Lab: Practice Exercises in Preparation for Exam 2

9.20 Lab reagent, hypothesis test. Let μ represent the solution's true concentration. n = 6, σ assumed to be 0.2. We calculate $\overline{x} = 4.9883$.

- H_0 : $\mu = 5$ vs. H_a : $\mu \neq 5$
- $z_{\text{stat}} = \frac{4.9883 5}{0.2/\sqrt{6}} = -0.14.$
- One-sided *P*-value = Pr(Z < -0.14) = .4443. Two-sided *P*-value = $2 \times .4443 = .8886$.
- The evidence against the null hypothesis is weak; the average concentration is not significantly different from 5.

10.17 Lab reagent, 90% CI for true concentration. $\bar{x} = 4.9883$; n = 6, and σ is assumed

to be 0.2. For 90% confidence, use
$$z_{1-.05/2} = z_{.95} = 1.645$$
. $SE_{\bar{x}} = \frac{0.2}{\sqrt{6}} = 0.08165$

90% CI for $\mu = 4.9883 \pm (1.645)(0.08165) = 4.9883 \pm 0.1343 = (4.854 \text{ to } 5.123)$. The true average is likely to be in this range, with 95% confidence.

9.21 Lab reagent, power.

$$1 - \beta = \Phi\left(-z_{1-\frac{\alpha}{2}} + \frac{|\mu_0 - \mu_a|\sqrt{n}}{\sigma}\right) = \Phi\left(-1.96 + \frac{|5 - 4.75|\sqrt{6}}{0.2}\right) = \Phi(1.10) = 0.8643$$

11.30 Therapeutic Touch, n = 28.

(a) This stemplot shows no clear departures from Normality

```
0*|1
t|233333333
f|444445555555
s|66777
.|8
×1
```

(b) *t* procedures can be used because there are no clear departures from Normality and the sample is moderate in size.

(c) For 95% confidence,
$$\alpha = .05$$
 and $t_{28-1,1-.05/2} = t_{27,.975} = 2.052$. $SE_{\overline{x}} = \frac{1.663}{\sqrt{28}} = 0.3143$. The 95%

CI for $\mu = 4.393 \pm (2.052)(0.3143) = 4.393 \pm 0.6449 = 3.75$ to 5.04. Since "5" is included as a possible value for μ in this 95% confidence interval, data are consistent with "5 out of 10" random guessing.

12.23 Linoleic acid and HDL cholesterol.

- (a) Group 1 clearly has higher values on average.
- (b) Hypothesis test
 - H_0 : $\mu_1 \mu_2 = 0$ vs. H_a : $\mu_1 \mu_2 \neq 0$

•
$$t_{stat} = \frac{6.192 - 5.414}{0.2702} = 2.87$$
 with $df_{conserv} = n_2 - 1 = 7 - 1 = 6$

• One-sided P-value from Table C is bracketed by .025 and .01. Thus, the two-sided P is between .05 and .02, constituting good evidence against H_0 ("significant difference").