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1 Introduction

The main goal of data visualization is to present data clearly and effectively, using plots and
charts. Data visualization means "information that has been abstracted in some schematic
form, including attributes or variables for the units of information" [1]. Effective visual-
ization helps users analyze the data and gather useful information. It makes complex data
more accessible, understandable and usable.

There are many varieties of low dimensional or high dimensional data, such as stock prices,
images, text messages, videos, audios, etc. In this project, we will discuss low dimensional
data visualization first, and explore how to extract and visualize the most important char-
acteristics from high dimensional data.

Dimension reduction is a technique to extract hidden structures from high dimensional
data. It transforms high dimensional data to meaningful lower dimensional data. Effec-
tive dimension reduction identifies the intrinsic dimension of data, captures the essential
features, removes unimportant information and noise. Ideally, dimension reduction makes
data processing, analyzing, modeling, and predicting much faster and much easier, which
not only saves huge computer memory, but also saves plenty of money and time.

Dimension reduction techniques include supervised dimension reduction, such as Linear
Discriminant Analysis(LDA), and unsupervised dimension reduction, such as Principal
Components Analysis (PCA), Multidimensional Scaling (MDS), Locally Linear Embed-
ding (LLE), Laplacian Eigenmap and ISOmap, etc.

In Section 1 of this report, we will introduce low dimensional (less than or equal to three
dimensions) data visualization briefly; in Section 2, we will discuss high dimensional data
visualization using different dimension reduction techniques, including unsupervised tech-
niques and supervised techniques, with experiment introduced to compare the effects of
each dimension reduction technique.

1.1 Related Definitions

To illustrate data set and variables more precisely, here we briefly introduce some related
definitions.

• Variable. The word “variable” means a changing quantity. In math, it could be: a
quantity that could be any of a set of values, or a symbol represents that quantity (like x or
y).

• Data. Data is a set of values of qualitative or quantitative variables. As we know, data is a
general concept which includes many varieties, such as continuous variable and categorical
variable; or text, video and audio. Data can be stored with different formats: .txt, .csv, .jpg,
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or .png, etc. They can be image, binary data, video, audio or webpage. Data also can be
treated as a set of variables, and the size of data set (number of observations, instances,
or samples) can be from 1 to mega millions. Additionally, the dimension of data can be
from 1 to tens of thousands, which makes it very difficult to figure out the most important
features.

• Data Visualization. In general, data visualization is a technique which presents data
values or related statistics information visually. Based on the complexity and diversity of
data, data visualization has many branches and rich contents. In this report we’d like to
introduce data visualization comprehensively.

• Numerical Variable. The values of numerical variable can be measured in numerical
way with or without units. It can be count, height, weight, distance, etc.

• Categorical Variable. The values of categorical variable can be divided into categories.
For example, race, zip code, nationality, species, gender are typical categorical variables.
The distance between sub-categories are not measurable, as we cannot measure the quan-
titative distance between male and female although they have much qualitative difference.
Categorical variable can be transformed into discrete numerical variable, making data ana-
lyzing more doable.

• Discrete Variable and Continuous Variable. Numerical variable includes discrete vari-
able and continuous variable. Discrete variable has a countable number of values. It is
also be named as counts. For instance, integer is discrete data. Continuous variable attains
values in an intervals.

• Low Dimension and High Dimension. At the beginning of this chapter, we define "low
dimension" as 1-dimension, 2-dimension or 3-dimension, and define "high dimension" as
"4 or more dimensions". We define 1,2,3-dimension as "low dimension" because we live
in a 3-dimensional world, hence we can analyze and visualize these data without losing
information. We just need to present and interpret information of low dimensional data,
which is drastically different from that of high dimensional data. For high dimensional
data, we have to choose the most important dimensions to present.
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2 Low dimensional Data Visualization

Low dimensional data visualization means to visualize data which has 3 or less dimensions.
In most cases, low dimensional data visualization doesn’t need complicated pre-processing
or transformations. Based on the data characteristics, low dimensional data visualization
displays the variable relationships, frequencies (distributions), or group comparisons. Here
we mainly focus on statistics methods and will discuss it by the number of data dimensions.

2.1 Data Sets

In low dimensional data visualization, if not specially mentioned, we use the Iris data set
as sample data set. Iris data set is a multivariate data set with 150 instances and 5 vari-
ables. The 5 variables are Sepal length, Sepal width, Petal length, Petal width and Species.
(Source: https://archive.ics.uci.edu/ml)

2.2 1D Data Visualization

2.2.1 Stem-and-leaf Plot

A stem-and-leaf plot is a simple and intuitive data visualization method. It shows the frequency of
values in a plain and simple way: it sets a table which split each data value into 2 parts. The first
part is the first digit or digits, representing the "stem" of this value, the second part is the last digit,
representing the "leaf" of this value. Stem-and-leaf plot is a way of showing the frequency of 1-d
numerical data. The input of the data will be rounded to the leaf unit. It provides information about
the frequency of the 2nd (last) digit: the stem with longest leaf has highest frequency. Stem-and-leaf
plot can be done easily and manually, which explains why it was widely used in last century.

• Example 1
∗ Data Set: Midterm scores of a class
(78, 62, 99, 69, 83, 85, 78, 88, 93, 97, 100, 76, 89, 85, 92, 89, 83, 79, 82)
∗ Stem and leaf plot

Figure 1: Stem-and-leaf plot shows scores between 80 and 89 have most frequency.
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• Example 2: Stem-and-leaf plot for Iris Data Set

Figure 2: Stem-and-leaf Plot of Pedal Length

Figure 2 shows stem value 1 has the longest leaf length, which means most instances have pedal
length in range [1,2), when compared to range [0,1), [2,3), [3,4) and [4,5).

2.2.2 Pie Chart

The earliest known pie chart is generally credited to William Playfair’s Statistical Breviary of 1801.
A pie chart is a circular statistical graph which is divided into slices to illustrate numerical propor-
tion. In a pie chart, the central angle and area are proportional to the quantity it represents. Pie chart
doesn’t show the distributions, trend or values of a variable. It shows the frequency proportion of
different values of a given variable, so it is not applicable to continuous data. Most often it is used
in a variable which has a few distinct values, no matter those are discrete numerical or categorical.

Pie chart is not widely used in statistics, since its main use is to present frequency proportion.
It can be easily replaced by other plotting methods such as bar chart, which can provide value and
trend information besides frequency proportion.

(a) Hand Written Pie
Chart, 1801

(b) Pie Chart of Iris Species (c) A Pie Chart Alternative of Iris
Species

Figure 3: Pie Chart Examples

Figure 3(b) shows the frequencies of categorical variable Iris Species; Figure 3(c) is an alternative
form of pie chart, and it shows the frequencies of discrete variable Iris Petal width.
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2.2.3 Histogram

A histogram is a widely used visualization method that shows the underlying frequency distribution
(shape) of a continuous variable. This allows the inspection of the data for its underlying distribu-
tion, outliers, skewness, etc. To construct a histogram, the first step is to "bin" the range of values.
That is, divide the entire range of values into a series of intervals and then count how many val-
ues fall into each interval. The bins are usually specified as consecutive and non-overlapping of a
variable. The bins must be adjacent, and are often (but are not required to be) of equal size.

(a) Histogram with Count (b) Histogram with Kernel Density Curve

Figure 4: Histograms of Iris Sepal Width

In Figure 4(b), the erected rectangle area of histogram may also be defined to be proportional to the
frequency of cases in the bin. The vertical axis is then not the frequency but frequency density. It
can give us a rough sense of the density of the underlying distribution of the data. The total area of
a histogram used for probability density is always normalized to 1.Figure 4(b) also shows when the
histogram presents the density of data, it can be thought of as a kernel density approximation, which
uses a kernel to smooth frequencies over the bins. This yields a smooth probability density curve.

2.2.4 1-way Table

The 1-way table is a tool to show the frequency of cases of a categorical variable. Figure 5 is the
1-way table of variable Species in the Iris data set.

(a) 1-way Table

Figure 5: 1-way table shows the frequency of any 1 of 3 subspecies of Iris data set is 50.
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2.2.5 1D Bar Chart

Bar chart is also called bar plot. The 1D bar chart is the basic edition of bar chart. It shows the
frequency of a categorical variable or a discrete numerical variable. It is similar to a histogram,
while the major difference between them is that bar chart shows the values or frequencies of non-
continuous data while histogram shows the frequency of continuous data. The bar chart is also
similar to the 1-way table in that it shows the frequency of a categorical or a discrete variable, while
also being visually more straightforward. The bars can be plotted vertically or horizontally. A ver-
tical bar plot is sometimes called a line graph or a stacked bar chart.

(a) 1D Bar Chart by Species (b) 1D Stacked Bar Chart (c) 1D Bar Chart by Sepal Width

Figure 6: 1D Bar Charts of the Iris Data Set

Figure 6(c) shows the bar chart of the sepal width of Iris data set. Here we treat the sepal width
as a discrete variable and divide the whole range into equal-length intervals. Some bar charts are
clustered in groups.
These bar charts can explain 2-dimensional information. We will discuss them later.

2.2.6 1D Box Plot

In descriptive statistics, a box plot is a convenient way of graphically depicting groups of numerical
data through their quantiles. Box plots may also have lines extending vertically from the boxes
(whiskers) indicating variability outside the upper and lower quantiles, hence the terms box-and-
whisker plot. Box plots are non-parametric: they display variation in samples of a statistical popu-
lation without making any assumptions of the underlying statistical distribution. The space between
the different parts of the box indicate the degree of dispersion (spread) and skewness in the data,
and show outliers. In addition to the points themselves, they allow one to visually estimate various
estimators, such as inter-quantile range and and mean. 1D box plot is the basic form of box plot.
It is composed of 1 box or 1 numerical variable. It gives us estimated sense of mean and quantiles
about this variable. Box plots are usually used to do variable comparisons and the 1D box plot is
seldom used by itself.
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Figure 7: 1D Box Plots of Iris Data Set

2.2.7 1D Normal Quantile Plot

Normal Quantile Plot is also called Quantile-Quantile plot or Q-Q plot. It is a method of observ-
ing the distribution of a 1-dimensional quantitative continuous data and is widely used in descriptive
statistics. By normal quantile plot we compare the distribution of sample data and the normal (Gaus-
sian) distribution. The normal quantile plot from data extracted from a normal distribution is like a
straight line composed of dots; the scatter plot from data which don’t follow normal distribution is
a curve composed of dots.

Normal quantile plot gives us the first instinct if sample data seems to follow a normal distribu-
tion. Quantile-quantile plot can be extended to compare sample data and other distributions.

(a) Normal Quantile Plot of the Sepal Length (b) The Sepal Length V.S. χ2distribution

Figure 8: Normal Quantile Plots of the Iris Data Set

The plot in Figure 8(a) is like a straight line, which indicates that we may reasonably assume sepal
length follows a normal distribution; the plot in Figure 8(b) is like a curve, which means sepal length
doesnt́ follow a χ2 distribution.
Sample size affects the comparison effect. We extracted given numbers (50, 500, 5000) of sample
from χ2 distribution and compare them with true theoretical distribution.
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(a) Quantile-Quantile Plot for
χ2 distribution (n=50)

(b) Quantile-Quantile Plot for
χ2 distribution (n=500)

(c) Quantile-Quantile Plot for
χ2 distribution (n=5000)

Figure 9: The Samples form χ2 Distribution V.S. theoretical χ2 Distribution

Figure 9 indicates that the more samples extracted, the higher similarity there is between the sam-
ple distribution and true theoretical distribution. Q-Q plot can also be used to compare any two
continuous distributions. We will discuss this further in the 2D data visualization section.

2.2.8 Text Cloud

Text cloud is a method that uses different size for each word according to their frequencies. The
size of the presented word is positively related to the frequency of that particular word used in a text
document. It is a technique that shows the topic of the target document. We can easily get a sense
of the topic or emphasize of the document since the most used words stand out. It is simple and clear.

Data set : "The Declaration of Independence" .
(Source: https://www.archives.gov/founding-docs/declaration-transcript)

(a) The Text Cloud of ”The Declaration of Indepen-
dence”

(b) The Word Frequency of ”The Declaration
of Independence”

Figure 10: Text cloud gives us a quick impression of an article.

The most frequently used keywords include: people, law, states, right and government. Figuring out

12

https://www.archives.gov/founding-docs/declaration-transcript 


the topic via text cloud is much faster than reading through the target text file.

2.3 2D Data Visualization

2.3.1 2D Scatter Plot

2D scatter plot is a widely used graphic technique showing the relationships between two variables.
In scatter plot, each dot or small circle represents an observation. All the points in the plot form a
visual sample distribution, giving us statistical insight about the variable relationships.

(a) Sepal Length V.S the Species (b) Sepal Width V.S the Species

(c) Petal Length V.S Species (d) Petal Length V.S Species

Figure 11: 2D Scatter Plots of the Iris Data Set

Figure 11 shows the scatter plots between categorical variable Species and numerical variables,
respectively. Scatter plots with fitted lines see Figure 12.
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(a) Sepal Length V.S. Sepal Width (b) Petal Length V.S. Petal Width

Figure 12: 2D Scatter Plots with Fitted Lines

From Figure 12 we reasonably assume the Iris$Sepal.Width and the Iris$Sepal.Length don’t have
apparent linear relationship; while the Iris$petal.Width and the Iris$Petal.Length are linear related.

2.3.2 2D Quantile-Quantile Plot

As we mentioned before, Quantile-Quantile plot (Q-Q plot) can also be used to compare any two
continuous distributions. Instead of comparing targeted variable to standard normal distribution, we
can compare it to other variable. By observing the scatter plot, we will have instinct sense about if
the two variables may or may not follow same distribution. If they have approximately linear linear
relationship, the Q-Q plot is like a straight line, or else it will be like a curve. Q-Q plot is very
helpful in exploring the distributions of continuous variables.

(a) t V.S. χ2 Distribution (b) χ2 V.S. Normal Distribution (c) Cauchy V.S. Normal Distribu-
tion

Figure 13: Q-Q plots from 2 different distributions are curves.
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(a) Iris$Sepal.Length against Sepal.Width (b) Iris$Petal.Length against Petal.Width

Figure 14: Q-Q Plots for the Iris Data Set

Figure 14 shows the sepal length and the sepal width may follow the same distribution, but the petal
length and the petal width may not.

2.3.3 2D Venn Diagram

A Venn diagram shows a qualitative relationship of a given variable or several given variables among
different groups. It is often used to check if different groups have same categorical feature or
features. This gives us a quick and straightforward presentation about the overlap on given features
among different groups.

(a) General Diagram (b) Venn Diagram of the Iris Data Set

Figure 15: Venn Diagram Examples
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2.3.4 2D Box Plot

2D box plot is also called side-by-side box plot. It is a visual display comparing the distributions
of different levels (the possible values) of a categorical variable, or different ranges of a numerical
variable. Side-by-side boxplot is constructed by placing single box plots adjacent to one another on
a single scale.

Figure 16: Box Plots by the Species

2.3.5 Two-way Table

In Statistics, a two-way table (also called contingency table, or cross tabulation) is a useful tool for
examining relationships between categorical variables. The entries in the cells of a two-way table
can be frequency counts or relative frequencies (just like a one-way table). They are heavily used
in survey research, business intelligence, engineering and scientific research. They provide a basic
picture of the interrelation between two variables and can help find interactions between them. Iris
only has one categorical variable, so we transformed continuous variable sepal length to categorical
data with 3 length levels, then have the contingency table as following:
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Figure 17: The Contingency Table of the Iris Data Set

• Pearson’s Chi-squared Test. Based on contingency table, χ2 test is often used to test if the two
categorical variables related.
Hypothesis: The species and the sepal length are independent at 0.05 significant level.

Figure 18: The χ2 Test of Species and Sepal Length Level

The P-value is far more less than 0.05, so we reject the null hypothesis and think the sepal length is
not independent from the species of the Iris at 0.05 significant level.

2.3.6 2D Bar Chart

Bar chart can display 2D information, where one variable should be categorical or numerical data
range, the other one can be categorical or numerical. If one of the variables is numerical, each cate-
gorical value should have only one corresponding numerical value, so we usually use it to compare
the mean value and the confidence interval of different categorical levels. The 2D bar chart includes
stacked bar chart and grouped bar chart. They basically display the same information except stacked
bar chart stacks grouped information in one bar, while grouped bar chart display grouped informa-
tion horizontally.
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•Data Sets.
1. Iris.
(Source: https://archive.ics.uci.edu/ml)
2. Salaries.
(Source: R data set from “car”package. Avaliable at https://raw.githubusercontent.
com/vincentarelbundock/Rdatasets/master/csv/car/Salaries.csv)
3. S&P Case-Shiller Home Price Index.
(Source: Avaliable at https://www.econ.yale.edu/~shiller/data.htm)

• 2D Bar Chart with 2 Categorical Variables

(a) 2D Bar Chart of the Iris (b) 2D Bar Chart of the Salaries (1)

(c) 2D Bar Chart of the Salaries (2) (d) 2D Bar Chart of the Salaries (3)

Figure 19: 2D bar charts with 2 categorical variables show the frequencies.

• 2D Bar Chart with 1 Categorical Variable and 1 Numerical Variable
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(a) The Mean Salaries by Rank (b) The Mean Salaries and SD by Rank

(c) The Home Price Index

Figure 20: 2D Bar Charts with 1 Categorical Variable and 1 Numerical Variable

In Figure 20 we observe the trend of time series data, or explore the mean and standard deviation by
groups. With enhanced techniques, stacked and grouped bar chart can display 3D information. We
will discuss this later.

2.3.7 Time Series Plot

A time series plot is a graph that shows the variable’s value change over time. Based on the plot,
we may have intrinsic sense of the value change pattern: Is this variable stationary or not ? Does
the sample have seasonal fluctuation? A time series plot displays observations on the y-axis against
equally spaced time intervals on the x-axis. Here ‘time’ is treated as a discrete quantitative variable.
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(a) The House Price Time Series Plot (b) The Sales Time Series Plot

Figure 21: Time Series Plots

Figure 21(a) contains monthly-measured average index home values throughout the USA from Jan-
uary 1987 to January 2016 (Source: Available at https://www.econ.yale.edu/~shiller/
data.htm). Figure 21(b) is from a sales record and it shows apparent seasonal pattern.

Much of time series theory assumes that time series data is a stationary process, which means the
parameters such as mean and variance, if they are present, do not change over time. In reality, this
is not always the truth, hence we need transform non stationary data to stationary data, to make time
series data analysis feasible. For example, we found that S&P/Case-Shiller Home Price Index is not
stationary over time, so we make 2-step transformation.

(a) Logged S&P/Case-Shiller Home Price Index First
Transformation

(b) Logged S&P/Case-Shiller Home Price Index Sec-
ond Transformation

t

Figure 22: Time Series Data Transformations

After logged and the first difference, the data fluctuation is eased a lot but the estimated mean is still
not steady enough, so we did the second difference, which makes the processed data trend keeps
horizontal, in other words, makes the expected mean unchanged over time.
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2.3.8 Grouped Histogram

Grouped histogram is extended from 1D histogram. It presents the frequency or density of a vari-
able by group, extending the explained information from 1-d to 2-d. It is a intuitive tool to observe
the distributions of different groups.
•Data Set. Salaries (Source: R data set from “car”package).

(a) Grouped Histogram (b) Stacked Histogram

(c) Histogram with Means and Density (d) Histogram with Means and Density

Figure 23: Grouped Histograms for the Salaries Data Set

Figure 23 shows the salary comparison between different groups. We can see that woman has a
smaller sample size and overall lower salary compared to men. The salaries of assistant professors,
associate professors, and professor are quite different, with professors having a much wider salary
range and significantly higher earnings overall.
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2.4 3D Data Visualization

2.4.1 Heat Map

A heat map is a data visualization technique which demonstrates data by colors. In most cases,
the data are placed in a 2-dimensional coordinate system. To some extent, it is like a colorful map
and different colors represent different values of data. It provides an immediate visual summary of
information. It is a popular method to show dynamic data such as daily traffic flow in a given area,
or the house price of a given district. If we observe the timeline of the heat maps in a given district,
we may find out some superficial trend. For example, we can found out the daily traffic trend by
watching the color change of a series of traffic heat map. Enhanced heat map can express multiple
dimension information (n ≥ 3).The color of heat map represents the values of discrete data, an in-
terval of continuous data or categorical data.

(a) Heat Map of the Iris by Variable Values (b) Heat Map of the Iris by Species

Figure 24: Heat Maps of the Iris Data Set

2.4.2 Enhanced 2D Scatter Plot

Enhanced 2D scatter plot is also called grouped scatter plot. In general, 2D Scatter plot is a graph
showing the joint distribution of data points in 2-dimensional space, but under some enhancement,
2-D Scatter plots may represent 3-dimensional or more dimensional information. For example, un-
der each categorical level, we may have a 2D plot. If we combine all those plots in one graph, we
may have a more well-rounded understanding of two numeric variables and categorical variable.
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(a) Enhanced Scatterplot-1 (b) Enhanced Scatterplot-2

Figure 25: Enhanced Scatter Plots of the Iris Data Set

From Figure 25 we may estimate that sepal length is independent with species, petal length is
dependent with species, and that the petal length and petal width have positive correlation.

2.4.3 Scatter 3D plot

Scatter 3D plot is a visualization method to present the values of 3 variables and exploring the
relationships between the 3 variables. Each variable is expressed by an axis, based on three axis in
a 3D space. In general, the 3 variables are all numerical variables.

(a) 3D Scatter Plot of the Iris Data Set without
Surface

(b) 3D Scatter Plot of the Iris Data Set with Sur-
face

Figure 26: 3D Scatter Plot of the Iris Data Set without Group Information
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Additionally, we can add colors to express the categorical information of those instants, which
means we may actually explore 4D information through 3D scatter plots.

Figure 27: 3D Scatter Plot of the Iris Data Set with Group Information

2.4.4 Bubble Chart

A bubble chart is also called weighted scatter plot. It is a variation of a scatter plot. The difference
between bubble chart and scatter plot is that in bubble chart points are represented by bubbles, not
by same sized points or small circles; the size of bubbles represents the third dimension value: the
frequency of this point, or the value of the third quantitative variable. The first dimension and the
second dimension should be numerical. Under enhanced mode, it can display 4D information. We
demonstrate the effect of bubble chart in the Iris data set.
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(a) Original Scatterplot-1 (b) Original Scatterplot-2

Figure 28: Scatter Plots of the Iris Data Set

From Figure 28 we reasonably assume there is linear relationship between the petal length and the
petal width, while the sepal length and the sepal width looks like no liner relationship, so we focus
on exploring the relationships of the petal length, the sepal width and the sepal length.

Figure 29: Bubble Charts of the Iris Data Set

Based on the size of points, the points can be naturally separated into 2 parts. Each top left point
has small petal length; each bottom right point has large petal length, but this clustering looks does
not depends on the sepal length or the sepal width. Let’s try if it depends on other features.
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(a) The Sepal Length vs the Sepal Width by the Petal
Length

(b) The Sepal Length vs the Sepal Width by the Species

Figure 30: The Iris Clustering Exploration

Figure 30 demonstrates that the Iris clustering is not based on any numeric variables, but based
on the categorical variable Species: Setosa has small petal length (and petal width), Vesicolor has
large petal length and large petal width, while it doesn’t hold large sepal length. Based on these
characteristics, we can cluster the Iris into 3 groups.

2.4.5 Multi-set Bar Chart

Multi-set bar chart is also known as grouped bar chart or clustered bar chart. This variation of
bar chart is used when two or more data sets are plotted side-by-side and grouped together under
categories, all on the same axis. Like a bar chart, the length of each bar is used to show discrete, nu-
merical comparisons among categories. Each data series is assigned an individual color or a varying
shade of the same color, in order to distinguish them. Each group of bars are then spaced apart from
each other. The use of multi-set bar charts is usually to compare grouped variables or categories.
The downside of multi-set bar charts is that they become harder to read the more bars you have in
one group.
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•Data Set: Salaries. Data size: 397 observations with 3 numerical variables and 3 categorical
variables. (Source: R data set in “car” package)

(a) The Mean Salaries by Rank and Gender (b) The Mean Salaries and SDs by Rank and Gender

(c) The Mean Service Years by Gender and Rank

Figure 31: 3D Grouped Bar Charts

Figure(31) shows 3D information: the mean salaries of male professors are slightly higher than
those of female professors based on the same rank; and it is apparent that the mean salaries of
professor, associate professor and assistant professor are descending.

2.4.6 Grouped Line Chart

Line chart is an alternative to the scatter plot. The differences between line chart and scatter plot are
line chart connects all points with line segments, and the points of line charts are ordered. Based
on these characteristics, it is suitable for displaying points whose values change with time, such
as monthly sales, stock prices, precipitations, etc. Grouped line chart shows the values trends by
groups, so that we can compare the trends by groups. Grouped line charts present 3D information
and require 2 numerical variables (at least one discrete variable) and 1 categorical variable. An area
chart or area graph displays graphically quantitative data. It is based on line chart. The area between
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axis and line are commonly emphasized with colors or textures. Area charts are used to represent
accumulated totals using numbers or percentages.
•Data Set: acme. Data size: 60 observations with 2 numerical variables and 1 categorical variable.
(Source: “boot” package in R data set)

(a) The Return Comparison with Points (b) The Return Comparison with Shade

Figure 32: The Return Comparisons

Figure 32 demonstrates that the fluctuation of acme is larger than that of market, leading us to the
conclusion that acme is a more risky portfolio.

•Data Set: USPersonalExpenditure. Data size: 5 observations with 5 numerical variables and 1
categorical variable. (Source: “boot” package in R data set)

(a) The Personal Expenditures Structure (b) The Personal Expenditures Area Graph

Figure 33: The Personal Expenditures Line Chart VS Area Chart

Figure 33 demonstrates people spend most money in food and tobacco, while spend least money in
education and personal expenditure; and all subcategory expenditures increase a lot with time.
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3 High Dimensional Data Visualization

In low dimensional data visualization, we use plot, line or bar, by grouping, coloring or bubbling
to explore data intrinsic features. When the data dimensions go higher, the number of available
methods reduces and the methods tend to be less effective.

3.1 High Dimensional Box Plot

We may use box plot to compare the quantiles of multiple numerical variables with same scales by
putting them together.

•Data Set: ais. Data size: 202 observations. 11 numerical variables. 2 categorical variables.
(Source: “DAAG” package in R data set.)

Figure 34: High Dimensional Box Plots

3.2 Matrix Scatter Plot

Matrix scatter plot is a combination of paired variable scatter plots. We made scatter plots between
all numeric variables. Through this method, we can observe high dimensional data by putting the
2D plots of numerical variables together.
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Figure 35: Scatter Plots of the Iris Data Set

3.3 Introduction of Dimension Reduction

•Limited Data Visualization Methods on High Dimensional Data. Basically there are few plot
methods besides high dimensional box plot and matrix scatter plot in high dimensional data vi-
sualization. These 2 simple techniques cannot meet the huge and well rounded demand of high
dimensional data visualization.

•Curse of Dimensionality[3]. Its main idea is that the data points rapidly becomes sparse when the
dimension of data set increases. It is hard to organize, storage and analysis high dimensional sparse
data, also high dimensional data is lack of efficiency, since in many circumstance we are only inter-
ested in key features. This theme is widely accepted by current acdemia, and provides foundation
for dimension reduction.

When the dimension of data is greater than 1000 or 10000, it is very hard, if not impossible, to
present patterns within data points and variables by data visualization methods we introduced be-
fore. Intuitively we are interested in extracting important features from high dimensional data:
reducing the dimension of data as much as possible, while keeping the useful information as much
as possible. In following content we focus on exploring dimension reduction techniques: theories,
effects, limitations and assessments.

3.4 Principle Components Analysis (PCA)

Principal Components Analysis (PCA)[9] computes the most meaningful axes to re-express a noisy,
garbled data set. We hope the new axes filter out the noise and reveal hidden dynamics. As a
widely used unsupervised dimension reduction technique , PCA is based on describing as much
of the variance as possible. We reconstruct the data axes, which are orthogonal and are the linear
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combination of the original coordinates. PCA is different from the factor analysis method in that it
does not require the analyst to subjectively determine factors or groups.

3.4.1 The Math

• Eigenvalue Decomposition. Assume A is a real square matrix whose eigenvalues are λ1, ...λn.
Then we have:

det(A) =

n∏
i=1

λi (1)

trace(A) =

n∑
i=1

λi (2)

A square matrix A is diagonalizable if it is similar to a diagonal matrix, i.e., there exist an invertible
matrix P and a diagonal matrix Λ such that

A = PΛP−1 (3)

Equation(1) and (2) imply a n×nmatrix is diagonalizable if and only if it has n linearly independent
eigenvectors, and also imply thatApi = λipi for 1≤i≤n, where pi are the columns of P . This shows
that the λi are the eigenvalues of A and pi are the associated eigenvectors. For symmetric matrix
A, there exists an orthogonal matrix Q and a diagonal matrix λ such that A = QλQT . Eigenvalue
decomposition is also called the spectral decomposition.

• Singular Value Decomposition (SVD). Singular Value Decomposition (SVD) is defined for all
matrices (rectangular or square) An×d, unlike spectral decomposition only can be applied on square
matrices. Suppose A ∈ Rn×d and C = ATA, which is a d × d matrix, the full singular value
decomposition of matrix A is :

An×d = Un×nΣn×dV
T
d×d (4)

Figure 36: SVD. V , the right singular vectors of A, is the eigenvectors of ATA; U , the left
singular vectors of A, is the eigenvectors of AAT ; σi2 (1 ≤ i ≤ d) are the eigenvalues of
ATA.

We may use first k singular values to approximately explain matrix A. It is called Economic SVD.

An×d ≈ Un×kΣk×kV
T
k×d (k � d) (5)
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Figure 37: Economic SVD. The needed storage space is far less than that of Figure 36.

• Principle Components Analysis (PCA). PCA is an orthogonal linear transformation that trans-
forms the data to a new coordinate system such that chosen coordinates (principal components)
explained greatest variance by decreasing order. Generally if we centered data before doing dimen-
sion reduction, the means of all features are zero.

Ã = A− Ā (6)

The co-variance matrix C of matrix Ã turns to:

Cd×d =
1

n
ÃT

d×nÃn×d (7)

We are seeking the directions which maximize the variances. Based on equation (3), the eigenvec-
tors Vi of matrix C corresponding to its eigenvalues λi in descending order are the directions on
which the variances are greatest in descending order. Hence V is an orthonormal basis for restruc-
tured data and λi are the variances on the new basis.

Cd×dVd×n = Λd×dVd×n (8)

Cd×dVd×k ≈ Λd×dVd×k k � d (9)

An×dVd×k is the reduced K dimensional coordinates of A.
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3.4.2 The Algorithm

Algorithm 1 PCA
Input. Data set An×d. n is the number of observations, d is the number of feature. K is
the number of dimension to reduce.
Step 1. Organize data set x as an n× d matrix.
Step 2. Subtract off the mean for each feature, get Ã.
Step 3. Calculate the covariance matrix C, which is a d by d matrix.

C =
1

n
ÃT Ã (1)

Step 4. Calculate the eigenvalues Λ and eigenvectors V of matrix C. Sort the eigenval-
ues by descending order:λ1, λ2, . . . λn,λ1 ≥ λ2 . . . ≥ λd , and arrange the corresponding
eigenvectors by column in the same order.
Step 5. Taking first K eigenvectors : K columns of matrix V .
Output. AV is the reduced K dimension coordinates.

3.4.3 Examples

• 2D Gaussian Toy Data Example

(a) 2D Gaussian Data Before PCA (b) 1D Gaussian Data After PCA

Figure 38: PCA on 2D Gaussian Data: Under new basis, data makes 45◦ rotation, and has
most variance in X axis direction.

•MNIST Handwritten Digit Example
Data Set Description. MNIST is a data set which has 60000 training samples and 10000 testing
samples, with each sample a 28 × 28 pixel image . (Source: http://yann.lecun.com/
exdb/mnist/)
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(a) PCA Effect on MNIST -2 Dimension (b) PCA Effect on MNIST -30 Dimension

(c) PCA Effect on MNIST -64 Dimension (d) Explained Variance

Figure 39: PCA on MNIST

When dimension is 30, figure 37(b) shows pretty clear digits while saved more than 95% of storage
space. Figure 37(d) shows the variance percentage PCA preserved when different K is chosen.
When K≥ 40, PCA keeps more than 90% of variances.

3.5 Multidimensional Scaling (MDS)

MDS is a dimension reduction technique which attempts to preserve the pairwise distances in high
dimensional space, and reconstruct this distance relationships in lower dimensional Euclidean space.

3.5.1 The Math

•Problem. For data set {x1, x2, ...xn}T ∈ Rd, whose distances between xi and xj are `i,j , 1 ≤
i, j ≤ n. The distance matrix Dn×n of Xn×d is:

‖xi − xj‖ = `i,j , 1 6 i, j 6 n (10)
`1,1 `1,2 · · · `1,n
`2,1 `2,2 · · · `2,n

...
...

. . .
...

`n,1 `n,2 · · · `n,n


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When we treat known distances as Euclidean distances, MDS tries to reconstruct data set {y1, y2, ...yn}T ∈
Rk(k ≤ d), which meet

‖yi − yj‖ ≈ `i,j , 1 6 i, j 6 n (11)

Since the solutions are not unique, we add a constraint
∑
yi = 0 and

∑
yi = 0.

•Proof. Squaring equation(10), we may expand them to get

`i,j2 = ‖ xi ‖2 + ‖ xj ‖2 − 2〈xi, xj〉

Summing over i an j separately to get∑
i

`i,j2 =
∑
i

‖ xi ‖2 + n‖ xj ‖2∑
j

`i,j2 =
∑
j

‖ xj ‖2 + n‖ xi ‖2

Denoting by

`2.j =
1

n

∑
i

`2ij , `2i. =
1

n

∑
j

`2ij , `2.. =
1

n2

∑
i

∑
j

`2ij

Sum over i, j separately:

n2`2.. = n
∑
i

‖ xi ‖2 + n
∑
j

‖ xj ‖2 = 2n
∑
‖ xt ‖2

2

n

∑
t

‖ xt ‖2 = `2.. (12)

‖ xi ‖2 = `2i. −
1

2
`2.. (13)

‖ xj ‖2 = `2.j −
1

2
`2.. (14)

From equation(12),(13),(14)

〈xi, xj〉 =
1

2

(
`2i. + `2.j − `2.. − `2ij

)
∀i, j (15)

Let L be a matrix whose entries are:

Li,j =
1

2

(
`2i. + `2.j − `2.. − `2ij

)
(16)

From equations(15) and (16), XXT = L holds. The matrix L is symmetric with all row and col-
umn sums equal to zero, so we can find the eigenvalues and eigenvectors of L. L = UΛUT is the
spectral decomposition. Assuming L is positive definite, an exact solution of the above equation is

X = Un×dΛ
1
2 =

(√
λ1u1...,

√
λdud

)
And the reduced k dimensional coordinates of X is:

Y = Un×kΛ
1
2 =

(√
λ1u1...,

√
λkuk

)
, k < d
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3.5.2 The Algorithm

Algorithm 2 MDS
Input. Distance Matrix Dn×n. n is the number of observations. K is the number of
dimension to reduce.
Step 1. Center matrix D, making

∑
di = 0, (1 ≤ i ≤ n). get D̃.

Step 2. For every i, j, (1 ≤ i, j ≤ n), calculate `2i., `
2
.j, `

2
...

Step 3. Construct L symmetric matrix. Li,j = 1
2

(
`2i. + `2.j − `2.. − `2ij

)
.

Step 4. Calculate the eigenvalue Λ and eigenvector U of L. Sort the eigenvalues by
descending order:λ1, λ2, . . . λn,λ1 ≥ λ2 . . . ≥ λn, and take the corresponding K eigen-
vectors in the same order.
Output. Y = Un×kΛ

1
2 =

(√
λ1u1...,

√
λkuk

)
, k < d

3.5.3 Chinese Cities Example

The table 1 is a Chinese major cities distances matrix.

City Beijing Tianjin Shanghai Chongqing Hohhot Urumqi Lhasa Yinchuan Nanning Harbin Changchun Shenyang

Beijing 0 125 1239 3026 480 3300 3736 1192 2373 1230 979 684
Tianjin 125 0 1150 1954 604 3330 3740 1316 2389 1207 955 661

Shanghai 1239 1150 0 1945 1717 3929 4157 2092 1892 2342 2090 1796
Chongqing 3026 1954 1945 0 1847 3202 2457 1570 993 3156 2905 2610

Hohhot 480 604 1717 1847 0 2825 3260 716 2657 1710 1458 1164
Urumqi 3300 3330 3929 3202 2825 0 2668 2111 4279 4531 4279 3985
Lhasa 3736 3740 4157 2457 3260 2668 0 2547 3431 4967 4715 4421

Yinchuan 1192 1316 2092 1570 716 2111 2547 0 2673 2422 2170 1876
Nanning 2373 2389 1892 993 2657 4279 3431 2673 0 3592 3340 3046
Harbin 1230 1207 2342 3156 1710 4531 4967 2422 3592 0 256 546

Changchun 979 955 2090 2905 1458 4279 4715 2170 3340 256 0 294
Shenyang 684 661 1796 2610 1164 3985 4421 1876 3046 546 294 0

Table 1: Chinese Major Cities Distances

After the MDS, the reconstructed maps for 12 cities is as Figure 40(a).
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(a) Chinese Cities Mapping via MDS (b) Original Chinese Cities Map

Figure 40: MDS Mapping for Chinese cities

Figures 40(a) and 40(b) show quite similar relative positions of major cities, while 40(a) still has a
little bit of distortion. There may be 3 reasons leading to the distortion.

• The original map Figure 40(b) is not very accurate.
• The MDS only take first 2 dimensions for the position matrix, which means the result is just a ap-
proximate distance. Stress score tests how close the approximation is as for the distance rebuilding.
Here the stress score is 0.0805, a very good mapping but still 8% distance unexplained.
• The surface of earth is manifold and the distances matrix D is not Euclidean but geodesic. In MDS
we approximately treat the distance as Euclidean distance, as we treat 3-D distance as 2-D distance.
This is the main reason of mapping distortion.

3.6 ISOmap

• The Limitation of MDS. MDS reduces dimensions while keep the dissimilarity matrix un-
changed, if and only if we define the distance as Euclidean distance. What if the distances are
not Euclidean?
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(a) Will MDS work in sphere? (b) Will MDS work in Swiss Roll?
Source of Figure 41(a): https://en.wikipedia.org/wiki/Sphere
Source of Figure 41(b): https://web.mit.edu/cocosci/Papers/sci_reprint.pdf

Figure 41: MDS doesn’t work on sphere or manifold space.

If the distance between a given observation and its neighbor is not far, we can approximately treat
the geodesic distance as Euclidean distance, but we can not treat the distance from North pole to
South pole as Euclidean, also we can not treat the distance between point A and B in Swiss Roll as
Euclidean.

• ISOmap, inspired by MDS, extends MDS to preserving geodesic distance, and maps high
dimensional manifold data into low dimensional space.

3.6.1 The Math

The difference between MDS and ISOmap is the distances matrix construction. ISOmap distances
matrix represent geodesic distances. The rules include:
• For neighboring points, Euclidean distance is a good approximation to the geodesic distance.
• For faraway points, estimate the distance by a series of short hops between neighboring points.
• Find shortest paths in a graph with edges connecting neighboring data points.
Once geodesic distances matrix D constructed, use classical metric MDS.

3.6.2 The Algorithm

Widely used algorithms for constructing a geodesic distances matrix include Dijkstra’s algorithm
and FloydWarshall algorithm.
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Algorithm 3 ISOmap
Input. Data set Xn×m. n is the number of observations, m is the number of features. k
is the number of neighbors. d is the reduced dimensions.
Step 1. Determine the neighbors of each point (In some fixed radius or KNN).
Step 2. Construct a neighborhood graph for each point. The weights of edges are the
Euclidean distance from this point to neighboring points.
Step 3. Use Dijkstra’s algorithm or Floyd−Warshall algorithm to calculate the shortest
path for any 2 nodes. The geodesic distance matrix D constructed.
Step 4. Set the Geodesic distance matrix D as the input of MDS algorithm.
Step 5. Apply MDS algorithm to do eigenvalue decomposition and get the new coordi-
nates of nodes.
Step 6. Take d columns of new coordinates as the dimension reduced coordinates.
Output. As MDS algorithm, Y = Un×dΛ

1
2 =

(√
λ1u1...,

√
λdud

)
, d < m.

3.6.3 Example: Chinese Cities ISOmap vs MDS

Based on the original Euclidean distance matrix (table 1), taking K=3 as the number of neighbors,
using Floyd−Warshall algorithm, we rebuilt the geodesic distance matrix D and set D as the input
of MDS algorithm.

(a) ISOmap on Chinese Cities , K=3, d = 2 (b) Chinese Cities Map

Figure 42: For the Chinese Cities data set, the ISOmap method performed better than the
MDS method.

Shanghai, Changchun, Shenyang, Harbin all have more accurate mapping. ISOmap has better per-
formance on Chinese cities by better preserved geodesic distance matrix.
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3.7 Locally Linear Embedding (LLE)

Unlike PCA trying to reconstruct data by linearly rearranging the space basis to get maximum
variance globally, LLE is a dimension reduction method that keeps the local neighboring linear
relationships when mapping high dimensional data into low dimensional space.

(a) Idea of LLE−1 (b) Idea of LLE−2
Source of Figure 43(b):
https://www.math.sjsu.edu/~gchen/Math285F15/285%20Final%20Project%20-%20LLE.pdf

Figure 43: LLE builds and keeps local linear relationships on manifold space.

3.7.1 The Math

Step 1: Construct weight matrix W . When the distance between two nodes is close enough, it
is reasonable to assume the local distance is linear. Any node Xi can be denoted by:

Xi =
k∑

j=1

Wijxij(1 ≤ j ≤ k)

Where xj is k nearest neighbors of xi. The weight W choose to minimize reconstruction error:

Min ε(W ) =

n∑
i=1

Xi −
k∑

j=1

Wijxij

2

(17)

With three constrains:
•Wij = 0 if point j is not the neighbor of point i.
•
∑
Wij = 1 for point i (1 ≤ i ≤ n, and 1 ≤ j ≤ k).

•
∑
xi = 0 for point i (1 ≤ i ≤ n).

By derivation on Equation weight matrix W is found.
Step 2: Construct low dimensional projecting Y matrix.
Yn×d matrix meet:

Min φ(Y ) =

n∑
i=1

Yi − k∑
j=1

WijYij

2

(18)

Find d + 1 bottom eigenvectors of B=(I −W )t(I −W ) in corresponding eigenvalues ascending
order. The second to the (d + 1)th eigenvetors of B form the low dimensional (d-dimension)
reconstruction Y .
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3.7.2 The Algorithm

Algorithm 4 Locally Linear Embedding(LLE)
Input . Data set Xn×m. n is the number of observations, m is the number of features. k
is the number of neighbors. d is the reduced dimensions.
Step 1. For i = 1 to n, determine the K neighbors of each point .
Step 2. For i = 1 to n, calculate the weight matrix Wi.
Step 3. Calculate B = (I −W )T (I −W ).
Step 4. Do spectral decomposition of B. Take d eigenvectors V by corresponding eigen-
values ascending order v2, v3, · · · , vd+1.
Output. Y = (v2, v3, · · · , vd+1)

3.7.3 The Swiss Roll Example

• Swiss Roll Data Set was to create several points in 2D, and then map them to 3D with some
smooth function, and then to see what the algorithm would find when it mapped the points back to
2D (Source: http://people.cs.uchicago.edu/~dinoj/manifold/swissroll.html).
The Swiss Roll data set we used has 2048 observations.

(a) Original Data (b) LLE, k = 12, d = 2 (c) LLE, K = 30, d = 2

(d) LLE, K = 100, d = 2 (e) LLE, K = 30, d = 3 (f) LLE, K = 30, d = 5

Figure 44: LLE Dimension Reduction with Different K and d

Figure 44 shows factor K and factor d have significant influences on the result of low dimensional
projection.
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•Since data visualization is in 2D or 3D space, d = 2 or d = 3 is recommended. When d > 3, part
of reconstruction information cannot be displayed, which may lead projection result not ideal.
•The choose of K is related to the density of data. In Swiss Roll data set, when k > 30, the weight
matrix doesn’t reflect locally linear relationship well, so K > 30 is not recommended.
•In Figure 44, best result is at k = 12, d = 2 .

3.8 Laplacian Eigenmaps

To some extent, Laplacian Eigenmaps is like LLE, preserving local relationships while projecting
high dimensional data into low dimensional space. The difference between them is the the defini-
tion of relationships between data points. Laplacian Eigenmaps constructs relationships by graph,
which is denoted by G (V,E,W ). V stands for vertices (points), E stands for edges connecting
neighbor points, and W stands for weights to measure the distance (or dissimilarity) of two neigh-
bor nodes.The closer the two nodes are, the higher the weight is. Weight between xi and xj can be
set as 0 or 1; or as the Gaussian Kernel Function

Wij = e−
‖xi−xj‖2

2σ2

Laplacian Eigenmaps devotes to find embedding Y which minimize
∑n

i=1 (yi − yj)2wij .

(a) Graph Construction (b) Weights of Neighbor Nodes of Node G

Figure 45: Graphs Construction In Laplacian Eigenmaps

3.8.1 The Math

•Matrix Construction. W matrix, D matrix and L matrix.

Wij =

e−
‖xi−xj‖2

2σ2 if xi and xj are neighbors
0 otherwise

(19)

Dii = diag(d1, d2, ...dn) di =
∑
j

Wij (1 ≤ i ≤ n) (20)

L = D −W (21)

42



• Justification. For any y ∈ Rn, from equation(19), (20), (21):

yTLy = yTDy − yTWy

yTLy =
n∑

i=1

diyi
2 −

n∑
i,j=1

wijyiyj

yTLy =
1

2

 n∑
i=1

diyi
2 − 2

n∑
i,j=1

wijyiyj +
n∑

i=1

diyi
2


yTLy =

1

2

n∑
i,j=1

wij(yi − yj)2 (22)

The low dimensional Laplacian Eigenmaps Embedding Y meets:

min
Y TDY=1

n∑
i=1

(yi − yj)2wij = Y TLY (23)

L is a semi-definite matrix and has n non-negative eigenvalues 0 = λ1 ≤ λ2 ≤ λ3 · · ·λn. Based
on equation (22) and (23), we do spectral decomposition of L, the d eigenvetors corresponding to
λ2 ≤ λ3 · · ·λd+1 is the low dimensional embedding Y .

3.8.2 The Algorithm

Algorithm 5 Laplacian Eigenmaps
Input. Data set Xn×m. n is the number of observations; m is the number of features; k
is the number of neighbors (KNN); d is the reduced dimensions; σ is a weight matrix
factor.
Step 1. For i = 1 to n, construct K neighbors for each xi.

Step 2. Calculate Weight Matrix. ( σ is a input factor).Wij = e−
‖xi−xj‖2

2σ2 .
Step 3. Compute D matrix.Dii = diag(d1, d2, ...dn) and di =

∑
j Wij (1 ≤ i ≤ n).

Step 4. L = D −W .
Step 5. Compute eigenvalues of L. Sort them in ascending order, take the 2nd to d+ 1nd
corresponding eigenvectors (v2, v3, · · · , vd+1).
Output. Y = (v2, v3, · · · , vd+1).
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3.8.3 Swiss Roll Example

(a) Original Data (b) LE, k = 3, σ = 10 (c) LE, K = 10, σ = 5

(d) LE, K = 30, σ = 1 (e) LE, K = 100, σ = 10 (f) LE, K = 200, σ = 10

Figure 46: Laplacian Eigenmaps on Different K and σ

Figure 46 shows factor K has more influences on the result of low dimensional projection than fac-
tor σ does.
• Laplacian Eigenmaps projection is more non-linear than LLE, and more robust than LLE. •When
k > 100, the weight matrix doesn’t reflect dissimilarity well, so K > 100 is not recommended.

3.9 Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis (LDA) is a supervised linear dimension reduction technique. Unlike
unsupervised technique PCA, which projects data to get variance as much as possible, LDA projects
data to labeling data. LDA doesn’t care much about variance. It focus on maximize distances
between classes, while minimize variance within the same class.

3.9.1 LDA vs PCA

Both LDA and PCA are similar since both of them are seeking a new basis which is the linear
transformation of original space; but they are different because PCA tries to find a direction on
which all points spread most, while LDA wants to project points within the same class onto same
line segment. See Figure 47 and Table 2.
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(a) LDA V.S. PCA
Source of Figure 47(a): https://sebastianraschka.com/Articles/2014_python_lda.html

Figure 47: LDA V.S. PCA

Dimension Reduction Methods PCA LLA
Variance Maximize variance Minimize variance within class
Classes Doesn’t care classes Maximize the distances between classes

Linear or not Linear Linear
Style Unsupervised Supervised
Label Without label With labels

Dimensions ≤ Original Dimensions Number of classes -1
Basis Orthogonal Basis Orthogonal not required

Table 2: LDA V.S. PCA

3.9.2 The Math

We have data set Xd×n, n is the number of observations and d is the number of features, and label
vector (D1, D2, · · · , Dc). The center of each class is :

µi =
1

ni

∑
x∈Di

x

Where ni is the number of samples in class i. We are trying to project data set in k−dimensional
spaceW = [w1, w2, · · · , wk], to make y = W Tx is a k dimensional vector. We denote Within-class
scatter matrix SW and Between-class scatter matrix SB .
• Justification
After projecting, the center of each class is:

µ̃i = W Tµi (24)

And the variance in each class is:

s̃i =
∑
x∈Di

(
W Tx− µ̃i

)2
(25)
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From equation (24) and (25) we have:

s̃i =
∑
x∈Di

(
W T (x− µi)

)2
=
∑
x∈Di

W T (x− µi) (x− µi)TW

Denote
∑

x∈Di (x− µi) (x− µi)T as Within-class scatter matrix SWi in class i, we have :

S̃ =
∑
∀i
s̃i = W T

(∑
∀i
SWi

)
W

Now we are measuring the variance between classes. Denote the center of all classes as:

µ̃ =
1

C

∑
i

µ̃i

C is the number of classes, and we may define the distances between classes as:

T̃ =
∑
i

ni (µ̃i − µ̃)2 (26)

Where ni is the number of observations in class i. Denote
∑

i ni (µ̃i − µ̃) (µ̃i − µ̃) as Between-class
scatter matrix SWi , based on equation (26), we have:

T̃ =
∑
i

ni (µ̃i − µ̃)2 =
∑
i

niW
T (µ̃i − µ̃) (µ̃i − µ̃)TW = W TSBW (27)

The best projection W should maximize T̃ and minimize S̃ , hence

max J (W ) =
T̃

S̃
=
W TSBW

W TSWW
(28)

Equation(28) is known as generalized Reyleigh quotient[16], and J (W ) is maximized when W is
the eigenvectors corresponding to the largest d eigenvalues of SW−1SB , 1 ≤ k ≤ c− 1.

3.9.3 The Algorithm

Algorithm 6 LDA
Input. Data set X with n observations and d dimensions. Label Vector D with length n
marks the class of each point xi. 1 ≤ i ≤ n . The number of classes is C.
Step 1. Calculate the center of each class j. 1 ≤ j ≤ C.
Step 2. Compute the within scatter matrix SW and between scatter matrix SB.
Step 3. Compute SW

−1SB.
Step 4. Do eigenvalue decomposition for SW

−1SB.
Step 5. Sort the eigenvalues by descending order. Choose k corresponding eigenvectors
as column vectors to form matrix W . 1 ≤ k ≤ C − 1. W is the reconstructed basis.
Output. Y = W TX . Y is the k × n dimension reduced coordinates of X .
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3.9.4 Iris Example: LDA vs PCA

Data Set: Iris. Source: https://archive.ics.uci.edu/ml/datasets/iris

(a) Original Iris

Figure 48: Original Iris: 150 Points with 5 Dimensions Each

PCA and LDA results see Figure 49.
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(a) 1D LDA Result on Iris (b) 2D LDA Result on Iris

(c) 1D PCA Result on Iris (d) 2D PCA Result on Iris

Figure 49: PCA vs LDA on Iris

Comments based on Figure 49.
• LDA turns 4D Iris to 1D while group information keeps well.
• PCA spreads more widely than LDA since it keeps most variance.
• LDA does better grouping than PCA since it keeps points in different groups far away while points
in same group as close as possible.

3.10 Experiments

3.10.1 Experiment 1. Dimension Reductions Comparison on MNIST Digit 1

• Data Description. Extract handwritten digit 1 from data set MNIST. (Source: http://yann.
lecun.com/exdb/mnist/). Data size is 1000.
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(a) Sample Data of Experiment 1

Figure 50: Sample Digit 1

• Methodology. PCA, MDS, ISOmap, LLE, Laplacian Eigenmaps were used to do dimension
reduction on MNIST digit 1, then we visualize the original images in 2D reconstructed basis to
observe and analyze the feature extraction effects of different dimension reduction techniques.
• Exclusion. LDA is excluded from this experiment since it need labeled(grouped) data while all
digit 1 has same label “1”, so LDA is not feasible for Digit 1 data set.

3.10.2 Experiment 2. Dimension Reductions Comparison on MNIST Digit 1 to 5

• Data Description. Extract handwritten digit 1, 2, 3, 4, 5 from data set MNIST. (Source: http:
//yann.lecun.com/exdb/mnist/). Data size is 3000.

(a) Sample Data of Experiment 2

Figure 51: Sample Digit 1 to 5
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• Methodology. PCA, MDS, ISOmap, LLE, Laplacian Eigenmaps and LDA were used to do di-
mension reduction on MNIST digit 1 to 5, then we visualize the original digit images in 2D recon-
structed basis. Since digit 1 to 5 is grouped naturally, we focus on observing the clustering effects
of different dimension reduction techniques.

3.10.3 Experiment Results Analysis

• Efficiency Comparison
The theoretical time complexity of different dimension reduction techniques is as table 3.

Techniques PCA MDS ISOmap Laplacian Eigenmaps LLE LDA

Time Complexity O(nD) +O(D3) O(n3) O(Dnlog(n)) +O(n3) O(Dnlog(n)) +O(pn2) O(Dnlog(n)) +O(pn2) O(nD) +O(D3)

Experiment 1(Sec) 3.218 10.498 9.336 0.387 0.281 NA
Experiment 2(Sec) 8.85 221.48 208.10 2.91 1.08 8.54

Table 3: Time Complexity and Execution Time

(a) Running Time Comparison-Digit 1 (b) Running Time Comparison

Figure 52: Efficiency Comparison

From Table 3 and Figure 52, based on the characteristics of data set, we found:
• LE and LLE are most efficient dimension reduction techniques among above 6 techniques.
• MDS and ISOmap are least efficient dimension reduction techniques since the construction of
distance matrix is time consuming.
•MDS and ISOmap ‘s efficiency decrease extremely since the time complexity is related to O(n3).
• PCA, LE and LLE ‘s efficiency decrease steadily since the time complexity is related to O(n2) or
O(nD) .

• Effects Comparison
The Digit 1 Visualizations on Reconstructed 2D Coordinate is as Figure 53.
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(a) PCA on Digit 1 (b) MDS on Digit 1

(c) ISOmap on Digit 1 (d) LLE on Digit 1

(e) Laplacian Eigenmaps on Digit 1

Figure 53: Feature Extraction Effects Comparison on MNIST Digit 1

The Digit 1-5 Visualizations on Reconstructed 2D Coordinate is as Figure 54.
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(a) PCA on Digit 1 to 5 (b) MDS on Digit 1 to 5

(c) ISOmap on Digit 1 to 5 (d) LLE on Digit 1 to 5

(e) Laplacian Eigenmaps on Digit 1 to 5 (f) LDA on Digit 1 to 5

Figure 54: Dimension Reduction Effects on MNIST Digit 1 to 5

We may treat data set only include digit 1 as linear dominated and non-grouped data , and treat data
set include digit 1 to 5 as nonlinear and grouped data.
From Figure 53, we noticed:
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• PCA performs well in extracting key features in linear data. In Experiment 1, the direction which
has most variance was the degree of tilt in handwritten digit 1.
• MDS performs well in extracting key features in linear data. It caught two features of digit 1, on
the order of importance : the slope and the thickness.
• ISOmap worked best on digit 1 since it expressed both the slope and the thickness of digit 1 best.
That is because it can extract both linear and nonlinear features.
• Overall nonlinear dimension reduction algorithm: ISOmap, LLE, Laplacian Eigenmaps worked
better than linear algorithm : PCA and MDS. That is because they can catch the nonlinear features
in digit 1, while PCA and MDA cannot.

From Figure 54, we realized:
• LDA performs best in digit 1-5 visualization. It made the same digit grouped together and differ-
ent digits kept away.
• PCA and MDS performs poorly on nonlinear grouped data due to they cannot catch hidden non-
linear attributes.
• ISOmap performs OK but worse than Laplacian Eigenmaps and LLE do, showing Laplacian
Eigenmaps and LLE can preserve the hidden nonlinear attribute better than ISOmap does.

3.10.4 Evaluations and Suggestions

• Dimension Reduction Techniques Evaluation

Techniques Pros Cons

PCA
Simple, convenient and stable.

Extract linear attributes effectively
Performs poorly on manifold data.

MDS Keeps the linear distance relationship well.
Time consuming especially when data size is large.

Works poorly for nonlinear data

ISOmap Keep the geodesic distance relationship well.

Time consuming.
Sensitive to outliers.

Manifold should be convex.
Should choose K.

Laplacian
Eigenmap

Performs well on linear and nonlinear data. Efficient Have to choose factors K and σ. Convex needed.

LLE Performs well on linear and nonlinear data. Efficient
Have to choose K.Sensitive to noises.

Require locally linear structure.Convex needed.

LDA
Performs well on grouped data.

Works for both linear data and nonlinear data.

Doesn’t work for non labeled data.
Doesn’t work when group centers are the same.
Largest dimension is the number of groups-1.

Table 4: Dimension Reduction Techniques Evaluation

• Suggestions

To choose appropriate dimension reduction method to get better visualization effects, based on
the experiments results we have, we suggest:

• PCA algorithm is a good candidate for linear data dimension reduction since it is simple, easy
to understand and effectively. Its efficiency will not decrease dramatically along with the increase
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of data size is another reason to consider it. MDS generally has the same effect with PCA but is
much slower than PCA.

• If we don’t know the data values but only know the data distance matrix, potential techniques
include MDS, ISOmap and Laplacian Eigenmap. They can reconstruct the data without knowing
the original data value. Among the 3 techniques, if we have known that the data set is linear and
data size is less than 1000, we may try MDS; or else Laplacian Eigenmap is an appropriate choice,
since it works for linear and nonlinear data, and it is efficient.

• ISOmap is more sensitive to outliers than other techniques, so if a data set has quite a few outliers,
better to avoid ISOmap.

• ISOmap is extremely slow, so if the data size is large ( as over 5000) , better to avoid ISOmap.

• If a data set is sparse, choose LLE or Laplacian Eigenmaps. Other techniques tends to gener-
ate distort results which interpret the hidden attribute misleadingly.

• If a data set has labels, we definitely should try LDA to get the best visualization effects since
it is the only supervised dimension reduction method among the 6 methods. Other possible choices
include LLE and Laplacian Eigenmaps. We need to be aware that LLE and Laplacian Eigenmaps
may compress a cluster into a line, under extreme circumstance, it even can be several points.

3.10.5 Future Work

In the future, I would like to explore more data dimension techniques such as t−SNE, diffusion map
and neural network. Also I would like to implement these dimension reduction techniques to larger
size real data, as text file or image data. Combining dimension reduction techniques with prediction
or clustering is also something that can be explored in the future.
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C Code

1 r e q u i r e (MASS)
2 l i b r a r y ( g g p l o t 2 )
3

4 % Load data
5 data ( i r i s )
6 head ( i r i s , 3 )
7

8 r <− l d a ( formula = S p e c i e s ~ . ,
9 data = i r i s ,

10 p r i o r = c ( 1 , 1 , 1 ) / 3)
11

12 r $ c o u n t s
13 r $means
14 r $ s c a l i n g
15 r $ svd
16

17 prop = r $ svd ^2 / sum ( r $ svd ^2 )
18 prop
19

20 i r i s . matrix<−as . matrix ( i r i s [ , −5] )
21 i r i s . new<− i r i s . matrix %∗% r $ s c a l i n g
22 i r i s . l d a<−as . data . frame ( cbind ( i r i s . new , as . c h a r a c t e r ( i r i s $ S p e c i e s ) ) )
23 i r i s . l d a $LD1<−as . numeric ( as . c h a r a c t e r ( i r i s . l d a $LD1) )
24 i r i s . l d a $LD2<−as . numeric ( as . c h a r a c t e r ( i r i s . l d a $LD2) )
25
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26

27 s e t T i m e L i m i t ( cpu = I n f , e l a p s e d = I n f , t r a n s i e n t = FALSE)
28 f i l l =c ( " #E69F00 " , " #009 E73 " , " #D55E00 " , " #CC79A7" )
29

30 p<−g g p l o t ( i r i s . lda , a e s ( x=LD1 , y=LD2 , f i l l =as . c h a r a c t e r ( V3 ) ) ) +
31 geom_ p o i n t ( shape =21 , s i z e =3 , c o l o u r =" #000000 " ) +
32 g g t i t l e ( "2−D LDA R e s u l t on I r i s Data " ) +
33 x l a b ( "X1" ) + y l a b ( "X2" ) +
34 s c a l e _ f i l l _ manual ( v a l u e s = f i l l ) +
35 theme ( l egend . p o s i t i o n =" bot tom " , l egend . d i r e c t i o n =" h o r i z o n t a l " ,
36 l egend . box = " h o r i z o n t a l " , l egend . t i t l e = e l e m e n t _ b l a n k ( ) ,
37 l egend . t e x t = e l e m e n t _ t e x t ( s i z e =12) ,
38 a x i s . l i n e = e l e m e n t _ l i n e ( s i z e =1 , c o l o u r = " b l a c k " ) ,
39 a x i s . t e x t . x= e l e m e n t _ t e x t ( c o l o u r =" b l a c k " , s i z e = 11) ,
40 a x i s . t e x t . y= e l e m e n t _ t e x t ( c o l o u r =" b l a c k " , s i z e = 11) +
41 t i t l e = e l e m e n t _ t e x t ( s i z e =15 , f a c e =" bo ld " ) )
42 p
43

44 p<−g g p l o t ( i r i s , a e s ( x= S e p a l . Length , y= S e p a l . Width , f i l l = S p e c i e s ) ) +
45 geom_ p o i n t ( shape =21 , s i z e =3 , c o l o u r =" #000000 " ) +
46 g g t i t l e ( " O r i g i n a l I r i s Data " ) +
47 x l a b ( " S e p a l . Length " ) + y l a b ( " S e p a l . Width " ) +
48 s c a l e _ f i l l _ manual ( v a l u e s = f i l l ) +
49 theme ( l egend . p o s i t i o n =" bot tom " , l egend . d i r e c t i o n =" h o r i z o n t a l " ,
50 l egend . box = " h o r i z o n t a l " , l egend . t i t l e = e l e m e n t _ b l a n k ( ) ,
51 l egend . t e x t = e l e m e n t _ t e x t ( s i z e =12) ,
52 a x i s . l i n e = e l e m e n t _ l i n e ( s i z e =1 , c o l o u r = " b l a c k " ) ,
53 a x i s . t e x t . x= e l e m e n t _ t e x t ( c o l o u r =" b l a c k " , s i z e = 11) ,
54 a x i s . t e x t . y= e l e m e n t _ t e x t ( c o l o u r =" b l a c k " , s i z e = 11) +
55 t i t l e = e l e m e n t _ t e x t ( s i z e =15 , f a c e =" bo ld " ) )
56 p
57

58 p<−g g p l o t ( i r i s . lda , a e s ( x=LD1 , y =0 , f i l l =as . c h a r a c t e r ( V3 ) ) ) +
59 geom_ p o i n t ( shape =21 , s i z e =3 , c o l o u r =" #000000 " ) +
60 g g t i t l e ( "1−D LDA R e s u l t on I r i s Data " ) +
61 x l a b ( "X1" ) +
62 s c a l e _ f i l l _ manual ( v a l u e s = f i l l ) +
63 theme ( l egend . p o s i t i o n =" bot tom " , l egend . d i r e c t i o n =" h o r i z o n t a l " ,
64 l egend . box = " h o r i z o n t a l " , l egend . t i t l e = e l e m e n t _ b l a n k ( ) ,
65 l egend . t e x t = e l e m e n t _ t e x t ( s i z e =12) ,
66 a x i s . l i n e = e l e m e n t _ l i n e ( s i z e =1 , c o l o u r = " b l a c k " ) ,
67 a x i s . t e x t . x= e l e m e n t _ t e x t ( c o l o u r =" b l a c k " , s i z e = 11) ,
68 a x i s . t e x t . y= e l e m e n t _ t e x t ( c o l o u r =" b l a c k " , s i z e = 11) +
69 t i t l e = e l e m e n t _ t e x t ( s i z e =15 , f a c e =" bo ld " ) )
70 p
71

72 %pca
73 s <− prcomp ( i r i s [ , 1 : 4 ] , s c a l e . = F , c e n t e r = T )
74 i r i s . matrix<−as . matrix ( i r i s [ , −5] )
75 i r i s . new<− i r i s . matrix %∗% r =s $ r o t a t i o n % new

c o o r d i n a t e
76

77 i r i s . pca<−as . data . frame ( cbind ( i r i s . new , as . c h a r a c t e r ( i r i s $ S p e c i e s ) ) )
78 i r i s . pca $LD1<−as . numeric ( as . c h a r a c t e r ( i r i s . pca $LD1) ) % f a c t o r
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s h o u l d be t r a n s t o char f i r s t t h e n t o numeric
79 i r i s . pca $LD2<−as . numeric ( as . c h a r a c t e r ( i r i s . l d a $LD2) ) % f a c t o r

s h o u l d be t r a n s t o char f i r s t t h e n t o numeric
80

81

82 p<−g g p l o t ( i r i s . pca , a e s ( x=LD1 , y=LD2 , f i l l =as . c h a r a c t e r ( V3 ) ) ) +
83 geom_ p o i n t ( shape =21 , s i z e =3 , c o l o u r =" #000000 " ) +
84 g g t i t l e ( "2−D PCA R e s u l t on I r i s Data " ) +
85 x l a b ( "X1" ) + y l a b ( "X2" ) +
86 s c a l e _ f i l l _ manual ( v a l u e s = f i l l ) +
87 theme ( l egend . p o s i t i o n =" bot tom " , l egend . d i r e c t i o n =" h o r i z o n t a l " ,
88 l egend . box = " h o r i z o n t a l " , l egend . t i t l e = e l e m e n t _ b l a n k ( ) ,
89 l egend . t e x t = e l e m e n t _ t e x t ( s i z e =12) ,
90 a x i s . l i n e = e l e m e n t _ l i n e ( s i z e =1 , c o l o u r = " b l a c k " ) ,
91 a x i s . t e x t . x= e l e m e n t _ t e x t ( c o l o u r =" b l a c k " , s i z e = 11) ,
92 a x i s . t e x t . y= e l e m e n t _ t e x t ( c o l o u r =" b l a c k " , s i z e = 11) +
93 t i t l e = e l e m e n t _ t e x t ( s i z e =15 , f a c e =" bo ld " ) )
94 p
95

96 p<−g g p l o t ( i r i s , a e s ( x= S e p a l . Length , y= S e p a l . Width , f i l l = S p e c i e s ) ) +
97 geom_ p o i n t ( shape =21 , s i z e =3 , c o l o u r =" #000000 " ) +
98 g g t i t l e ( " O r i g i n a l I r i s Data " ) +
99 x l a b ( " S e p a l . Length " ) + y l a b ( " S e p a l . Width " ) +

100 s c a l e _ f i l l _ manual ( v a l u e s = f i l l ) +
101 theme ( l egend . p o s i t i o n =" bot tom " , l egend . d i r e c t i o n =" h o r i z o n t a l " ,
102 l egend . box = " h o r i z o n t a l " , l egend . t i t l e = e l e m e n t _ b l a n k ( ) ,
103 l egend . t e x t = e l e m e n t _ t e x t ( s i z e =12) ,
104 a x i s . l i n e = e l e m e n t _ l i n e ( s i z e =1 , c o l o u r = " b l a c k " ) ,
105 a x i s . t e x t . x= e l e m e n t _ t e x t ( c o l o u r =" b l a c k " , s i z e = 11) ,
106 a x i s . t e x t . y= e l e m e n t _ t e x t ( c o l o u r =" b l a c k " , s i z e = 11) +
107 t i t l e = e l e m e n t _ t e x t ( s i z e =15 , f a c e =" bo ld " ) )
108 p
109

110 p<−g g p l o t ( i r i s . lda , a e s ( x=LD1 , y =0 , f i l l =as . c h a r a c t e r ( V3 ) ) ) +
111 geom_ p o i n t ( shape =21 , s i z e =3 , c o l o u r =" #000000 " ) +
112 g g t i t l e ( "1−D LDA R e s u l t on I r i s Data " ) +
113 x l a b ( "X1" ) +
114 s c a l e _ f i l l _ manual ( v a l u e s = f i l l ) +
115 theme ( l egend . p o s i t i o n =" bot tom " , l egend . d i r e c t i o n =" h o r i z o n t a l " ,
116 l egend . box = " h o r i z o n t a l " , l egend . t i t l e = e l e m e n t _ b l a n k ( ) ,
117 l egend . t e x t = e l e m e n t _ t e x t ( s i z e =12) ,
118 a x i s . l i n e = e l e m e n t _ l i n e ( s i z e =1 , c o l o u r = " b l a c k " ) ,
119 a x i s . t e x t . x= e l e m e n t _ t e x t ( c o l o u r =" b l a c k " , s i z e = 11) ,
120 a x i s . t e x t . y= e l e m e n t _ t e x t ( c o l o u r =" b l a c k " , s i z e = 11) +
121 t i t l e = e l e m e n t _ t e x t ( s i z e =15 , f a c e =" bo ld " ) )
122 p
123

1 c l o s e a l l ; c l e a r ; c l c ;
2 load MNISTDigit . mat
3 temp= h o r z c a t ( t r a i n I m a g e s , t r a i n L a b e l s ) ;
4 temp=temp ( 4 0 0 0 1 : 6 0 0 0 0 , : ) ;
5 whos t r a i n I m a g e s ;
6 group =temp ( : , 7 8 5 ) ;
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7 whos group ;
8 k e y i n d e x = f i n d ( group ==1 | group ==2 | group ==3 | group ==4 | group ==5) ;
9 whos k e y i n d e x ;

10 a l l 1 t o 5 =temp ( keyindex , 1 : 7 8 5 ) ;
11 whos a l l 1 t o 5 ;
12 a l l 1 t o 5 = a l l 1 t o 5 ( 1 : 3 0 0 0 , : ) ;
13 a l l 1 t o 5 O r d e r e d = s o r t r o w s ( a l l 1 t o 5 , 7 8 5 ) ;
14

15 t 1 = c l o c k ;
16

17 g= u n i qu e ( a l l 1 t o 5 O r d e r e d ( : , 7 8 5 ) ) ;
18 c= z e r o s ( s i z e ( g ) ) ;
19 f o r i =1 : l e n g t h ( g )
20 c ( i ) = l e n g t h ( f i n d ( a l l 1 t o 5 O r d e r e d ( : , 7 8 5 ) ==g ( i ) ) ) ;
21 end
22

23 a l l 1 t o 5 N o L a b e l = a l l 1 t o 5 O r d e r e d ( : , 1 : 7 8 4 ) ;
24 whos a l l 1 t o 5 N o L a b e l ;
25 d a t a = a l l 1 t o 5 N o L a b e l ;
26 N = c ;
27 r e d u c e d _dim =2;
28 C= l e n g t h (N) ;
29 dim= s i z e ( da t a ’ , 1 ) ;
30

31 pos= z e r o s (C , 2 ) ;
32 f o r i =1 :C
33 START=1;
34 i f i >1
35 START=START+sum (N( 1 : i −1) ) ;
36 end
37 END=sum (N( 1 : i ) ) ;
38 pos ( i , : ) =[START END ] ;
39 end
40

41 UI = [ ] ;
42 f o r i =1 :C
43 i f pos ( i , 1 ) == pos ( i , 2 )
44 UI =[ UI ; d a t a ( pos ( i , 1 ) , : ) ] ;
45 e l s e
46 UI =[ UI ; mean ( d a t a ( pos ( i , 1 ) : pos ( i , 2 ) , : ) ) ] ;
47 end
48 end
49

50 U=mean ( d a t a ) ;
51 SB= z e r o s ( dim , dim ) ;
52 f o r i =1 :C
53 SB=SB+N( i ) ∗ ( ( UI ( i , : )−U) ’∗ ( UI ( i , : )−U) ) ;
54 end
55

56 SW= z e r o s ( dim , dim ) ;
57 f o r i =1 :C
58 f o r j =pos ( i , 1 ) : pos ( i , 2 )
59 SW=SW+( d a t a ( j , : )−UI ( i , : ) ) ’∗ ( d a t a ( j , : )−UI ( i , : ) ) ;
60 end
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61 end
62

63 SW=SW/ sum (N) ;
64 SB=SB / sum (N) ;
65 m a t r i x =pinv (SW) ∗SB ;
66 [V,D]= e i g ( m a t r i x ) ;
67 [ c , i n d ]= s o r t ( diag (D) , ’ descend ’ ) ;
68 V2=V ( : , i n d ) ;
69 V2=V2 ( : , 1 : 2 ) ;
70

71 r e d u c e d _ d a t a = d a t a ∗V2 ;
72 t 2 = c l o c k ;
73 est iLDA=t2−t 1
74

75 r e d u c e d _ d a t a ( : , 1 ) =1000∗ r e d u c e d _ d a t a ( : , 1 ) ;
76 r e d u c e d _ d a t a ( : , 2 ) =1000∗ r e d u c e d _ d a t a ( : , 2 ) ;
77 ReducedWithLabel= h o r z c a t ( r e d u c e d _ da ta , a l l 1 t o 5 O r d e r e d ( : , 7 8 5 ) ) ;
78

79 f i g u r e ;
80 p l o t ( ReducedWithLabel ( 1 : pos ( 1 , 2 ) , 1 ) , ReducedWithLabel ( 1 : pos ( 1 , 2 ) , 2 ) , ’ b∗ ’

) ; t i t l e ( ’LDA on MNIST d i g i t 1−5 ’ )
81 x l a b e l ( ’PC1 ’ ) ; y l a b e l ( ’PC2 ’ ) ; a x i s ( ’ e q u a l ’ ) ;
82 gr id on ;
83 hold on ;
84 p l o t ( ReducedWithLabel ( pos ( 2 , 1 ) : pos ( 2 , 2 ) , 1 ) , ReducedWithLabel ( pos ( 2 , 1 ) : pos

( 2 , 2 ) , 2 ) , ’mp ’ ) ;
85 gr id on ;
86 hold on ;
87 p l o t ( ReducedWithLabel ( pos ( 3 , 1 ) : pos ( 3 , 2 ) , 1 ) , ReducedWithLabel ( pos ( 3 , 1 ) : pos

( 3 , 2 ) , 2 ) , ’ k∗ ’ ) ;
88 gr id on ;
89 hold on ;
90 p l o t ( ReducedWithLabel ( pos ( 4 , 1 ) : pos ( 4 , 2 ) , 1 ) , ReducedWithLabel ( pos ( 4 , 1 ) : pos

( 4 , 2 ) , 2 ) , ’ gd ’ ) ;
91 gr id on ;
92 hold on ;
93 p l o t ( ReducedWithLabel ( pos ( 5 , 1 ) : pos ( 5 , 2 ) , 1 ) , ReducedWithLabel ( pos ( 5 , 1 ) : pos

( 5 , 2 ) , 2 ) , ’ r ^ ’ ) ;
94 hold o f f ;
95 l egend ( ’ 1 ’ , ’ 2 ’ , ’ 3 ’ , ’ 4 ’ , ’ 5 ’ )
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