9: Inference about a Proportion

Binary response

The past series of chapters have focused on quantitative outcomes. This chapter addresses categorical outcomes with two possible values (“binary variables”). For example, classifying someone as a smoker or non-smokers is a binary variable.

Whereas quantitative variable were summarized with sums and averages, categorical variables are summarized with counts and proportions.

The symbol \(\hat{p} \) (“p-hat”) is used to represent the sample proportion:

\[
\hat{p} = \frac{\text{number of successes in the sample}}{n}
\]

Illustrative example: Smoking survey. We select a SRS of 57 individuals. The sample has 17 smokers. Therefore, the sample proportion is \(\hat{p} = 17 / 57 = 0.298 \), or 29.8%. The goal of this chapter is to use this information to infer the proportion of people in the population who smoke.

Notes:

1. Proportions are a type of average in which “successes” are given a value of 1 and “failures” are given a value 0. For example, if we have 10 observations as follows \{0, 0, 0, 1, 0, 0, 0, 1, 0\}, \(n = 10 \), \(\sum x_i = 2 \), and sample mean \(\bar{x} = \frac{2}{10} = \hat{p} \).

 Principles applied in using \(\bar{x} \) to infer population mean \(\mu \) transfer to using sample proportion \(\hat{p} \) in inferring population proportion \(p \).

2. Sample proportions are used to estimate population prevalences and incidences. Prevalence \(\equiv \) the proportion in a cross-sectional sample and cumulative incidence (“risk”) \(\equiv \) the proportion of susceptible in a cohort who develop a condition over a fixed period of time.
Inferring population proportion p (Normal approximation)

Let p represent the proportion in the population. Sample proportion \hat{p} is an unbiased estimator of parameter p. Keep in mind that sample proportion \hat{p} in any given sample will not be an exact replica of population proportion p; some of the \hat{p} s will be less than p, and some will be more. That is the nature of sampling. Over the long run, with repeated independent samples, \hat{p} is an unbiased estimator of p.

Inferences about parameter p rest on binomial distributions (Chapter 4). Binomial probabilities can be tedious to calculates so, when n is large, a Normal approximation to the binomial is used. The Normal approximation to the binomial says that the number of successes in a sample will have a Normal distribution with $\mu = np$ with standard deviation $\sigma = \sqrt{npq}$ where $q = 1 - p$. Equivalent, when n is large, the sample proportion \hat{p} will vary according to a Normal distribution with expected value p and standard error

$SE_{\hat{p}} = \sqrt{\frac{pq}{n}}$.

Here is the binomial sampling model of the number of successes for a binomial random variable X with $n = 57$ and $p = 0.25$:

This distribution is nearly Normal. The random number of success $X \sim N(14.25, 3.27)$. It in addition, the sampling distribution of the proportion $\hat{p} \sim N(0.25, 0.0574)$. This is pretty advances stuff, but for now please note these Normal approximation hold when $npq \geq 5$ (so-called npq rule). For the model above, $n = 57$ and $p = .25$, so $npq = (57)(0.25)(1-0.25) = 10.6875$. Since this exceeds 5, we can predict that the Normal approximation to the binomial can be trusted.
Confidence interval for p

A method called the “plus-four” method is used to calculate the confidence interval of p. This method is a modification of the standard Normal method, but is much more reliable, especially when n is small, providing reliable results even when n is as small as 10.

The general idea is to add two “successes” and two “failures” to the data before calculating the confidence interval. Then, the typical “estimate $\pm z \cdot$ standard error” formula is applied. Let $\tilde{x} \equiv$ the observed number of success plus two $= x + 2$, $\tilde{n} \equiv$ the sample size plus four $= n + 4$, and $\tilde{p} = \frac{\tilde{x}}{\tilde{n}}$. The $(1-\alpha)100\%$ confidence interval for p is

\[
\tilde{p} + z_{1-\alpha} \cdot se_{\tilde{p}}
\]

where $se_{\tilde{p}} = \sqrt{\frac{\tilde{p}\tilde{q}}{\tilde{n}}}$.

Use $z = 1.645$ for 90% confidence, $z = 1.96$ for 95% confidence, and $z = 2.576$ for 99% confidence.

Illustrative example: confidence interval for proportion p. In the smoking prevalence illustrative example $n = 57$ and $x = 17$. What is the 95% confidence interval for population prevalence p?

\[
\begin{align*}
\tilde{x} &= x + 2 = 17 + 2 = 19 \\
\tilde{n} &= n + 4 = 57 + 4 = 61 \\
\tilde{p} &= \frac{\tilde{x}}{\tilde{n}} = \frac{19}{61} = 0.3115 \\
\tilde{q} &= 1 - \tilde{p} = 1 - 0.3115 = 0.6885 \\
se_{\tilde{p}} &= \sqrt{\frac{(0.3115)(0.6885)}{61}} = 0.0593
\end{align*}
\]

The 95% confidence interval for p

\[
= 0.3115 \pm (1.96)(0.0593)
\]

\[
= 0.3115 \pm 0.1162
\]

\[
= 0.1953 \text{ to } 0.4277 \text{ or between } 20\% \text{ and } 43\%.
\]
Sample Size Requirements to Limit Margin of Error

In planning a study, we want to collect enough data to estimate population proportion \(p \) with adequate precision. In an earlier chapter we had determined the sample size to determine population mean \(\mu \) with margin of error \(d \). We apply a similar method in determining sample size requirements to estimate population proportion \(p \).

Let \(d \) represent the margin of error. This provides the “wiggle room” around \(\hat{p} \); it is half the confidence interval width. To achieve margin of error \(d \) use

\[
n = \frac{z_{\frac{1-\alpha}{2}}^2 \hat{p} q^*}{d^2}
\]

where \(p^* \) represent the an educated guess for the proportion and \(q^* = 1 - p^* \).

When no reasonable guess of \(p \) is available, use \(p^* = 0.50 \) to provide a “worst-case scenario” sample size (i.e., more than enough data).

Illustrative example: *Smoking survey, sample size requirements for confidence interval.* Recall the “Smoking survey” illustrative example presented earlier in the chapter. We want to re-sample the population and calculate a 95% confidence interval with greater precision. How large a sample is needed to shrink the margin of error in the “Smoking survey illustrative data” to 0.05? How large a sample is needed to shrink the margin of error to 0.03? The prior sample had \(\hat{p} = 0.30 \), so let’s use this for \(p^* \).

Solutions:

To achieve a margin of error of 0.05,

\[
 n = \frac{z_{\frac{1-0.95}{2}}^2 \hat{p} q^*}{d^2} = \frac{1.96^2 \cdot 0.30 \cdot 0.70}{0.05^2} = 322.7. \text{ Round this up to 323 to ensure adequate precision.}
\]

To achieve a margin of error of 0.03,

\[
 n = \frac{1.96^2 \cdot 0.30 \cdot 0.70}{0.03^2} = 896.4, \text{ so use 897 individuals.}
\]

The increased precision has the price of a larger sample size.
Hypothesis test (Normal approximation)

Let p_0 denote the value of population proportion p under the null hypothesis. Before beginning the test, check to see whether a Normal approximation can be used by checking whether $np_0q_0 \geq 5$, where $q_0 = 1 - p_0$. If $np_0q_0 < 5$, an “exact” binomial test is required. We do not cover the exact binomial test.

(A) **Hypotheses:** The null hypothesis is $H_0: p = p_0$, where p represents the population proportion and p_0 is its expectation under the null hypothesis. The alternative hypothesis is either $H_1: p \neq p_0$ (two-sided), $H_1: p < p_0$ (one-sided to the left), or $H_1: p > p_0$ (one-sided to the right).

(B) **Test statistic:** The test statistic is $Z_{stat} = \frac{\hat{p} - p_0}{SE_{\hat{p}}}$ where \hat{p} represents the sample proportion, p_0 = the null value, and $SE_{\hat{p}} = \sqrt{\frac{p_0q_0}{n}}$.

(C) **P-value:** The z_{stat} is converted to a P-value in the usual fashion. Small P-values provide strong evidence against H_0.

(D) **Significance statement (optional).** Reject H_0 when $P \leq \alpha$. in which case the difference is said to be significant.

Illustrative example. The prevalence of smoking in U. S. adults is approximately 25% (NCHS, 1995, Table 65). We observe 17 smokers in 57 individuals. Therefore, $\hat{p} = 29.8\%$. Does this provide significant evidence that the population from which the sample was drawn has a prevalence that exceeds the national average? Let’s do a two-sided test.

Under the null hypothesis $p_0 = 0.25$. Before conducting the test we check whether the Normal approximation to the binomial holds by calculating $np_0q_0 = (57)(.25)(1-.25) = 10.7$. We can proceed with a Normal approximation test.

(A) $H_0: p = .25$ versus $H_1: p \neq .25$.

(B) $SE_{\hat{p}} = \sqrt{\frac{(.25)(1-.25)}{57}} = .0574$ and $z_{stat} = \frac{.298-.25}{.0574} \approx 0.84$.

(C) $P = 0.4010$. This does not provide strong evidence against H_0.

(D) $P > \alpha$; H_0 is retained. The difference is not significant.