Stu	ident:
	GRADING KEY
	PROCEDURE NOTEBOOK [5]
	Part A [28]
	Part B [50]
1.	Two groups a stem leaves Group 1 leaves Group 2 Group 1 Group 2
	0 1 2 0 3 0 0 0 0 0 4 0 0 0 0 0 0 0 0 5 0 0 0 (x10)
	 b Describe the shape of the Group 1 distribution: negative skew c Describe the shape of the Group 2 distribution: symmetrical, uniform. d Identify outliers, if any. Group 1 has a low outlier. e Median of Group 1 = 5 f Median of Group 2 = 4
2.	F ratio test a H_0 : sigma-squared-1 = sigma-squared-2 b Area to right of 3.99 is shaded c Landmark of 3.18 is shown d Yes, $p < .05$ e Heteroscedasticity
3.	Mean and standard deviation a mean = 100 b SS = 200 c $s = 7.0711$ d The standard deviation should be reported as either 7.07 or 7.1.

4. More monkey data

- a. ____ pooled estimate of variance = $\frac{(4)(7.071^2) + (5)(6.782^2)}{4+5} = 47.775$
 - standard error = $\sqrt{47.775(\frac{1}{5} + \frac{1}{6})}$ = 4.18
- b. The *precision* of the difference estimate
- c. H_0 : mu1 = mu2
- d. _____ $t_{\text{stat}} = -3.11$, df = 9, p = .013
- e. ____ Yes, the difference is significant.
- f. No, there is no good evidence that population variances differ
 - The sample standard deviations are similar (7.1 vs. 6.8)
 - Levene's test p = .96

5. *Bud's fascination with monkeys continues*

- a. ____ H_0 : mu1 = mu2 = mu3 [half credit for H0: mu1 = m2 = ... = mk]
- b. H_1 : at least one mu, differs
- c. $df_{B} = 2$
- d. $s_B^2 = 236.867$
- e. $df_{w} = 12$
- f. $s_w^2 = 41.500$
- g. $F_{\text{stat}} = 5.708$
- h. p = .018 (or p < .05)
- i. ____ Reject the null
- j. Significant, yes.
- k. To keep the family-wise error level at a reasonable level.
- 1. The only significant difference is between groups 1 and 2.

6. Correlation and regression

- a. ____ outlier in the upper right quadrant
 - Lack of a clear correlation. An answer of "slight positive correlation" will be accepted *if* carefully nuanced and outlier is removed
- b. ____ No, correlation is not warranted.
- c. no outliers
 - ____ linear positive correlation [1]
- d. Yes, correlation is warranted.
- e. Linearity, Independence, Normality, Equal variance
- f. Good information, Good sample, No confounding
- g. For every unit increase in X, the model predicts an increase of 5.448 in Y
- h. _____ 5.448 ± $(t_{5,.975})(1.184) = 5.448 \pm (2.57)(1.184) = 5.44 \pm 3.04$
 - =(2.40, 8.48)
- i. 95% confident parameter β . . .