Parameters Studied in HS267

Unit	Parameter	Estimator	Derivation
Cohort Studies	RR (relative risk)	ŔR	ratio of two "rates"
Case-Control Studies	OR (odds ratio)	ÔR	ratio of two exposure odds
Inference on Variance	σ^2 (variance)	s^2	mean sum of squares
	$\sigma_{1}^{2} / \sigma_{2}^{2}$	s_{1}^{2}/s_{2}^{2}	ratio of two variances
	μ_1 - μ_2 (mean difference)	$\overline{x}_1 - \overline{x}_2$	mean difference
ANOVA	σ_{B}^{2} / σ_{W}^{2} §	$s_{\mathrm{B}}^{2}/s_{\mathrm{W}}^{2}$	ANOVA F statistic
	μ_i - μ_j	$\overline{X}_i - \overline{X}_j$	Post-hoc comparisons
Correlation	ρ (correlation coefficient)	r	Sum of cross-products
Regression	β (slope)	b	Least squares line

Additional notation:

n = group size

N = total sample size

 $\alpha = type \; I \; error \; rate$

 α_B = alpha adjusted according to Bonferroni's method

1 - β = probability of type II avoidance

p [value] = probability of current data assuming null hypothesis were true

p =population proportion (Binomial Parameter)

Graphical help:

Side-by-side boxplot - comparison of means and variances

Scatter plot - correlation and regression

[§] Used to test inequality of means in the population.