6: Introduction to Hypothesis

The general idea of statistical inference is to use sample data to draw conclusions about the entire population.

Recall: Two Types of Inference

Estimation (prior chapter)
- Confidence intervals to estimate population parameters

Hypothesis testing (this chapter)
- Test statistics to judge claim about population
The General Idea

Research question → hypothesis ("claim") → collect data → test claim

Two Philosophies of Statistical Testing
- Evidence-weighing ("significance testing")
- Decision-making ("fixed-level testing")

This chapter focuses on decision-making approach
- Future chapters move toward evidence-weighing

Procedure
Decision-Making

(A) Convert research question to statistical hypotheses
 - Null (H_0): no difference in populations
 - Alternative (H_1): difference in populations
 - Assume H_0 is true until proved otherwise

(B) Set error threshold

(C) Calculate test statistic

(D)
 - Convert test statistic to probability
 - Reject or retain H_0
Potential Consequences of Decision

p. 6.3

<table>
<thead>
<tr>
<th>Decision</th>
<th>H_0 true</th>
<th>H_0 false</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retain H_0</td>
<td>OK retention</td>
<td>Type II error</td>
</tr>
<tr>
<td>Reject H_0</td>
<td>Type I error</td>
<td>OK rejection</td>
</tr>
</tbody>
</table>

P Errors
- Type I error = false rejection of H_0
- Type II error = false retention of H_0

P Error probabilities
- $\alpha = \text{Probability(Type I error)}$
- $\beta = \text{Probability(Type II error)}$

P Anti-error probabilities
- $1 - \alpha = \text{"confidence"}$
- $1 - \beta = \text{"power"}$

Z test, One-Sided Alternative

p. 6.4

σ must be known to use z test
- Otherwise, use t test

Tests can be one-sided or two-sided
- We start with one-sided tests
- Which are simpler
- But . . .
- are less common in practice
One-Sample, Z Test

(A) $H_0: \mu = \mu_0$, where μ_0 represents parameter if H_0 true ("null value")
- Alternative either
 - $H_1: \mu < \mu_0$ (looking for values to the left of μ_0)
 - $H_1: \mu > \mu_0$ (looking for values to the right of μ_0)

(B) Set α (Commonly .10, .05, .01)
- α set by researcher (not data)

(C) Test statistic

(D) Conclusion: p value and decision

Illustrative Example (IQ Scores)

PWelscher IQ scores are normally distributed with $\mu = 100$ and $\sigma = 15$

PDo children from a particular school (population) have higher than average IQ scores?

PSample:
- $n = 9$
- sample mean = 112.8
- SEM = $15 / \sqrt{9} = 5$
Illustrative Example: IFF H_0 True

(p. 6.6)

If H_0 true, then
Q$\mu = 100$
QSample means would vary from sample-to-sample
QSDM would be normal

\therefore SDM would be normal, centered on 100 with
SEM = 5
Qe.g., 97.5% of sample means will less than 110
QSeeing a value greater than 110 would occur only 2.5%

Illustrative Example (cont.)

p. 6.6

(A) $H_0: \mu = 100$ vs. $H_1: \mu > 100$
(B) Let $\alpha = .025$ (or whatever)
(C) Test statistic: Formula 6.1 $z_{stat} = \frac{\bar{x} - \mu_0}{SEM}$

where:
“xbar” \equiv sample mean
$\mu_0 \equiv$ "null value"
SEM = σ / \sqrt{n}

$$z_{stat} = \frac{112.8 - 100}{5} = 2.56$$
Focus on z_{stat}

$$z_{\text{stat}} = \frac{\bar{x} - \mu_0}{SEM}$$

- Components of z_{stat}
 - Numerator = observed mean − expected mean
 - Denominator = standard error of mean
- $P_{z_{\text{stat}}} =$ "standard deviations" above expectation if H_0 were true
- P-value = probability test statistic is more extreme than observed assuming μ_0 true = area under curve beyond z_{stat}
- Look-up probability with help of z table

Converting z_{stat} to Probability

p-value = probability test statistic is more extreme than observed assuming μ_0 true = area under curve beyond z_{stat}
Decision

p. 6.6

If \(p \leq \alpha \rightarrow \text{reject } H_0 \\
\text{If } p > \alpha \rightarrow \text{retain } H_0\\

Illustrative example (IQ scores)

- \(\alpha = .025 \) (set by researcher)
- \(p = .0052 \) (calculated from data)
- Since \(p < \alpha \rightarrow \text{reject } H_0 \\
- \therefore \text{ difference is “significant”}

One-sample Z test: two-sided } H_1

p. 6.4

Similar to one-sided test but without prior specification of direction of difference

More common than one-sided test

Same four steps

- A: \(H_0: \mu = \mu_0 \) vs. \(H_1: \mu \neq \mu_0 \)
- B: Let \(\alpha = \) something
- C: Test stat = Formula 6.1
- D: Two-sided \(p \) value = 2 \times one-sided \(p \) value
Illustrative Example (IQ scores)

Do IQs differ (without specifying direction)

Procedure
- **A:** $H_0: \mu = 100$ vs. $H_1: \mu \neq 100$
- **B:** Let $\alpha = .025$ (or whatever)
- **C:** $z_{stat} = 2.56$ (same as before)
- **D:** Two-sided $p = 2 \times .0052 = .0104$; reject H_0 since $p < \alpha$

```
<table>
<thead>
<tr>
<th>IQ</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td>-3</td>
</tr>
<tr>
<td>90</td>
<td>-2</td>
</tr>
<tr>
<td>95</td>
<td>-1</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>105</td>
<td>1</td>
</tr>
<tr>
<td>110</td>
<td>2</td>
</tr>
<tr>
<td>115</td>
<td>3</td>
</tr>
</tbody>
</table>
```

![Normal distribution with z-scores and critical values]

One sample t test

Use t tests when σ is unknown (calculates)

Test can be one-sided or two-sided

Illustrative example (\% IDEAL)
- Variable = % of ideal body weight
 - e.g., value of 100 represents 100% of ideal body weight
- Sample: 18 diabetics
- Question: Is μ different than 100?
One-Sample Test

(A)
- H_0: $\mu = \mu_0$
- Either
 - H_1: $\mu < \mu_0$ (looking for values to the left of μ_0)
 - H_1: $\mu > \mu_0$ (looking for values to the right of μ_0)
 - H_1: $\mu \neq \mu_0$ (two-sided)

(B) Set α

(C) Test statistic (Formula 6.2)
$$t_{stat} = \frac{\bar{x} - \mu_0}{sem}$$
- with df = $n - 1$
- you lose 1 df b/c you have to estimate μ with xbar

(D)

Illustrative example (cont.)

- H_0: $\mu = 100$ vs. H_1: $\mu \neq 100$ (two-sided)
- Let $\alpha = .05$ (or whatever)
- Test statistic
 - $\bar{x} = 112.778$, $s = 14.242$, $n = 18$
 - $sem = 14.242 / \sqrt{18} = 3.40$
 - $t_{stat} = (112.778 - 100) / 3.40 = 3.76$
 - df = $18 - 1 = 17$
Convert t_{stat} to p value

- By computer – use SPSS or StaTable
- By hand – use t table “wedgie technique”
 - Put t_{stat} between two landmarks from t table
 - Determine tail areas of landmarks
 - p value less between these probabilities
 - Double probability if test is two-sided

Illustrative

Figure on p. 6.x

$t_{\text{stat}} = 3.76$

- One tail less than .001 and more than .0005
Double tail areas for two-sided tests

\[\begin{align*}
&\begin{array}{c}
\frac{1}{2}p \\
-3.76
\end{array} \\
&\begin{array}{c}
.001 \\
3.76
\end{array}
\end{align*}\]

\[\begin{align*}
&.001 < p < .002
\end{align*}\]

\[\therefore \text{Two tails less than .002 and more than .001} \]

\[\therefore 0.001 < p < 0.002 \]

Fallacies of Statistical Testing

p. 6.2

\begin{enumerate}
\item Failure to reject \(H_0 \) = accept \(H_0 \)
 \begin{itemize}
 \item WRONG!
 \item Failure to reject \(H_0 \) = insufficient evidence for rejection
 \end{itemize}
\item \(p \) value = probability \(H_0 \) is incorrect
 \begin{itemize}
 \item WRONG!
 \item \(p \) value = probability of data assuming \(H_0 \) is correct
 \end{itemize}
\end{enumerate}
Fallacies of Statistical Testing (cont.)

p. 6.2

Statistical significance implies importance

- WRONG!
- WRONG!
- WRONG!
- Statistical significance does not address causality or size of effect