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Introduction

Error in Etiologic Research

Let us briefly reconsider, in a general way, the relative risk estimates studied previously. These statistical
estimates are used to estimate underlying relative risk parameters. (Recall that parameters represent
error-free constants that quantify the true relationship between the exposure and disease being studied.)
Unfortunately, parameters are seldom known, so we are left with imperfect estimates by which to infer
them. As a general matter of understanding, we might view each statistical estimate as the value of the
parameter plus “fudge factors” for random error and systematic error:

estimate = parameter + random error + systematic error

For example, a calculated relative risk of 3 might be an overestimate by 1 of the relative risk parameter,
with error attributed equally to random and systematic sources: 3 (estimate) = 2 (parameter) + 0.5 (random
error) + 0.5 (systematic error). Of course, the value of the parameter and its deviations-from-true are
difficult (impossible) to know factually, but we would still like to get a handle on these unknowns to better
understand the parameter being studied.

So what, then, is the nature of the random error and systematic error of which we speak? Briefly, random
error can be thought of as variability due to sampling and / or the sum total of other unobservable balanced
deviations. The key to working with random error is understanding how it balances out in the long run, and
this is dealt with using routine methods of inference, including estimation and hypothesis testing theory.

Systematic error, in contrast to random error, is less easily managed, and less easily understood. According
to one scheme, analytic systematic error (or bias, as they say), can be classified as either: (a) information
bias, (b) selection bias, or (c) confounding. 

Information bias is due to the mis-measurement or misclassification of study factors — either the
exposure, the disease, or an other relevant factor. As the old saying goes, the quality of the study is limited
by the quality of the measurements (“garbage in, garbage out”).  Briefly, information bias can be either
differential (occurring at different rates in the groups being compared) or non-differential. In general, the
later is preferred, because any resulting bias due to non-differential misclassification will bring (bias)
things toward the null. 

Selection bias occurs as a result of nonrepresentative samples, often resulting from the use of convenience
samples and other non-probability methods. The use of nonrepresentative controls in a case-control study,
for example, results in a selection bias.
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Confounding (from the Latin confundere: to mix together) is a distortion of an association between an
exposure (E) and disease (D) brought about by extraneous factors (C1, C2, etc). This problem occurs when
E is associated with C and C is an independent risk factor for D. For example, smoking (C) confounds the
relationship between alcohol consumption (E) and lung cancer (D), since alcohol and smoking are related,
and smoking (C) is an independent risk factor for lung cancer (D).

Along with confounding, we might also discuss interaction. Interaction, as distinct from confounding, is the
interdependent operation of two or more factors to produce an unanticipated effect. We should consider
statistical interaction and biological interaction separately. Statistical interaction occurs when a statistical
model does not explain the joint effect of two or more independent variables. For example, if the relative
risk for D associated with factor E1 = 2 and the relative risk associated with factor E2 = 3, we would expect
under the multiplicative model suggest by relative risk for a person who has both risk factors (E1 and E2) to
have a relative risk of 6. If the joint effects of E1 and E2 result in a RR other than 6, the multiplicative risk
model fails to predict the association, so a statistical interaction is said to exist. Thus, interaction is model
specific. 

A numerical example may serve to further illuminate. Suppose that Group 0 (the unexposed group) has an
average risk of 2 per 100, Group 1 (exposed to factor E1) has an average risk of 4 per 100, and Group 2
(exposed to factor E2) has an average risk of 6 per 100. Therefore, RR1 = 4 / 2 = 2 and RR2 = 6 / 2 = 3.
Now suppose that persons exposed to both E1 and E2 have a risk of 12 per 100, so RR1 and 2 = 12 / 2 = 6.
Then, the individual relative risk are accurate in predicting joint effects, since RR1 x RR2 = 2 x 3 = 6, and
no interaction is said to exist. Note however, that had we been working on an additive scale, using risk
difference as our measure of association, then RD1 = 3 per 100 - 2 per 100 = 1 per 100 and RD2 = 4 per
100 - 2 per 100 = 2 per 100. The predicted combined effect would be RD1 and 2 = RD1 + RD2 = 1 per 100 +
2 per 100 = 3 per 100. However, we note that RD1 and 2 = 6 per 100 - 2 per 100 = 4 per 100. Therefore, the
risk difference model (which is additive) failed to predict the joint effects of E1 and E2 and a statistical
interaction would be said to exist on this scale. This shows how the risk difference (additive) model would
show an interaction, while the same data modeled using relative risk (multiplicative risk) would show no
interaction. Scenarios in the other manner (i.e., no additive interaction, but multiplicative interaction) could
also be developed. 

In contrast to statistical interaction, biological interaction occurs when there is a difference in the biologic
effect of an exposure according to the presence or absence of another factor. Biological interaction can be
thought of as effect modification, and is an example of antagonism and synergy. An example of interaction
is seen in the case of oral contraceptive use (E), cardiovascular disease (D), and smoking (C). Because
smoking (C) amplifies thromboembolic-disease risk (D) in oral contraceptive users, interaction is said to
exist. This is why oral contraceptives carry a boxed warning advising against their use in smokers.
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Simpson's Paradox

The idea behind Simpson's paradox is relatively simple. The investigator disaggregates the data into
homogenous subgroups ("strata") to see if the association seen in the undivided, aggregate data holds true
during subsequent analysis. Not surprisingly, data can apparently show one thing when they are in
aggregate form and show something quite different when they are disaggregated. This phenomenon is
known as Simpson's Paradox.

Measures of association in the aggregate are called crude measures of association, since relationships have
yet to be separated out or otherwise adjusted. Let us precede acronyms with a "c" when referring to crude
measures of association. For example, let cRR represent the crude relative risk (i.e., the relative risk based
on an aggregate, single 2x2 table). Let us use a subscript to denote strata-specific measures of association.
For example, let RR1 represent the relative risk in stratum 1, RR2 represents the relative risk in stratum 2,
and so on. 

Numerical illustrations will serve to demonstrate Simpson's paradox. Assume data come from a cohort
study in which the exposed group shows an incidence of 200 / 1000 = 20% and the unexposed group shows
an incidence of 50 / 1000 = 5%. The crude (unstratified) relative risk is therefore 20% / 5% = 4.0.
However, crude relative risk may hide different patterns of risk once disaggregated. We will present three
possible disaggregation scenarious consistent with this aggregate data. 

Scenario A (below) shows a situation in which neither confounding nor interaction are present. Notice that
the strata-specific relative risks and crude results equal 4 (RR1 = RR2 = cRR = 4.0). The need for
stratification is therefore superfluous.

Stratum 1 (C+) Stratum 2 (C-) Pooled

D+ D- D+ D- D+ D-

E+ 160 240 400 E+ 40 560 600 E+ 200 800 1000

E- 40 360 400 E- 10 590 600 E- 50 950 1000

RR1 = (160 / 400) / (40 / 400) = 4.0 RR2 = (40 / 600) / (10 / 600) = 4.0 cRR = (200 / 1000) / (50 / 1000) = 4.0

Scenario B shows a situation where the same crude data disaggregates to reveal strata-specific relative
risks of 1.0. This suggests that the crude relative risk was confounded. Nevertheless, a single relative risk
summarizes the relationship between the exposure and disease: in this case it would be safe to say RR = 1.

Stratum 1 (C+) Stratum 2 (C-) Pooled

D+ D- D+ D- D+ D-

E+ 194 606 800 E+ 6 194 200 E+ 200 800 1000

E- 24 76 100 E- 26 874 900 E- 50 950 1000

RR1 = (194/800) / (24/100) = 1.0 RR2 = (6 / 200) / (26 / 900) = 1.0 cRR = (200/1000) / (50 / 1000) = 4.0
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Now consider Scenario C. Notice that RR1 = 1.0 and RR2 = 23.5. Since the nature of the association
depends on the influence of extraneous factor C, an interaction between E and C can be said to exist. In
such instances, summary measures of association should be avoided in favor of the strata-specific findings. 

Stratum 1 (C+) Stratum 2 (C-) Pooled

D+ D- D+ D- D+ D-

E+ 12 188 200 E+ 188 612 800 E+ 200 800 1000

E- 48 752 800 E- 2 198 200 E- 50 950 1000

RR1 = (12 / 200) / (48/800) = 1.0 RR2 = (188/800) / (2/ 200) = 23.5 cRR = (200/1000) / (50 / 1000) = 4.0

Data in these scenarios illustrate how stratification might reveal otherwise hidden confounding and
interaction. In fact, when we look at it this way, Simpson’s paradox is not really a paradox at all, but is the
logical consequence of failing to recognize the effects of an extraneous factor (Rothman, 1975) .



Page 5 of C:\DATA\StatPrimer\stratified.wpd 12/21/00

Illustrative Example (SEXBIAS)

To illustrate some of the concepts in this chapter, let us consider a data set collected as part of a University
of California at Berkeley study to assess whether men were being given preferential treatment over women
in admission to graduate programs (Bickel & O'Connell, 1975, Freedman et al., 1991, pp. 16 - 19).
Assuming that the men and women who applied for admission to the graduate programs were equally
well-qualified, one would expect equal acceptance rates by gender. However, it initially appeared as if men
were being admitted in greater proportions than women. The experience of applicants to the six largest
majors at the school is contained in SEXBIAS.REC. These data contains 4526 records with the following
variables:

Variable Description

SEX 1 = Male 2 = Female (The “exposure”)

ACCEPT Accepted into the major: +/- (The outcome)

MAJOR Department A, B, C, D, E, or F 
(UC Berkeley policy does not allow majors to be identified by name)

Crude (2x2) analysis shows the following (annotated) results:

                 ACCEPT 
SEX             +      -   | Total 
-----------+---------------+------ 
         1 |   1198   1493 |  2691    Acceptance rate, men = 1198 /2691 = 0.445 
         2 |    557   1278 |  1835    Acceptance rate, women = 557 / 1835 = 0.304 
-----------+---------------+------    RR = 0.445 / 0.304 = 1.46 
     Total |   1755   2771 |  4526    p < 0.00001 

 
Therefore, on crude analysis, men appear to have a higher acceptance rate than women -- presumptive
evidence of preferential treatment. However, we want to determine whether the more favorable acceptance
rate may be due to factors other than gender. For example, what if men had applied to majors with more
favorable acceptance rates. Then the MAJOR would confound the relationship between SEX and ACCEPT.
To investigate this possibility, we could stratify the data by MAJOR, allowing us to look for evidence of
interaction and confounding directly. 

EpiInfo command: TABLES <EXPOSURE> <OUTCOME> STRATAVAR= <CONFOUNDER>. For the
illustrative example, the command TABLES SEX ACCEPT STRATAVAR= MAJOR is used to 
produce separate tables for each of the 6 majors. Annotated results follow:
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                 MAJOR =A 
                  ACCEPT 
SEX        |     +     - | Total 
------------------------------ 
         1 |   512   313 |   825     Acceptance rate, men = 512 / 825 = .621 
         2 |    89    19 |   108     Acceptance rate, women = 89 / 108 = .824 
-----------+-------------+------     RR = .621 / .824 = 0.75 
     Total |   601   332 |   933     p = .000033 

               MAJOR =B 
                 ACCEPT 
SEX        |     +     - | Total 
-----------+-------------+------ 
         1 |   353   207 |   560     Acceptance rate, men = 353 / 560 = .630 
         2 |    17     8 |    25     Acceptance rate, women =  17 /  25 = .680 
-----------+-------------+------     RR = .630 / .680 = 0.93 
     Total |   370   215 |   585     p = .61 

               MAJOR =C 
                  ACCEPT 
SEX        |     +     - | Total 
-----------+-------------+------ 
         1 |   120   205 |   325     Acceptance rate, men = 120 / 325 = .369 
         2 |   202   391 |   593     Acceptance rate, women = 202 / 593 = .341 
-----------+-------------+------     RR = .369 / .341 = 1.08 
     Total |   322   596 |   918     p = .39 

              MAJOR =D 
                  ACCEPT 
SEX        |     +     - | Total 
-----------+-------------+------ 
         1 |   138   279 |   417     Acceptance rate, men = 138 / 417 = .331 
         2 |   131   244 |   375     Acceptance rate, women = 131 / 375 = .349 
-----------+-------------+------     RR = .331 / .349 = 0.95 
     Total |   269   523 |   792     p = .59 

                MAJOR =E 
SEX        |     +     - | Total 
-----------+-------------+------ 
         1 |    53   138 |   191     Acceptance rate, men = 53 / 191 = .277 
         2 |    94   299 |   393     Acceptance rate, women = 94 / 393 = .239 
-----------+-------------+------     RR = .277 / .239 = 1.16 
     Total |   147   437 |   584     p = .32 

                MAJOR =F 
SEX        |     +     - | Total 
-------------------------------- 
         1 |    22   351 |   373     Acceptance rate, men = 22 / 373 = .059 
         2 |    24   317 |   341     Acceptance rate, women = 24 / 341 = .070 
-----------+-------------+------     RR = .059 / .070 = 0.84 
     Total |    46   668 |   714     p = .54 

 
Therefore, only Major A demonstrates a significant difference in acceptance rates (in favor of women).
Notice that the initial 2x2 (crude) analysis hid this pattern (Simpson's Paradox). It is now evident that
MAJOR confounds the relationship between SEX and ACCEPT and interaction between SEX and MAJOR
exists.
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Mantel-Haenszel Methods

In the SEXBIAS.REC illustrative example we probably do not want to report one measures of association,
since this would hide the association that was evident within Major A. However, in situations where
confounding is present but interaction is absent, we usually want to report a single measure of association
while controlling for confounding. There are several methods to perform this type of adjustment, one of
which is the Mantel-Haenszel method (1959). 

Let us use subscripts to denote each strata-specific table. The following standard table setup and notation is
adopted:
 

Disease+ Disease-

Exposure + ai bi n1i

Exposure - ci di n0i

m1i m0i ni

for strata i: 1 to s. 

The formula for Mantel-Haenszel adjusted relative risk is:
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This provides a weighted average of the stratum-specific relative risks (without logarithmic transformation)
with weights equal to cin1i/ni and is a good approximation to the maximum likelihood estimate. 

Recall, that in the illustration of Simpson’s Paradox, we start with the following 2x2 table:

Pooled

D+ D-

E+ 200 800 1000

E- 50 950 1000

250 1750 2000

Therefore, the crude RR estimate = (200 / 1000) / (50 / 1000) = 4.0. However, upon stratification under
illustrative scenario B, we find: 
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Stratum 1 (C+) Stratum 2 (C-)

D+ D- D+ D-

E+ 194 606 800 E+ 6 194 200

E- 24 76 100 E- 26 874 900

218 682 900 32 1068 1100

RR1 = (194 / 800)/(24 / 100) = 1.0 RR2 = (6 / 200) / (26 / 900) = 1.0

Therefore, the crude relative risk appears to be an artifact of confounding, and some sort of adjustment
seems necessary. This adjustment is provided by the Mantel-Haenszel estimate which pools the strata-

specific estimates to come up with = 1.0. 
$
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Mantel-Haenszel statistics are automatically computed when stratified tables are requested and printed
toward the bottom of the output (“Summary Information” Section). 

A short-cut sometime used to assess for potential confounding is to compare the crude RR to the adjusted
RR, with confounding confirmed when the crude RR and adjusted RR estimates differ. Note that there is no
statistical test for confounding, since confounding is a form of systematic error, not random error.
Therefore, the degree to which confounding is present must remain a matter of judgment.

Confidence interval for the Mantel-Haenszel RR estimate are based on the standard error:
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A 95% confidence interval for RRMH is given by:
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And a test of significance can be performed with the Mantel-Haenszel chi-square statistic, which is:
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This chi-square statistic has 1 degree of freedom. 



Page 9 of C:\DATA\StatPrimer\stratified.wpd 12/21/00

Overall Strategy

Although the detection and control of confounding is crucially important in etiologic research, there exists
no single way for dealing with these issues.Nevertheless, several important principal exist.

First, potential confounders must be identified before data are collected, so that these variables can be
evaluated during analysis. An essential analytic task in making decisions is to understand how things work.
and an understanding of the system being investigated. Such understandings must necessarily come from
previous research, clinical insight, and understanding of the disease process itself.

Second, adjustments for confounding are contraindicated when interaction is present, as such adjustments
will obscure the interaction. Interactions is usually addressed by reporting data by subgroups. 

Third, since confounding is a systematic (not random) error, hypothesis testing cannot be used to detect it.
Determination of the presence of confounding demands an understanding how things work (mechanisms,
trade-offs, processes and dynamics, cause and effect). It is a judgement based science.

And a few additional points:

a. One should attempt to understand the complex inter-relationships among all the determinants of the
disease being studied. This may require close collaboration among subject-matter specialist.

b. Study designs and measurements that maximize the validity of the study are essential; are first and
foremost.

c. After data are collected, entered and cleaned, the analyst should start with simple comparisons of
means and proportions. An understanding of the relationships among the multiple factors will
heighten the awareness and potential for confounding.

d. Stratified analyses are a fundamental element of most causal thinking. Eplorations for interaction
are among the first applied. When interaction is confirmed, strata-specific estimates are reported.

e. Confounding is considered by controlling for extraneous factors and determining the “effect” of
such controls.

f. In the absence of interaction and confounding, crude (unadjusted) estimates of association may be
reported. 

g. The best estimate of association is both valid and precise. If interaction is present, strata-specific
measures of association are reported. If interaction is absent but confounding is present, summary
(adjusted) measures of association are reported. If neither interaction nor confounding are present,
crude (unadjusted) measures of association are reported. In general, the most parsimoniously
unconfounded presentation of the data is preferred. If the association between the exposure and
disease is not found by scrutinizing the data in the 2-by-2 table, it's hard to support. Simple is
better. 
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Study Questions
1. Define confounding.

ANS: Confounding is a distortion of an association between an exposure and disease brought about
by extraneous factors.

2. Define interaction.

ANS: Interaction is the interdependent operation of two or more factors to produce an unanticipated
effect.

3. What preconditions are necessary for confounding?

ANS: The preconditions for confounding are: (a) E and C must be associated, and (b) D and C must
be associated.

4. How does one check for interaction when using stratified tables to measure the association between an
exposure and disease?

ANS: One approach is to check for interaction by stratifying the data on the potentially interactive
factor. Strata-specific measures of association (i.e., strata-specific risk ratios or odds ratios) are then
compared. Significant differences in strata-specific measures of association imply that interaction is
present. A chi-square test for interaction may be used to help confirm this presence.

5. How does one check for confounding?

ANS: One checks for confounding only after interaction has been ruled out. Confounding can be
assessed in several different ways. The most direct way is to carry through an adjustment technique
(e.g., by calculating the Mantel-Haenszel summary measure of effect) and compare this adjusted
estimate to the crude results (e.g., unadjusted measure of effect produced by simple 2-by-2 table
analysis). If these estimates are similar, confounding is probably absent. If, on the other hand, these
estimates differ, confounding is present. Note that there is no formal hypothesis test upon which to
base the presence of confounding. The decision as to the presence of confounding is based upon
whether or not the adjustment changes one's interpretation of the data.
 

6. How does one report results when interaction is present?

ANS: When interaction is present, report separate results for strata defined by the presence and
absence of the effect modifier.
 

7. How does one report results when confounding is present?

ANS: When confounding is present, report adjusted RRs (cohort studies) and adjusted ORs
(case-control studies).

8. How does one report results when neither interaction nor confounding are present?

ANS: Report crude (2-by-2 table) results.
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9. Why do we report strata-specific measures of association when interaction is present?

ANS: Because there is no overall measure of association (associations vary from subgroup to
subgroup).

10. Why do we report adjusted measures of association when confounding is present?

ANS: Because the crude measure of association is biased ("confounded"). 

11. Why do we report only crude estimates when neither interaction nor confounding are present?

ANS: Because this provides the most precise, ubiased measure of association.

12. What is the purpose of the Mantel-Haenszel procedure?

ANS: The Mantel-Haenszel procedure provides a summary measure of association by adjusting for
confounders when interaction is absent. 
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Exercises

(1) GENERIC?: This exercise illustrates Simpson's Paradox and provides practice for detecting and
controlling for confounding. Three data sets are presented (GENERIC1, GENERIC2, GENERIC3),
each containing the variables E (exposure), D (disease), and C (potential confounder). For each data
set, calculate the crude relative risk associated with E. Then, stratify the data by C and explore for
patterns of interaction and confounding. Clearly state and justify your conclusions. If you conclude that
interaction is present, stop there and report strata-specific relative risks. If you conclude that
confounding is present without interaction, report the Mantel-Heanszel adjusted relative risk. If you
judge that interaction and confounding are absent, report the crude relative risk. Include 95%
confidence intervals and test of significance with each final relative risk estimate, and interpret each
data set in its entirety.

(2) BI-HELM1: This data set contains information on bicycle helmet use in two northern California
counties (Santa Clara County and Contra Costa County). Variable definitions are in the DD file in the
archive. Review the DD file and then determine helmet use rates by county ( ). Do these rate$ , $p p1 2

differ significantly? Then stratify the data by the MATCHVAR (a variable matches on socioeconomic
status) and report strata-specific helmet use rates by filling in the table below. Comment on these
finding. Is there evidence of confounding and / or interaction?

Pair #: SC School / CC
School

Helmet Use Rate, 
Santa Clara 

Helmet Use Rate,
Contra Costa 

p value for within stratum
test, Yate’s corrected (H0: p1i

= p2i)

3: Miner / Fair Oaks

4: Sedgewick /  Strandwood

5: Sakamoto / Walnut Acres

6: Toyon / Disco Bay

7: Lietz / Belshaw
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