Comp Public Health Stats Midterm, F01

Instructions:

- Coverage: Study Design; Data Entry \& Validation (EpiData); Cohort Studies; Case-Control Studies.
- Please answer on the separate sheets of paper (provided).
- When you are done with Part A, turn in your answer sheet, pick up your lab notebook, and then start Part B.
- Read each question carefully.
- Time limit: 1.5 hours.

Part A (Closed Book)

1. Fill in the blank: The goal of most surveys is to draw a sample of units from a larger population, measure them, and make statements about the population from which the sample was drawn. The analysis of such survey relies on samples being a \qquad sample from the population.
2. Multiple choice (select single best response): The goal of case-control studies is to estimate the relative effect of an exposure on the risk of disease using an odds ratio.The odds ratio parameter is denoted:
(a) $\hat{R} R$
(b) $\hat{O} R$
(c) $R R$
(d) $O R$
3. Fill in the blank: Assuming the relationship between the exposure and disease is causal, a relative risk of 1.5 suggests a \qquad \% increase in the risk of disease.
4. Multiple choice: A 95\% confidence interval for an odds ratio is (0.8, 1.6). Based on this confidence interval, we can surmise that the association between the exposure and disease \qquad statistically significant at $\alpha=.05$.
(a) is
(b) is not
5. Short answer: Provide an example as to when a randomized trial would not be ethical.
6. Short answer: What is meant by "intention-to-treat analysis"?
7. Short answer: When would you avoid using a chi-square test for data in a 2 -by- 2 cross-tabulation?
8. Short answer: What is the function of an EpiData .qes file?
9. Short answer: What is the function of an EpiData .rec file?
10. Short answer: How many degrees of freedom does a chi-square test of independence have when testing data in a 2×2 table?

Part B (Procedure Notebook)

(1) In a 5 -year follow-up study, 11 of the 12350 -year-old men who have first degree relatives with hypertension develop hypertension. In contrast, 8 of the 286 comparably aged men who lack first degree relatives with hypertension go on to develop hypertension. [15 pts]

```
Fam. history+
Fam. history -
Hyperten +
11
8
```

```
Hyperten-
```

Hyperten-
112
112
278

```
    278
```

(A) Is this study experimental or observational?
(B) Briefly, explain your response to Question A.
(C) Is this study a cross-sectional study or longitudinal study?
(D) Explain your response to Question C.
(E) Calculate the risk of hypertension in each group.
(F) Conduct a null hypothesis test. Show all hypothesis testing steps. (Let $\alpha=.05$.)
(G) Summarize your analyses in a couple of sentences.
(2) A case-control study looked at risk factor E in relation to disease D. In this study, controls were matched to cases on clinic, age, sex, ethnicity, and smoking status. There were 25 pairs in which the case was exposed but not the control. There were 6 pairs in which the control was exposed but not the case. [7 pts]
(A) Calculate the odds ratio associated with the exposure.
(B) Interpret the above odds ratio.
(C) Calculate a 95% confidence interval for the odds ratio.
(D) Does the above odds ratio seek to capture the odds ratio estimate or the odds ratio parameter? Explain.

Part C (Take Home - Due next class)

Using EpiData, create a data file with the following data:

LNAME	WEIGHT	SEX	COUNTRY	EPI
SNOW	155	1	ENGLAND	1
DURKHEIM	175	1	FRANCE	1
PRESLEY	255	1	US	2

Make certain the variable names and coding schemes are exactly as they appear in the table. Also, for the variable SEX, include the labels $1=$ male, $2=$ female. For the variable EPI, include the labels $1=$ yes, $2=$ no. Then, generate a code book for the data set. Finally, export the data to an SPSS file. Save the SPSS SPSS data file. At our next class, hand in the files ex1-f01.qes, ex1-f01.rec, ex1-f01.chk, ex1f01.not (the code book), ex1-f01.sps, and ex1-f01.sav.

