0

∮
!E · d!s = − d

dt

∫
!B · d !A

9
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Boundary Conditions

Gauss’ law can be used to find the boundary 
conditions on the component of the electric field 
that is perpendicular to the interface.  

If the materials are dielectrics there will be no 
free charge on the surface (σ=0)

10∴

ε1, µ1 ε2, µ2
∮

!D · d !A =
∫

σdA

∮
!H · d!s =

∫
!J · d !A +

d

dt

∫
!D · d !A

∮
!B · d !A = 0

∮
!E · d!s = − d

dt

∫
!B · d !A

D1⊥ = D2⊥D1⊥ −D2⊥ =
∫

σdA→
0
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Boundary Conditions

11
∴ E1‖ = E2‖E2‖ − E1‖ = − d

dt

∫
B · dA→

0

ε1, µ1 ε2, µ2

Faraday’s law can be applied at the interface.  If 
the loop around which the electric field is 
computed is made to have an infintesimal area 
the right side will go to zero giving a 
relationship between the parallel components of 
the electric field
∮

!D · d !A =
∫

σdA

∮
!H · d!s =

∫
!J · d !A +

d

dt

∫
!D · d !A

∮
!B · d !A = 0

∮
!E · d!s = − d

dt

∫
!B · d !A
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Boundary Conditions

Gauss’ law for magnetism gives a relationship 
between the perpendicular components of the 
magnetic field at the interface

12
B1⊥A−B2⊥A = 0 B1⊥ = B2⊥∴

ε1, µ1 ε2, µ2
∮

!D · d !A =
∫

σdA

∮
!H · d!s =

∫
!J · d !A +

d

dt

∫
!D · d !A

∮
!B · d !A = 0

∮
!E · d!s = − d

dt

∫
!B · d !A
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Boundary Conditions

Ampere’s law applied to a loop at the interface 
that has an infintesimal area gives a relationship 
between the parallel components of the 
magnetic field.  (Note that in most common 
materials μ=μo) In the absence of currents J=0 
so

13
∴→

0
→
0

ε1, µ1 ε2, µ2
∮

!D · d !A =
∫

σdA

∮
!H · d!s =

∫
!J · d !A +

d

dt

∫
!D · d !A

∮
!B · d !A = 0

∮
!E · d!s = − d

dt

∫
!B · d !A

H1‖L−H2‖L =
∫

!J · d !A +
d

dt

∫
!D · d !A H1‖ = H2‖
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Poynting’s Theorem

The flow of electromagnetic energy is given by 
the Poynting vector

which has a magnitude that is the power per 
unit area carried by an electromagnetic wave in 
the direction of S.

S [W/m2]⇔E [v/m] H [A/m]

14

!S = !E × !H
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Complex-Function Formalism
Steady-state sinusoidal functions of the form

can be treated as having a complex amplitude

such that the function can be written as

or in shorthand! ! ! ! where it is understood 
that the real part of this complex expression 
represents the original sinusoidal function 

15

a(t) = A cos(ωt + α)

Ã = Aeiα

a(t) = Re
[
Ãeiωt

]

Ãeiωt
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Phasors

The complex amplitude of a sinusoidal function 
can be represented graphically by a point (often 
an arrow from the origin to a point) in the 
complex plane

Re

Im

Re

Im

Re

Im

a(t) = cos ωt a(t) = sin ωt

Ã = 1 Ã = −i

a(t) = cos (ωt) + sin (ωt)

16
Ã =

√
2e−iπ/4
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Phasors

Addition of same-frequency sinusoidal functions 
involves factoring out the time dependance and 
simply adding the phasor amplitudes.

Addition of difference frequency sinusoidal 
function is often simplified by factoring out a 
sinusoidal component at the average frequency.

Multiplication of sinusoidal functions can not be 
done by multiplying phasors since 

Re [x] Re [y] != Re [xy]

17
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Phasor Example

For electric field amplitudes described by 

and

Use the phasor representation to find a 
representation of E1+E2 as a slow modulation of a 
field at the average frequency ω=(ω1+ω2)/2

E1 = E10 cos (ω1t)

E2 = E20 cos (ω2t)

_

18
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Phasor Example

19∆E ≡ E10 − E20

Eavg ≡
E10 + E20

2
ω̄ ≡ ω1 + ω2

2
∆ω ≡ ω1 − ω2

α ≡ arctan
[

∆E

2Eavg
tan

(
∆ωt

2

)]

E1 + E2 = E10e
iω1t + E20e

iω2t

=
(

Eavg +
∆E

2

)
eiω1t +

(
Eavg −

∆E

2

)
eiω2t

=
(

Eavg +
∆E

2

)
ei(ω̄+∆ω

2 )t +
(

Eavg −
∆E

2

)
ei(ω̄−∆ω

2 )t

=
[
2Eavg cos

(
∆ωt

2

)
+ i∆E sin

(
∆ωt

2

)]
eiω̄t

=
[
4E2

avg cos2
(

∆ωt

2

)
+ (∆E)2 sin2

(
∆ωt

2

)] 1
2

eiω̄t+iα

-4.8 -4 -3.2 -2.4 -1.6 -0.8 0 0.8 1.6 2.4 3.2 4 4.8

-5

-2.5

2.5

5

Example
 E=cos(2πt)+3cos(2.5πt)
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Time Averages

Optical fields vary too fast to be directly 
detected, instead it is the irradiance averaged 
over many cycles that is detected as light. 

〈a(t)b(t)〉 =
1
T

∫ T

0
A cos(ωt + α)B cos(ωt + β)dt

〈a(t)b(t)〉 =
1
2
Re

[
ÃB̃∗

]

In terms of the phasor amplitudes this is

20
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Poynting Vector Example

For electric and magnetic fields given by

where

is the impedance of free space, what is the 
irradiance of the wave?  How much power is 
measured by a detector of area A?

E = E0e
iωt+φ

H =
E0

Z0
eiωt+φ

Z0 = η0 ≡
√

µ0

ε0
≈ 377Ω

21
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Poynting Vector Example

For electric and magnetic fields given by

where

is the impedance of free space, what is the 
irradiance of the wave?

E = E0e
iωt+φ

H =
E0

η0
eiωt+φ

η0 ≡
√

µ0

ε0
≈ 377Ω

22

This is analogous to Pavg=V2/2R for AC circuits
Pavg = !Savg · !A ≤ A

E2
0

2η0

Savg =
〈

!E × !H
〉

=
1
2
Re

[
ẼH̃∗

]
=

1
2
Re

[
E0e

iφ E0

η0
e−iφ

]
=

E2
0

2η0
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Wave Equation in Isotropic Materials

Starting with Faraday’s law

take the curl of both sides

use vector calculus relationship to get

Use Ampere’s law (in free space where J=0)
and Gauss’ law (in free space where ρ=0)
in an isotropic medium

23

!∇ · !D = 0



Ch 1, 

Wave Equation in Crystals

In an anisotropic medium

does not simplify as much since 
! ! ! ! ! ! ! ! does not imply
but rather

where ∇ε≠0.  In this case it is usually easiest to write the 
wave equation as

or
24

!∇ · !D = 0

!∇ · !D = !∇ · ε !E = ε!∇ · !E + !E ·∇ε

!∇× !∇× !E + µε
∂2 !E

∂t2
= 0

!k × !k × Ẽ + µεω2Ẽ = 0

k̂Ê
^ ^kxE ^ ^ ^kxkxE

k̂^   ^D=εE
^ ^kxE ^ ^ ^kxkxE

Ê
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Consider solutions for E such that ∇2E and δ2E/dt2 

are both proportional to E - allowing the two sides 
to differ only by a constant term.  

is one such solution in spherical coordinates.  Using 
the relationship for the Laplacian of a spherically 
symmetric function:

Show that   !! ! given above is a solution to the 
wave equation

Spherical Solutions to the Wave Equation

26
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Recall the meaning of k and ω (k=2π/λ, ω=2π/T) we 
can express this as

Since λ is the distance travelled by the wave in one 
cycle, and T is the time to travel one cycle, λ/T is the 
velocity of the wave, which can be determined from 
electrostatics and magnetostatics!

Solutions to the Wave Equation

27
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From our solution in free space 

and Gauss’ law in free space (ρ=0)

We find that since!! ! ! only has a spatial dependance on 
r its divergence, given by

must be

implying !! ! ! ! ! ! meaning this must be a transverse 
wave (and isn’t a solution in anisotropic media)

Solutions to the Wave Equation

28
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Speed of Light

In free-space where ε=ε0 and μ=μ0 the speed of 
light is defined to be c≡299792458 m/s.  In this sense 

any measurement of the speed of light in a vacuum is 
really a measurement of the length of a meter (the unit of 
time is also a defined quantity)

In material where ε=κε0 and μ=μrμ0 the speed of light 
is v=c/(κμr)1/2.  We let n≡(κμr)1/2 and call n the 

index of refraction for a material.

What is the physical interpretation of n?  

If it is complex, what do the real and imaginary 
parts represent? 28
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Index of Refraction

From our expression for the velocity of the wave 
v=c/(κμr)1/2 we can substitute n=(κμr)1/2 to get v=c/n

Thus n represents how much slower light travels in 
a material compared to free space.

Given the relation c=nv=ω/k.  If a wave travels 
from free space into a material causing it to slow 
down, does ω change, or does k change (or both)?

29
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Consider a wave in free space entering a material.  
Doe the wavelength change, does the frequency 
change or both?

Index of Refraction

30

The frequency cannot change (or else the boundary 
would be discontinuous) so the wavelength (and 
hence k) must change so that λ=λ0/n and k=nk0
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Index of Refraction

Going back to the solution to the wave equation, we 
can express it explicitly for propagation in a 
material with index of refraction n

If n is complex such that n=n’+i n”

we have

and we see n” is related to the absorption 
coefficient α used in Beer’s law: 
by α=2n”k0.

31
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Phase Velocity

For a sinusoidal wave, or a waveform comprised of 
many sinusoidal components that all propagate at 
the same velocity, the waveform will move at the 
phase velocity of the sinusoidal components

We’ve seen already that the phase velocity is 

vp=ω/k

What happens if the different components of the 
wave have different phase velocities (i.e. because 
of dispersion)?

32



Ch 1, 

Phase and Group Velocity

33

No dispersion (vp=vg)

Dispersion (vp≠vg)

E1

E2

E1+E2

E1

E2

E1+E2
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Group Velocity

When the various frequency components of a 
waveform have different phase velocities, the 
phase velocity of the waveform is an average of 
these velocities (the phase velocity of the 
carrier wave), but the waveform itself moves at 
a different speed than the underlying carrier 
wave called the group velocity.

34
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Group vs Phase velocity

An analogy that may be useful for understanding 
the difference comes from velodrome cycling:

35

Riders race as a team 
and take turns as 
leader with the old 
leader peeling away 
and going to the back 
of the pack

As riders make their way from the rear of the 
pack to the front they are moving faster than the 
group that they are in
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Group Velocity

The phase velocity of a wave is          

and comes from the change in the position of the 
wavefronts as a function of time

The waveform moves at a rate that depends on the 
relative position of the component wavefronts as a 
function of time.  This is the group velocity and is

which can be found if you have
! ! ! ! ! ! ! ! ! giving

36

v =
ω

k

vg =
dω

dk

ω = vk =
c

n(k)
k vg = v

(
1− k

n

dn

dk

)
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Slow Light

How slow can light be made to go?

In a Bose-Einstein Condensate light tuned to the 
atomic resonance tremendous dispersion and has 
been slowed to a speed of…

37

See Hau, et al. “Light speed reduction to 17 
metres per second in an ultracold atomic 
gas”, Nature 397, 594 - 598 (18 February 

1999)

!(")

n(")

normal dispersionnormal dispersionnormal dispersion

normal dispersion

anomalous dispersion
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Example

Given the dispersion equation

where fj is the fraction of electrons that have a 
resonant frequency of ω0j, find the phase 
velocity and group velocity of high frequency 
electromagnetic waves (ω>>ωoj)

38

n2(ω) = 1 +
Ne2

ε0me

∑

j

(
fj

ω2
0j − ω2

)



Ch 1, 

Example

The phase velocity is v=c/n so

39

n2(ω) = 1 +
Ne2

ε0me

∑

j

(
fj

ω2
0j − ω2

)

The group velocity can be found from

vg =
dω

dk

v =
c√

1 + Ne2

ε0me

∑
j

(
fj

ω2
0j−ω2

) ≈ c

(
1 +

Ne2

2ε0meω2

)
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Example

40

n2(ω) = 1 +
Ne2

ε0me

∑

j

(
fj

ω2
0j − ω2

)

vg =
dω

dk

∑

j

fj = 1using! ! ! ! ! ! and k =
nω

c

k =
nω

c
≈ ω

c

(
1− Ne2

2ε0meω2

)

dk

dω
=

1
c

d(nω)
dω

≈
(

1
c

+
Ne2

2ε0meω2

)

vg =
dω

dk
=

c

1 + Ne2/2meε0ω2
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Warning

For the analysis so far we have treated μ and ε 
as being scalars meaning the waves are 
propagating through isotropic materials. 

What changes if the materials are not isotropic?

41
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