6:Introduction to Hypothesis

The general idea of statistical inference is to use sample data to draw conclusions about the entire population.

Recall: Two Types of Inference

p. 5.1

PEstimation (prior chapter)

► Confidence intervals to *estimate* population parameters

P Hypothesis testing (this chapter)

► Test statistics to *judge* claim about population

The General Idea

p. 6.1

PResearch question → hypothesis ("claim") → collect data → test claim

PTwo Philosophies of Statistical Testing

- ► Evidence-weighing ("significance testing")
- ► Decision-making ("fixed-level testing")

PThis chapter focuses on decision-making approach

► Future chapters move toward evidence-weighing

Procedure Decision-Making

p. 6.1 - 6.2

(A) Convert research question to statistical hypotheses

Null (H_0) : no difference in *populations* Alternative (H_1) : difference in *populations* Assume H_0 is true until proved otherwise

- (B) Seterror threshold
- (C) Calculate test statistic

(D)

Convert test statistic to probability Reject or retain H_0

Potential Consequences of Decision

p. 6.3

 $\underline{\text{Decision}} \qquad \underline{H_0 \text{ true}} \qquad \underline{H_0 \text{ false}}$

Retain H_0 OK retention Type II error Reject H_0 Type I error OK rejection

P Errors

- ► Type I error = false rejection of H_0
- ► Type II error = false retention of H_0

P Error probabilities

- $\triangleright \alpha \equiv \text{Probability}(\text{Type I error})$
- ► β = Probability(Type II error)

P Anti-error probabilities

- ► $1-\alpha \equiv$ "confidence"
- ► $1-\beta \equiv$ "power"

Z test, One-Sided Alternative

p. 6.4

$P\sigma$ must be known to use z test

► Otherwise, use t test

P Tests can be one-sided or two-sided

- ► We start with one-sided tests
- ► Which are simplier
- ▶ But . . .
- ► are less common in practice

One-Sample,

Z Test

p. 6.4

(A)

- ► H_0 : $\mu = \mu_0$, where μ_0 represents parameter if H_0 true ("null value")
- ► Alternative either H_1 : $\mu < \mu_0$ (looking for values to the left of μ_0) H_1 : $\mu > \mu_0$ (looking for values to the right of μ_0)
- (B) Set α (Commonly .10, .05, .01)
- α set by researcher (not data)
- (C) Test statistic
- (D) Conclusion: p value and decision

Illustrative Example (IQ Scores)

p. 6.6

- PWelscherIQscores are normally distributed with $\mu = 100$ and $\sigma = 15$
- PDochildren from a particular school (population) have *higher* than average IQ scores?

PSample:

- n = 9
- ► sample mean = 112.8
- ► SEM = $15 / \sqrt{9} = 5$

Illustrative Example: IFF H_0 True

(p. 6.6)

If H₀ true, then

 $Q\mu = 100$

QSample means would vary from sample-to-sample

QSDM would be normal

: SDM would be normal, centered on 100 with SEM = 5

Qe.g., 97.5% of sample means will less than 110

QSeeing a value greater than 110 would occur only 2.5%

IllustrativeExample(cont.)

p. 6.6

(A)
$$H_0$$
: $\mu = 100$ vs. H_1 : $\mu > 100$

(B) Let
$$\alpha = .025$$
 (or whatever)

(C) Test statistic: Formula 6.1
$$z_{\text{stat}} = \frac{\overline{x} - m_0}{SEM}$$

where:

"xbar" \equiv sample mean $\mu_0 \equiv$ "null value" $\underline{SEM} = \sigma / \sqrt{n}$

$$z_{stat} = \frac{112.8 - 100}{5} = 2.56$$

Focus on z_{stat}

$$z_{stat} = \frac{\overline{x} - \mathbf{m}_0}{SEM}$$

PComponents of z_{stat}

- ► Numerator = observed mean expected mean
- ► Denominator = standard error of mean
- $P_{Z_{stat}}$ ="standarddeviations" above expectation if H_0 were true
- PConvertz_{stat} to "p value"

Convertingz_{stat} to Probability

p. 6.6

- # p value = probability test statistic is more extreme than observed assuming of true = area under curve beyond z_{stat}
- # Look-up probability with help of z table

Decision

p. 6.6

 $PIf p \le \alpha \rightarrow reject H_0$

 $PIf p > \alpha \rightarrow retain H_0$

PIllustratrative example (IQ scores)

- $\rightarrow \alpha = .025$ (set by researcher)
- p = .0052 (calculated from data)
- ► Since $p < \alpha \rightarrow \text{reject } H_0$
- ► :: difference is "significant"

One-sample Z test: two-sided H_1

p. 6.4

PSimilar to one-sided test but without prior specification of difference

PMorecommonthan one-sided test

PSame four steps

- A: H_0 : $\mu = \mu_0$ vs. H_1 : $\mu \neq \mu_0$
- B: Let α = something
- ► C: Test stat = Formula 6.1
- ▶ D: Two-sided p value = $2 \times$ one-sided p value

Illustrative Example (IQ scores)

p. 6.7

- ► "Do IQs *differ*" (without specifying direction)
- ► Procedure

A: H_0 : $\mu = 100$ vs. H_1 : $\mu \neq 100$

B: Let α = .025(or whatever)

C: $z_{\text{stat}} = 2.56$ (same as before)

D: Two-sided $p = 2 \times .0052 = .0104$; reject H_0 since $p < \alpha$

One sample t test

p. 6.9 - 6.10

PUse *t* tests when σ is unknown (calculates)

PTest can be one-sided or two-sided

PIllustrative example (%IDEAL)

- ► Variable = % of ideal body weight
 - e.g., value of 100 represents 100% of ideal body weight
- ► Sample: 18 diabetics
- ► Question: Is μ different than 100?

One-Samplet Test

p. 6.4

- $\vdash H_0: \mu = \mu_0$
- ► Either
 - $-H_1$: $\mu < \mu_0$ (looking for values to the left of μ_0)
 - $-H_1$: $\mu > \mu_0$ (looking for values to the right of μ_0)
 - $-\overline{H_1}$: $\mu \neq \mu_0$ (two-sided)

(B) Seta

(C) Test statistic (Formula 6.2)
$$t_{\text{stat}} = \frac{\overline{x} - \mathbf{n}_0}{sem}$$

- with df = n-1
- ► you lose 1 df b/c you have to estimate µ with xbar

(D)

Illustrative example %IDEAL (cont.)

$$PH_0$$
: $\mu = 100 \text{ vs. } H_1$: $\mu \neq 100 \text{ (two-sided)}$

PLet
$$\alpha = .05$$
 (or whatever)

PTest statistic

- ► xbar = 112.778, s = 14.242, n = 18
- \rightarrow sem = 14.242 / $\sqrt{18}$ = 3.40
- $t_{\text{stat}} = (112.778 100) / 3.40 = 3.76$
- \rightarrow df = 18-1 = 17

Convert t_{stat} to p value

PBycomputer—use SPSS or StaTable
PBy hand—use t table "wedgie technique"

- ► Put t_{stat} between two landmarks from t table
- ► Determine tail areas of landmarks
- ► p value less between these probabilities
- ► Double probability if test is two-sided

Illustrative

: One tail less than .001 and more than .0005

Double tail areas for two-sided tests

 \therefore Two tails less than .002 and more than .001 .001

Fallacies of Statistical Testing

p. 6.2

P Failure to reject H_0 = accept H_0

- ► WRONG!
- ► Failure to reject H_0 = insufficient evidence for rejection

Pp value = probability H_0 is incorrect

- ► WRONG!
- ► p value = probability of data assuming H_0 is correct

Fallacies of Statistical Testing (cont.)

p. 6.2

P Statistical significance implies importance

- ► WRONG!
- ► WRONG!
- ► WRONG!
- ► Statistical significance does not address causality or size of effect