HS 267D "Checklist"

The Labs encompass the complete curriculum. Use this checklist to help organize your studies.

Tutorial: measurement scales (quantitative, ordinal, and categorical); data table (variable, value, observation); SPSS basics (variable creation, data entry, basic menus); descriptive stats (stemplot; frequencies, mean, standard deviation, median, boxplot); Normal distribution; binomial distribution; confidence interval basics (z and t); hypothesis testing basics (z and t).

Lab 1: Inference about a proportion (Ch 16)

- a. Data conditions: one sample, binary response; information quality; sample quality
- b. Notation: $p \equiv$ proportion parameter; $\hat{p} =$ sample proportion
- c. CI for *p* (large sample and small sample)
- d. Hypothesis test of H_0 : p = some value (large sample and small sample)
- e. Sample size for estimating p with given margin of error

Lab 2: Comparing two proportions (Ch 17)

- a. Data conditions: two (independent) groups; binary response
- b. Notation: $RR \equiv$ relative risk parameter; $\hat{R}R \equiv$ relative risk estimator
- c. Interpretation of $\hat{R}R$
- d. CI for RR
- f. Hypothesis test of H_0 : RR = 1
- e. Systematic error (info bias, selection bias, confounding) in analytic research

Lab 3: Naturalistic and cohort samples (Ch 18)

- a. Data conditions: naturalistic sample or purposive cohorts, categorical response; no systematic error
- b. Chi-square distribution (characteristics, table, *df*, relation to *z*)
- c. Cross-tabulation (incidences/prevalences, relative risks, chi-square test of association)
- d. Fisher's test
- e. Sample size requirements

Lab 5: Stratified tables: confounding and interaction (Ch 19)

- a. Data conditions: binary explanatory variable, binary response, categorical confounders
- b. Confounding
- c. Crude (overall) vs. strata-specific results
- d. Mantel-Haenszel summary RR
- e. Test for interaction

Lab 6: Correlation and regression (Ch 14)

- a. Data conditions: quantitative explanatory variable, quantitative response variable
- b. Scatterplot
- c. Notation: $\rho \equiv$ correlation parameter; $r \equiv$ correlation estimator (strength and direction)
- d. Test of H_0 : $\rho = 0$
- e. Notation: $\beta \equiv$ slope parameter; $b \equiv$ slope estimator (effect of X on Y)
- f. CI for β
- g. Coefficient of determination r^2
- h. Dealing with nonlinear and non-normal relationships

Notions worth repeating before Final (Google Doc)

- Interpretations necessary. Integrate descriptive and inferential results.
- Inferential results (confidence intervals and *P*-values) should be cognizant of parameter being inferred. Examples of parameters:
 - population correlation coefficient (rho); estimator is r
 - slope coefficient parameter(s) (beta_i); estimator are b_i
 - binomial parameter (p); estimator is "p-hat"
 - relative risk parameter (RR); estimator is "RR-hat"
 - odds ratio parameter (OR); estimator is "OR-hat"
- Interpretation of confidence intervals
 - Intends to capture location of *parameter* (consider entire interval)
 - CI length quantifies precision (half confidence interval length = margin of error)
 - With due caution, and not over-simplifying, can be used to judge significance at various levels, e.g., a 95% CIs can be used to judge statistical significance at alpha = .05 level, a 90% CIs can be used to judge statistical significance at the alpha = .10 level, and so on.
- Interpretation of P values Quantifies evidence *against* the null hypothesis, and nothing else (therefore, you must know and be aware of H_0)
 - "Significance" language without context will surely be misinterpreted; see: Cohen,1994 (link active)
 - Not a measure of effect size
 - No sharp boundaries (surely God loves P = .05 as nearly much as P = .06)
- When using inferential methods, i.e., *P*-values and CIs, be aware of assumptions (e.g., L.I.N.E.; expected values more than 5; etc. etc.)
- Systematic errors in public health research (e.g., information bias, selection bias, confounding) more important than random errors (CIs and *P*-values do *not* address systematic error)
- Be aware of sample types
 - Single (e.g., Ch 16), independent (e.g., Ch 17), paired (e.g., §18.6), case-control (18.5)
 - Experimental vs. observational designs
 - Naturalistic vs. cohort vs. case-control observational samples
- Computer doesn't replace knowledge:
 - Know what you are looking for
 - Computer output can be misleading: <u>Illustration: SPSS output:</u> Despite what output says, these are not risk statistics (RR NOT risk) + RR statistics do not apply because this is a case-control study.
- Illustrations
 - Sample size for estimating p (exercises 16.19 and 16.20, p. 371)
 - Sample size for comparing proportions: <u>Lab 3B</u>
 - Naturalistic/cohort sample (prison.sav), SPSS output -- <u>Lab 3B</u>
 - Stratified analysis: confounding and interaction -- Lab 5
 - Labs 6: simple regression

Inferential Methods: HS 267D Computational Public Health Statistics

Categorical outcomes

Sampling technique (Chapter)	Explanatory Variable	Estimator ⇒ parameter	Confident Interval (method)	Null hypothesis (test procedure)	Additional points
Single sample	None	$\hat{p} \Rightarrow p$	CI for p	H_0 : p = some value p_0	Selection bias
(Ch 16)			(Plus-four or exact)	(z or binomial)	Info. bias
Two samples	Binary	$\hat{R}R \Rightarrow RR$	CI for RR	H_0 : $RR = 1$	Confounding
(Ch 17)		1 222 , 222	(traditional method)	(z, chi-sq, or Fisher's)	Misclassification
Naturalistic & cohort	Categorical	$\hat{p}_i \Rightarrow p_i$		H ₀ : no association	Types of samples
(Ch 18)				(chi-sq or Fisher's)	
Stratified tables –	Categorical	$\hat{R}R_{MH} \Rightarrow RR$	CI for RR	H_0 : $RR = 1$	Simpson's paradox
confounding (Ch 19)			(Mantel-Haenszel)	M-H chi-square	M-H Summary RR
Stratified tables -	Categorical	$\hat{R}R_{stratumk}$	N/A	H_0 : $RR_1 = RR_2$	Heterogeneity
interaction (Ch 19)		stratumk		Heterogeneity chi-sq	

Quantitative outcomes

Sampling technique (Chapter)	Explanatory variable	Estimator ⇒ Parameter	Confidence interval (method*)	Null hypothesis (test procedures*)	Additional points
Single sample	None	$\bar{x} \Rightarrow \mu$	CI for μ	H_0 : μ = some value μ_0	Valid sample
(§11.1 – §11.4)			<i>t</i> procedure	(t proc.)	Valid information
Paired samples	Binary	$\bar{x}_d \Rightarrow \mu_d$	CI for μ_d	H_0 : $\mu_d = 0$	Matched pairs
(§11.5)			Paired t	Paired t proc	
Two samples	Binary	$\bar{x}_1 - \bar{x}_2 \Rightarrow \mu_1 - \mu_2$	CI for μ_1 – μ_2	H_0 : $\mu_1 - \mu_2 = 0$	Independent
(Ch 12)			Unequal variance t	Unequal variance t	samples
Independent	Quantitative	$r \Rightarrow \rho$	Not covered	H_0 : $\rho = 0$	Linearity
(Ch 14)		(correlation)			Bivariate Normality
Independent	Quantitative	$b \Rightarrow \beta$	Cls for β	not covered	L.I.N.E.
(Ch 14)		(regression)			Math transforms

Turquoise shading ≡ techniques covered in tutorial.

^{*} Assumes Normality or central limit theorem (moderate to large samples). Transform or non-parametric methods with small non-symmetrical distribution.