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Abstract

Industry companies have large amount of data to get insights from, and the insights
can provide valuable information so as to help companies to make next-step actions.
In this project, we helped Verizon Wireless on their cellphone user data clustering by
using the spectral clustering technique. An adaptive spectral clustering process was
built and tested, which includes data processing, dimensionality reduction, similar-
ity and clustering. Three different spectral clustering methods were implemented. In
the end, insights were extracted from the clustering results. The process was tested
on the 20 news group data. High clustering accuracies were achieved on several
data subsets and the full data. This adaptive spectral clustering could be applied in
many areas like document clustering and web user clustering.
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Chapter 1

Introduction

1.1 Project Introducion

As a wireless service provider, Verizon has a large amount of data about cellphone
users, including users’ demographic information and web browsing history. As il-
lustrated in Figure 1.1 left, they would like to discover insights from these data. The
interested topics contain customer segmentation, users feature prediction, and also
the temporal variations of these insights, etc.

www.xyz.com

FIGURE 1.1: Insights from large user data

In this Spring 2017 CAMCOS project, we focused on customer segmentation, that
is, to discover similar users based on their website browsing history, shown in Figure
1.1 right. From the statistical point of view, we regard this problem as a clustering
problem, to group objects(users) based on their features(website). The clustering
result will provide valuable information to Verizon and their business customers.
Their marketing schemes can be built on the clustering results.

Clustering is a statistical data analysis technique, and belongs to the unsuper-
vised machine learning field. The objective is to group similar objects while sepa-
rating dissimilar objects. The fundamental problem of clustering is to find a proper
way to measure proximity, including distances, similarities etc[6].

1.2 Project Data Format and Structure

The true data could not be made available to us because of the data confidentiality.
Instead, we obtained a simulated dataset from Verizon, which mimics their true data
structure and distribution very well.
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Verizon gave us 71 days’ user data information. Figure 1.2 shows us the structure
of the data folders and dimension of each folder. Each user has around 70 variables
including demographic and web browsing information. The "hist" folder contains
all the variables and information we need. There are totally around 1 million users
in the simulated dataset.

Original data are parquet files. The data extraction and initial exploration are
done in Pyspark2 [11].

agg	  

agg	  

profileAgg	  
70,995,527	  *	  11	  

hist	  
999,937	  *	  73	  

Oneday	  

Profile	  
70,995,527	  	  *	  7	  

Feature	  
16,209,198	  	  *	  

5	  

•  Date=20161124	  
•  …	  
•  Date=20170202	  
	  	  	  	  999,937	  *	  11	  

•  Date=20170202	  
999937	  *	  73	  

•  Date=20161124	  
•  …	  
•  Date=20170202	  
999,937	  *	  7	  

•  Date=20161124	  
•  …	  
•  Date=20170202	  
~	  50,000	  *5	  

o  Part-‐000.parquet	  
o  …	  
o  Part-‐199.parquet	  
	  ~5000*11	  

o  Part-‐000.parquet	  
o  …	  
o  Part-‐199.parquet	  
o  ~5000	  *7	  
o  Part-‐200.parquet	  
o  …	  
o  Part-‐399.parquet	  
~	  568*	  5	  

o  Part-‐000.parquet	  
o  …	  
o  Part-‐199.parquet	  
	  ~5000*73	  

o  Part-‐000.parquet	  
o  …	  
o  Part-‐399.parquet	  
100~1000*5	  

FIGURE 1.2: Verizon Simulated Data

As shown in Figure 1.3, we only took the aggregated website browsing data in
the past 71 days, and transformed them to sparse matrix. After filtering out the
"none" records in the column of "tldAggScore", we got about 330k users with 175k
websites.
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tldAggScore	  	  
{web1:	  1,	  webm:1}	  

{webm:1}	  
None	  

…	  
{web	  k:1}	  

User	  	  
Id	  1	  
Id	  2	  
Id	  3	  
...	  
Id	  n	  

999,	  937	  users	  

User	  	   Web	   Frequency	  

Id	  1	   Web	  1	   1	  

Id	  1	   Web	  m	   1	  

Id	  2	   Web	  m	   1	  

…	   …	   …	  

Id	  n	   Web	  k	   1	  

Web	  1	   2	   … 	  	  m	  

Id	  1	   	  1	   0	   … 1	  

Id	  2	   0	   0	   … 1	  

…	   …	   …	   … …	  

Id	  n	   0	   0	   … 0	  

Verizon	  Data	  
(web	  visits	  part)	  

Sparse	  Matrix	  

Dense	  Matrix	  

Filter	  out	  missing	  

FIGURE 1.3: Extracted Data Matrix From Simulated Data

Two main features of this data are :

• High dimensional
The dimension of the feature space is 175K.

• High sparsity

Percentage of non-zero entries =
591K

330K ∗ 175K
= 0.001% (1.1)

Figure 1.4 shows a 200 user sample data. Dark points represent zero entries,
and lighter points represent non-zero ones.

FIGURE 1.4: 200 Users Sample Data Matrix

1.3 Proof of Concept Research

The data true labels are unknown, so we are limited with the measures of the clus-
tering methods and results. In this research, we conducted a proof of concept study,
by using a classical dataset - "20 news group" dataset [8], which will be introduced in
the next chapter. We implemented the process and tested it mainly using the 20 news
group data. The results are compared and improved. Later we tried the process on
the simulated data and get the insights from the data. In the end phase, Verizon



Chapter 1. Introduction 4

also implemented the function blocks on the true dataset. The whole process was
developed and tested in R [14].

1.4 Overall Process Flow

The main process we developed for the data clustering is shown below in Figure 1.5.
Starting with the data, the first step is data processing, which mainly includes col-
umn processing and row processing. Since the data is large, we did dimensionality
reduction in the second step. This step is not a required step but it gives better result
after test. The next process is similarity calculation, in which multiple methods are
considered. The clustering is done based on similarity matrix. We explored multiple
methods like Kmeans [5], Reduced Kmeans [3] etc, and finalized and focused with
spectral clustering [16, 2]. The final step is getting insights from the clustering result,
which is the most interesting part to industry customers.

Data 
Processing 
1

Sparse 
data 

•  Binary data 
•  Column processing 
•  Row processing 

•  Cosine 
•  Correlation 
•  Gaussian 
•  Kullback-Leibler(KL) 

Divergence 
•  Jensen–Shannon(JS) 

Divergence •  NJW 
•  NCUT 
•  Diffusion Map 

Get cluster 
insights using 

SVD 

Dimensionality 
Reduction 

2

Similarity 
3 Spectral 

Clustering 
4

Insights 
5 

FIGURE 1.5: Clustering Process Flow

1.5 Report Organization

The rest of the report is organized as follows.
Chapter 2 will cover the 20 news group data exploration and summary. In Chap-

ter 3 we will talk about the data processing we did to the columns and rows. Di-
mension reduction techniques will be shown in Chapter 4 and Chapter 5 is about
the similarity measures we tried. Chapter 6 is to demonstrate the outlier-removal
tests we tried.
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Spectral Clustering techniques will be covered in Chapter 7. And, we will show
our clustering insights and results in Chapter 8 and 9 separately. The ending chapter
is the summary and proposed future work.
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Chapter 2

20 News Group Data

2.1 Data Exploration

As introduced in the first chapter, the main challenges for Verizon data are its prop-
erties of high dimension and high sparsity. Since we do not have any information
on the structure of the data, it is difficult to make the cluster analysis on it. Our
strategy is to find a classical dataset that is similar to Verizon dataset and work on
it to develop and test our algorithms. Once the methods and algorithms are final-
ized, we will apply them to the Verizon data. In this project we choose 20 News
Group dataset (http://qwone.com/ jason/20Newsgroups/) as our emulated data
set to work on. It is not our target data set; we use it as the proof of concept.

The 20 News Group dataset is an open resource from Internet.It comprises around
18,000 newsgroups documents on 20 topics with all labels available. It has been split
in two subsets: one for training and the other one for testing. The split between the
train and test set is based upon messages posted before and after a specific date. It
is originally used as classification but in our project we did not use the labels for
training purpose. We develop our algorithms without labels. We only use labels
as ground truth to evaluate the performance of our methods. And also we use the
training dataset only. Whenever we discuss the 20 News Group dataset in the rest
of the report, we refer to its training set.

The total documents in the training set of the 20 newsgroup dataset are 11,269
which contain 53,975 unique words(including stop words). We did not remove any
stop word. The density of the dataset is 0.0024. Fig.2.1 shows the counts for each
word in the dataset. Most words appear at very low rate which is less than 5. Fig.2.2
shows how many words are there in each documents. Most documents contain
around 100 words.

FIGURE 2.1: Word Counts(logarithmic scale)
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FIGURE 2.2: Words per Document(logarithmic scale)

2.2 Dataset Structure

Fig.2.3 shows the overview of the 20 News Group dataset. These 20 news topics
belong to 6 categories(different colored in Fig.2.3), including comp(computer), poli-
tics, sci(science), rec(recreation), religion and misc(miscellaneous). In each category,
there are several similar topics.For example, in the category of comp(computer),there
are 5 topics including graphics,operation-system of Windows,IBM pc hardware, Mac
hardware and windows.x. They are more related compared with the groups from
different categories. It is more challenging to cluster on these groups from the same
category. In our project, we will select different combinations of groups to test our
algorithms.

FIGURE 2.3: Overview of 20 News Group Dataset
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2.3 Combinations of Groups

To test our proof of concept implementation, we develop six different tasks for 20
News Group dataset to recreate the results for sanity check. 20 News Group dataset
which was introduced in the previous chapter could be separated to six categories.
The combinations of groups are shown in table 2.1.

The first and the fourth tasks are selecting one small group from different cate-
gories. One is 3 clusters, and the other is 6 clusters, respectively. The former clusters
are comp.graphics, rec.autos, and sci.crypt. The latter clusters are comp.graphics,
rec.autos, sci.crypt, talk.politics.misc, talk.religion.misc, and misc.forsale.

The second and the third tasks are selecting all small groups form the same cat-
egory. One is 4 clusters, REC category, and the other is 5 clusters, COMP category,
respectively.

In the end, the fifth and the sixth tasks are using the full dataset. The former one
is trying to separate into 6 clusters, and the latter one is trying to separate into 20
clusters.

Table 2.1: Combination of Groups for Sanity Check
task Category Group included
1 comp comp.graphic

rec rec.autos
sci sci.crypt

2 rec rec.autos
rec.sport.baseball
rec.sport.hockey
rec.motorcycles

3 comp comp.graphics,
comp.os.ms-windows.misc,
comp.sys.ibm.pc.hardware,
comp.sys.mac.hardware,
comp.windows.x

4 comp comp.graphics
rec rec.autos
sci sci.crypt
politics talk.politics.misc
religion talk.religion.misc
misc misc.forsale

5 comp full dataset
rec
politics
sci
religion
misc

6 comp full dataset
rec
politics
sci
religion
misc
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2.4 Form of the Dataset

We convert the documents collected in the 20 News Group dataset to word counts.
That is, the appearance of each word in each document was counted and recorded.
This generates a document term frequency matrix shown in table 2.2. We convert
it to the sparse form which is shown in table 2.3. In the full matrix shown in table
2.2, the column represent words and row represent documents. It is a 11,269 * 53,975
matrix. The structure of 20 News Group data is pretty similar to that of the Veri-
zon data. It also has same property as Verizon data including high dimension and
very sparse structures. We can use it to mimic our target dataset and develop the
algorithms.

Table 2.2: Full Matrix
word 1 word 2 word 3 word 4 word 5 ... word n

doc 1 1 4 3 1 0 ... ...
doc 2 9 1 0 2 0 ... ...
doc 3 2 0 0 0 3 ... ...
... ... ... ... ... ... ... ...
doc m ... ... ... ... ... ... ...

Table 2.3: Sparse Form
docID wordID count
doc 1 word 1 1
doc 1 word 2 4
doc 1 word 3 3
doc 1 word 4 1
doc 2 word 1 9
doc 2 word 2 1
doc 2 word 4 2
doc 3 word 1 2
doc 3 word 5 3
... ... ...
doc m word n ...
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Chapter 3

Data Processing

In this chapter we discuss the data processing methods tested and implemented in
our algorithm. Many effective data processing techniques exist for text data such as
the 20 newsgroups dataset; however, we tailored our methods to ensure that they
could be generalized and applied to the Verizon data.

3.1 Binary

The first processing step is a decision about the format of the document term matrix.
The original data contains word frequency per document; alternatively, all nonzero
entries of the document term matrix can be converted to ones indicating that a word
occurred in a document. In this alternative format no frequency information is re-
tained, so there is loss of information as a result. The benefit is that words that tend to
have a high frequency per document are de-emphasized, e.g. the, and, to, etc. Thus,
converting all nonzero frequencies to ones gives all words the same weight within a
particular document. This step consistently boosted clustering performance across
all tests.

3.2 Column Processing

This section discusses the techniques applied columnwise to the document term ma-
trix. These steps allow us makes changes across all documents to the influence of a
particular word on the clustering results.

3.2.1 Column Trimming

Many of the words in the 20 news groups vocabulary are not useful features for
clustering because they are at the extremes of document occurrence: too common
or too rare. To handle this issue we use column trimming to reduce the number of
columns to a more useful subset. This is accomplished by applying two thresholds
to column sums. Since we have already converted the document term matrix to
binary, the column sums represent the number of documents that a particular word
occurs in. The two thresholds are:

1. Minimum document occurrence: 1

2. Maximum document occurrence: > 1000

The threshold values are chosen for specific reasons. The lower threshold removes
any column corresponding to a word that only appeared in a single document. Since



Chapter 3. Data Processing 11

we are attempting to cluster similar documents, a word occurring in only one docu-
ment cannot be used to determine similarity between that document and others. Ap-
plying this threshold to the column sums removes approximately 9% of the columns
in the document term matrix. This can be seen in the right tail of the plot in figure
3.1.

FIGURE 3.1: Column trimming thresholds applied to column sums

The upper threshold is used to remove words that are so prevalent that they
do not contribute any useful information. In text analysis, these words are often
removed by referring to list of a stop words; however, we do not want to remove
words in this way because it would not generalize to the Verizon data. Thus for
our purposes, the difficultly comes in choosing a value for this upper threshold.
The value was chosen to correspond roughly to twice the average cluster size. The
number of documents per cluster is summarized in figure 2.3. The reason being if
a word is common enough that it occurs in nearly all documents of two separate
clusters, then it will not provide useful information for clustering. This threshold
removes approximately 0.5% of the columns, and this is illustrated in the left tail of
the plot in figure 3.1.

3.2.2 Column Weighting

In an effort to further emphasize the most important words, we applied a weighting
function to the columns. For an individual column, the weight is determined based
on the column sum and is applied equally across all documents in that column. The
functions we considered are:

• Step

• Linear

• Beta
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• Inverse Document Frequency (IDF)

• IDF Squared

The motivation behind step, linear, and beta is similar to that from column trim-
ming: we want to assign the least weight to the common or rare words. All three
functions are essentially doing the same thing but with varying degrees of complex-
ity and control. The general form of these functions can be seen in the first three
plots of figure 3.2. Beta performed the best of these three functions, but there are a
few disadvantages. Since we have already removed columns with a sum of one dur-
ing column trimming, beta is heavily de-emphasizing words that only occur in a few
documents; these words may be the key features indicating that those documents
are indeed similar. The second disadvantage is that beta requires two additional pa-
rameters that must be tuned, and it can be quite difficult to choose two value that
generalize well outside of the specific problem context. As a result, we turned to a
different weighting function: inverse document frequency (IDF). IDF is parameter
free and gives the highest weight to infrequent words. Mathematically it is defined,

log

(
N

nt

)
where N is the total number of documents ad nt is the column sum of the t-th col-
umn. The plot of the function can be seen in the bottom right panel of figure 3.2. IDF
weighting led to better clustering results compared to all other weighting functions
considered above. After seeing the success of IDF, we decided to take it one step
further by squaring the weights output by the IDF function. This served to further
emphasize the infrequent and unique words. The ratio of maximum weight to min-
imum weight from IDF was approximately 4, whereas the ratio from IDF squared
was approximately 20. Squaring the IDF weights led to a noticeable boost in cluster-
ing accuracy, which will be discussed further in the results section.
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FIGURE 3.2: Column weighting functions

3.3 Row Processing

3.3.1 Row Trimming

After performing column trimming, it is possible that some documents (rows) will
no longer have any nonzero entries. These rows prevent the necessary matrices
operations from being performed later on during spectral clustering, so they are
removed during this step. Intuitively, removing these rows makes sense because it
is impossible to cluster the document without any information.

3.3.2 Row Normalization

The original documents from the 20 news groups data vary widely in length, so it
is important to apply some form of row normalization to the documents in order
to balance out the effect of document length. This step is performed after column
weighting, so it is applied to the resulting weight matrix not the original document



Chapter 3. Data Processing 14

term matrix. For the 20 news groups data, we considered L1 and L2 row normaliza-
tion. For a given row, the two normalization methods are mathematically defined,

L1 :
wj∑p

j=1 |wj |
L2 :

wj∑p
j=1w

2
j

L1 normalization transforms the weights within each row into a discrete probability
distribution as illustrated in the top panel of figure . L2 normalization projects each
point onto the unit circle. In the bottom panel of figure , this is illustrated for two
simulated clusters that are well separated in two dimensional space.

FIGURE 3.3: Illustration of L1 and L2 row normalization

In our tests, we found that normalization improved clustering results over no
normalization and L2 outperformed L1. Thus, L2 normalization was applied as a
data preprocessing step for all results displayed later on in this paper.
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Chapter 4

Dimensionality Reduction

4.1 Motivation

Real data usually have thousands, or even millions of dimensions. Huge number of
dimensions suffers from the so-called "curse of dimensionality", a phrase coined by
([1]) when considering problems in dynamic optimization. Another problem is that
high dimensionality demands more memory for data storage and more time for data
computation, which make many algorithms inefficient or even infeasible. The third
problem is that data became very sparse, so that density based clustering algorithms
become meaningless. Essentially, we assume that some of the data is noise, and we
can approximate the useful part with a low dimensional part space. Dimensionality
reduction not only reduces the dimension of data, but also suppress noise.

4.2 Latent Semantic Indexing

Latent Semantic Indexing (LSI) is a mathematical method used to perform a low-
rank (say, k) approximation of document-term matrix (typical rank 100-300)([12]).
The general idea is to design a mapping such that the low-dimensional space reflects
semantic associations (latent semantic space), and then compute document similar-
ity based on the inner product in this latent semantic space. Two goals of LSI are
:

• Similar terms are mapped to nearby locations in low dimensional space

• Noise is reduced
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4.3 Singular Value Decomposition

FIGURE 4.1: Singular Value Decomposition

Singular Value Decomposition (SVD) ([4]), is a mathematical way to implement the
idea of LSI. Given a matrix A ∈ IRm∗n, The left singular vectors U are an orthonor-
mal basis for the column space of A.The right singular vectors V are an orthonormal
basis for the row space of A. The diagonal elements in Σ matrix are in descending
order, which represent the strength of each subspace. If A has rank r, then A can
be written as a sum of r rank-1 matrices. By keeping the top k strongest singular
vectors, we map the original data into a top k dimensional subspace and obtain a
reduced dataset B.

B = AVk (4.1)

In the nature language field, the k can range from around 100 to 300, in our case, we
normally set k to a few hundred.
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4.4 Illustration of 20newsgroup data with SVD

FIGURE 4.2: SVD-3 Clusters

In order to visualize data, we map our 20newsgroup dataset into k=3 dimensional
semantic space through SVD, one point in the plot represents one document, the
same color means the same group. We first picked up only 3 clusters, comp.graphics,rec.autos,
and sci.crpyt as the Fig 4.2 shown, we can see clearly this reduced data presenting
a significant structure that the 3 groups are well separated. If treat each document
is a vector from origin, we can see the documents from the same group is heading
to a specific direction, that may represent a specific topic. We can also see the doc-
uments in the same group have a small angle with each other, and a big angle with
documents in the other groups.
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FIGURE 4.3: SVD-4 Clusters and 5 Clusters

In Fig 4.3, we picked the 4 clusters and 5 clusters from data. For the 4 clus-
ters, we picked up groups comp.graph, rec.autos, sci.crypt, and talk.politics, these
4 groups are subgroups from the 4 big groups which are comp, rec, sci, and talk.
since the topics are very different, we assume these 4 clusters are easier to distin-
guish, and hope to see a big angle from the plot. For the 5 clusters, we picked
the groups comp.graphics, comp.os.ms-windows.misc, comp.sys.ibm.pc.hardware,
comp.sys.mac.hardware, and comp.windows.x 6, which are from the same big group
comp, we assume they are more difficult to distinguish since the similarity between
each document are small.From the plot, we can see all the documents are heading to
a same direction and the angle between each other are small.

FIGURE 4.4: SVD-6 Clusters
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At last, we picked all the dataset with 6 big clusters, alt.atheism,comp, misc.forsale,
rec,sci, and talk. We can see from Fig 4.4, all the groups are well separated, so SVD
is a feasible way for clustering in our case. It also provides us a way to consider the
cosine similarity (angle) to measure the closeness of documents in the next step.
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Chapter 5

Similarity

Once the data processing and dimensionality reduction steps are finished, our
algorithm requires a similarity score between every pair of data observations. In
the context of our datasets, we needed to compute pairwise similarity between ev-
ery pair of documents or web users. Through this process, we transition from the
original n × p data matrix into some n × n similarity matrix S, where the entry Sij
= Sim(xi, xj) ∈ [0, 1]. Intuitively, a strong similarity measure should be symmetric,
reflexive, and nonnegative. In the following sections, we will discuss our strongest
candidates for similarity metrics.

5.1 Gaussian Kernel Similarity

Our first idea was to calculate pairwise distances between all data observa-
tions, and then convert from distance to similarity using the Gaussian Kernel:

Sim(x, y) = e
−dist(x,y)2

2σ2

Given that distance is always nonnegative, the Gaussian Kernel is strictly ∈ (0, 1],
equal to 1 only if dist(x, y) = 0. In the usual Gaussian density function, σ2 represents
variance. Here, it similarly yields a scale parameter that specifies a "neighborhood"
of similarity, allowing us to measure the data at different magnitudes of resolution.

FIGURE 5.1: In the left figure, a small sigma only considers similarity
between very small distances. In the right figure, a larger sigma in-
creases the "neighborhood" of similarity to larger pairwise distances.
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Beyond specifying a proper σ2 value, we must also choose an adequate dis-
tance function. Any distance function can be inputted, bringing along all of its own
pros and cons. We were intrigued by one particular distance function, known as
Kullback–Leibler (KL) Divergence. This method treats each row as a discrete prob-
ability distribution and calculates the pairwise divergence between probability dis-
tributions (which are rows of data). This comes from information theory, where
"divergence" of x and y is defined as the information loss when using distribution y
to approximate distribution x. Similar observations should approximate each other
well, yielding small divergence; dissimilar observations should approximate poorly,
yielding large divergences. This can be expressed mathematically:

KL-Div(x, y) = E
[

log(x)− log(y)

]
=
∑
k

xk

[
log
(
xk
yk

)]
where x and y are discrete probability distributions. We convert frequency counts to
discrete probability distributions by dividing each row by its row sum (the total
frequency count for that observation).

The following figure shows an example of the algorithm applied between two
data observations. The example uses full count data for clarity of demonstration,
rather than binary data which would be more appropriate for our application. The
algorithm remains the same in either case.
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FIGURE 5.2: KL Divergence follows a 4–step algorithm to calculate
distance between two observations (blue and purple):

1) We start with frequency counts for each column.
2) We convert frequency counts to discrete probability distributions
by dividing the total frequency count for each document.
3) We take the log of each discrete probability value, going from [0,1]
probability space to (−∞, 0) logarithm space.
4) We sum the difference in log probability for each column value.
5) KL Divergence is the sum of all log probability differences,
weighted by the original discrete probabilities.

One important consequence arises from this formulation of divergence: the equa-
tion is not symmetric. Specifically, the expected value involves the probability dis-
tribution of x or the probability distribution of y, but it does not inherently recon-
cile any differences between them. We moved on to an extension of KL Divergence,
known as Jensen–Shannon (JS) Divergence, which compares x and y to their average
distribution M = x+y

2 rather than comparing x and y directly:
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JS-Div(x, y) =
Divergence(x,M) + Divergence(y,M)

2

⇒ Sim(x, y) = e
−JS.Div(x,y)2

2σ2 (Gaussian Kernel)

JS-Div is the average of KL-Div(x,M ) and KL-Div(y,M ), thereby achieving symme-
try. However, we quickly reached a number of obstacles against full implementation
of this algorithm. Most importantly: this process is computationally expensive. We
never found an expedient way to calculate the full KL-Divergence matrix, much less
the JS-Divergence matrix. This was a huge obstacle toward implementation on any
practical dataset.

Even beyond the issues with JS Divergence specifically, the entire Gaussian Ker-
nel method is dependent upon a couple problematic issues. To add to the problem
of runtime, distance measures are generally always >0, eliminating the computa-
tional benefits of sparsity. When we tried running faster distance algorithms, the
Gaussian Kernel estimate did not give successful results (relative to other similarity
algorithms). Lastly, identifying the proper choice of σ2 proved quite elusive. We
tried strategies like k–nearest neighbor to specify sensible σ2 values (trying many
different k values), but we never discovered a method which gave strong results for
our data. These methods for choosing σ2 also compounded upon runtime issues,
which were already a problem with most distance measures. We eventually decided
to abandon the Gaussian Kernel entirely, in favor of other similarity methods.

5.2 Correlation

Instead of converting distance into similarity, we explored strategies to directly
calculate similarity measures. One choice uses a variation of Pearson correlation to
calculate pairwise similarity between rows of the data:

Sim(x, y) =

∑
k

wk(xk − µk)(yk − µk)√√√√∑
k

wk(xk − µk)2
∑
k

wk(yk − µk)2
=

(
~xi−~µ

)T
W
(
~xj−~µ

)∣∣∣∣~xi−~µ∣∣∣∣ · ∣∣∣∣ ~xj−~µ∣∣∣∣
where T signifies the transpose for the matrix multiplication. Put more simply, we
take the inner product of ~x and ~y after column centering and L2 row normalization.

This calculation essentially compares rows ~x and ~y according to their deviation
from the mean in each column. If one or both rows have average values for a vari-
able, that variable will contribute zero covariance to their overall correlation simi-
larity. If these rows deviate from the mean in opposite directions, that variable will
contribute negatively to their similarity. If these rows deviate from the mean in the
same direction (whether above or below the mean), then that variable will contribute
positively to their similarity. The stronger the mean deviations, the stronger the sim-
ilarity contribution.

The fact that correlation similarity accounts for the mean in its calculation is ac-
tually very useful for us. In KL divergence, two large values in the same variable
would contribute to low distance (high similarity). However, this variable may be
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large for all the observations, meaning that a pair of large values is not particularly
special there. For example, it is probably common for two documents to use the
word "the" many times, or for two web users to visit the website Facebook often.
This does not necessarily indicate similarity, because all different sorts of documents
use the word "the", and many different types of web users all visit Facebook. Corre-
lation similarity measures behavior relative to the mean, which allows for a variable’s
context to be accounted for in the similarity calculations.

FIGURE 5.3: The left and right figures compare the exact same pair of
documents, but with different data means. In the left figure, both doc-
uments deviate strongly from the mean in the same variables, yield-
ing strong correlation. In the right figure, the documents generally
follow the same pattern as the column means, yielding no significant

correlation between the two documents.

This property was highly convenient at first, but we eventually managed to mit-
igate the impact of such common variables with the IDF column weighting, dimin-
ishing the usefulness of data centering within correlation similarity. Also, since most
column means are slightly above zero in a sparse nonnegative data set, there were
many instances of negative similarities (note that Correlation(x, y) ∈ [−1, 1]). We
were able to skirt the issue of negativity by re-mapping the similarity matrix from
[−1, 1] space to [0, 1] space (subtract the minimum value to get minimum=0, then
divide by the new maximum value to get maximum=1). Even then, correlation still
failed on one key point: it sacrifices the data sparsity by subtracting the mean. All
the zero entries became tiny negative values, since the column means are all slightly
above zero. This blew up the memory requirements for calculating a full n× n sim-
ilarity matrix. For practical purposes, we absolutely required a similarity measure
which would retain the benefits of sparsity.

5.3 Cosine Similarity

In order to preserve sparsity, we required a similarity algorithm which pre-
served the large proportion of zeros in the dataset. We achieved this by using the
Cosine similarity measure:
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Sim(x, y) = ~x · ~y√∣∣∣∣~x∣∣∣∣2 ∣∣∣∣~y∣∣∣∣2 = cos(θxy)

Analytically, this is simply the inner product between every pair of rows. Two rows
will have a large inner product if they have large values in the same set of variables.
If one or both rows have a value close to zero for some variable, that variable will
not contribute to their similarity. This has the caveat of strictly finding "positive"
similarity, where only simultaneously large magnitudes will indicate similarity. Two
rows with low values in the same set of variables will not demonstrate strong cosine
similarity, unless they also have simultaneously large magnitudes in a mutual set of
variables as well. This may actually be desirable in a sparse data set, where most
rows will probably have zero or near-zero values in a majority of columns.

Geometrically, we are treating each row as a unit vector (dividing by the Eu-
clidean length) and then calculating the angle between each pair of vectors. Similar
documents should point in the same "direction", essentially having similar values in
a core set of columns (at least, relative to the other documents).

FIGURE 5.4: In this figure, we compare the similarity of the purple
vector to the red and blue vectors. Red and purple are closer in terms
of Euclidean distance, but the purple and blue vectors are much more
similar in terms of their directions (general content). Notice how each

vector is projected onto the unit circle (scaled to unit length).

Since our particular dataset is all nonzero values (for both binary and the full
count data), each data point will lie in the nonnegative orthant (equivalent to the
"first quadrant" in 2D). This gives the extremely convenient consequence of cosine
similarities ∈ [0, 1], useful for Spectral Clustering purposes. Also, to show the com-
putational expedience, we can calculate the cosine similarity extremely simply in
matrix notation:

Sim(X) = XXT

where X is the (weighted) data matrix, which should be normalized beforehand to
have L2 row lengths equal to 1. Consequently, XXT is our n × n similarity matrix,
with all the desirable properties of symmetry, nonnegativity, and sparsity. Sparsity
can also be further accentuated with certain forms of pre–processing, such as col-
umn trimming. The only major drawback of cosine similarity is the potential impact
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of abnormally common variables (like common words or popular websites) which
could contribute significant but meaningless similarity between rows that are other-
wise dissimilar. Two documents which both use the word "the" are not truly similar,
but the cosine similarity algorithm will not take into account any variable context
(like an abnormally high mean). This highlights the extreme importance of noise
reduction in the other steps, mainly column weighting and outlier removal.
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Chapter 6

Outlier Removal

A problem that occurs often in clustering task is that there are outlier values that
may not cluster well. In order to counter this, we came up with a method to remove
these outliers. The idea behind removing outliers was that we could remove docu-
ments that were not conducive to clustering, thereby improving the clustering of all
other documents.

In our setting, outliers corresponded to documents that:

1. Have low information, or

2. are dissimilar to other documents

Once we determined our outlier criteria, we then had to implement the removal.

6.1 Low Information

In order to remove outliers based on low information, we first had to determine what
constituted low information. Because we have been using IDF weighting, we could
use that as a measure to determine the value of a document. IDF weighting gives
more weight to infrequent words, and less weight to common words, we could sum
up all the word values in a document after the weighting step. A document having a
low row sum told us one of two things: either the document had very few words, or
the words contained in the document were very common. Either of these situations
would make a document harder to cluster. ...

6.2 Low Connectivity

As an alternative to removing outliers based purely on their informational value,
we removed documents that were not similar to others. In order to do this, we still
performed the IDF weighting step on the data, and in addition we then performed
cosine similarity. This resulted in us having a symmetric n × n matrix S where Si,j
would be the similarity of document i to document j. When taking the sums

di =
∑
j

Si,j

we get the degree of connectivity for each document. If a document has low degree,
then it is not similar to many other documents, and therefore is less likely to cluster
well.
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6.3 Results

FIGURE 6.1: Outlier Removal for Small Document Set

In figure 6.1, we tested outlier removal for our smallest dataset. This dataset in-
cluded 3 clusters that were fairly distinguishable from each other, allowing us to
have nice computational efficiency. One thing we noticed for this dataset was that
removing documents with low connectivity and documents with low information
gave us similar results.

FIGURE 6.2: Outlier Removal for Large Document Set

In figure 6.2 we tested outlier removal for 6 known clusters, one from each meta-
cluster. One thing to note is that as we removed larger percentages of the data, we
got consistently better results removing documents with low information than we
did removing documents with low connectivity.
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Chapter 7

Spectral Clustering

Now that we have all our preprocessing done and our similarity matrix we move on
to clustering our observations. The clustering method we spent most of our time on
and had the greatest success with was spectral clustering. There are three different
spectral clustering algorithms that we used in our project; normalized cut(NCut),
Ng, Jordan, Weiss(NJW), and diffusion maps. These three algorithms are very simi-
lar with slight variations which we will go over in the next sections.

7.1 Normalized Cut

The first spectral clustering method we tried was the normalized cut(NCut) and is
probably the mostly commonly used. One common way to think about spectral clus-
tering is as a graph cut problem or a method of finding an optimal way of removing
edges from a graph so we separate our observations into different groups. If you
think of the similarity matrix we constructed earlier as a graph showing the connec-
tivity from one point to another what we want to do is remove these connections in
some optimal way.

FIGURE 7.1: An example of a graph constructed from a similarity
matrix
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For example, in Figure 7.1 if we simple removed the fewest number of edges or
gray lines till we had two separate clusters we would wind up with the cut repre-
sented by the red scissor. This cut is not ideal since we end up with one point by
itself in one cluster and everything else in another cluster. A better way the sepa-
rate the points is to use the green cut which balanced the number of edges we are
removing with the resulting cluster size. This is the method suggested by Shi and
Malik[13]. The formula for this is

min

(
Cut(A,B)

V ol(A)
+
Cut(A,B)

V ol(B)

)
Where Cut(A,B) is the sum of the edges we are removing and Vol(B) is the sum of all
the edges in cluster B or A.

Solving for this would be extremely difficult since we would have to check every
possible way of removing points to minimize this. We will be using linear algebra to
find an approximate solution but first lets define some terms

Let

xi =

{
1, if the observation i is in cluster A
−1, otherwise

for all observations i.

and

D =

d1 0
. . .

0 dn

 where di =
n∑
j=1

wij

If we also let

y = (1 + x)−
∑

xi>0 di∑
xi<0 di

(1− x) and L = D−W

It can be shown that

min

(
Cut(A,B)

V ol(A)
+
Cut(A,B)

V ol(B)

)
= min

y

yTLy
yTDy

If we relax the requirement that the entries of x need to be 1 or -1 and instead require
the entries to be real numbers this becomes the minimization of a quadratic form.
Thus,the solution to the normalized cut problem can be approximated by the sign of
the second largest eigenvector of D−1L

In general to find more than two clusters we only need to take more eigenvectors
of D−1L. Then we only need to run a simple clustering method such as kmeans to
find the clusters.
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FIGURE 7.2: The V matrix for the 3 clusters subset of 20 news group
dataset using Ncut

Algorithm (Ncut)

1. Construct similarity matrix W

2. L = D−W

3. Find the first k eigenvectors of D−1L

4. Make a matrix V by stacking the 2nd to kth eigenvectors

5. Cluster using kmeans using V where each row represents a point

7.2 Ng, Jordan, Weiss

Another method suggested by Ng, Jordan and Weiss [9] is very similar to the Ncut
algorithm described above with only a few small changes. The first change is instead
of finding the eigenvectors of D−1L we find the eigenvectors of D−1/2LD−1/2. The
second is after finding the matrix V we then normalize the rows of V
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FIGURE 7.3: The V matrix for the 3 clusters subset of 20 news group
dataset using NJW

Algorithm (NJW)

1. Construct similarity matrix W

2. L = D−W

3. Find the first k eigenvectors of D−1/2LD−1/2

4. Make a matrix V by stacking the k eigenvectors

5. Normalize the rows of V

6. Cluster using kmeans using V where each row represents a point

7.3 Diffusion Maps

The idea of diffusion maps is to use eigenvectors of Markov matrices to construct
coordinates called diffusion maps that generate efficient representations of complex
geometric structures [2].

It is connected with spectral clustering through the random walk explanation of
the latter.

A transition matrix P = (pij)i,j=1,...,n of the random walk is defined by [16]

P = D−1W (7.1)

As described by Von [16], pij represents the probability of transition in one step
from point i to point j, and it’s proportional to the edge weight wij . Spectral Cluster-
ing Ncut method is equivalent to the transition probabilities of random walk.
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FIGURE 7.4: Diffusion Maps

Diffusion maps is to take the different power of transition matrix and reveal the
probability of moving from one point to another point in t time steps. It allows
to integrate the local geometry and reveal relevant geometry structures of data in
different scales.Figure 7.4 shows the regular random walk and random walk with 10
steps. With more steps, the points that far from each other can be connected.

The power of P matrix have different eigenvalues, and t changes the number
of significant eigenvalues. In Figure 7.5, for the same cutoff 0.1, as t increase, the
number of significant eigenvalues decrease.
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FIGURE 7.5: Eigenvalues of P t
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Let {λl}l≥0 denotes the eigenvalues of P, and {vl}l≥0 represents the eigenvectors
of P. The diffusion maps {Vt}t∈N is given by

Vt(x) =


λt1v1(x)
λt2v2(x)
...
λtkvk(x)


The new coordinates is now in the Euclidean space, so we can calculate the new

space L2 distance, and feed it into the Kmeans clustering algorithm. Figure 7.6 is a
diffusion maps clustering result on the 3 clusters subset of 20 news group data. The
larger t tends to make the clusters fuse together.

FIGURE 7.6: 3 clusters subset(sci.crypt, comp.graphics, rec.autos) of
20 news group dataset by Diffusion Maps

Here is the algorithm of diffusion maps clustering, which is a modification on
the Ncut algorithm by changing the calculation of eigenvectors.

Algorithm (Diffusion Maps)

1. Construct similarity matrix W

2. L = D−W

3. Find the first k eigenvectors of D−1L

4. Make a matrix V by stacking the 2nd to kth eigenvectors

5. V = (λt1v1, λ
t
2v2, ..., λ

t
kvk)

6. Normalize the rows of V

7. Cluster using Kmeans using normalized V where each row represents
a point
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Chapter 8

Insights

Since we can now cluster our data into groups with common features, it could be
useful for us to have some insights into what features are common to each cluster.
In order to do this, we will use Principal Component Analysis to determine which
features are most prominent for each cluster.

8.1 Results from 20 Newsgroups Data

For the 20 Newsgroups data, we had the truth of our clusters known. With that
truth, in order to test the concepts, we used SVD with k = 1 to extract the most
important vector of words for each cluster. When looking at the SVD factorization

XXT = USV T

we remember that V provides an orthonormal basis for the column space associated
with our cluster. With k = 1 we are taking the vector v most associated with the
cluster we are observing.

(A) alt.atheism (B) comp.graphics

(C) comp.os.windows.misc (D) comp.sys.ibm.pc.hardware

FIGURE 8.1: Top 20 keywords for newsgroups 1-4
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(A) comp.sys.mac.hardware (B) comp.windows.x

(C) misc.forsale (D) rec.autos

(E) rec.motorcycles (F) rec.sport.baseball

(G) rec.sport.hockey (H) sci.crypt

(I) sci.electronics (J) sci.med

FIGURE 8.2: Top 20 keywords for newsgroups 5-14
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(A) sci.space (B) soc.religion.christian

(C) talk.politics.mideast (D) talk.politics.guns

(E) talk.politics.misc (F) talk.religion.misc

FIGURE 8.3: Top 20 keywords for newsgroups 15-20

Figures 8.1-8.3 shows the top 20 words into each of our 20 newsgroups. One thing to
notice is that while some of the newsgroups seem very accurate, knowing what they
are, others have a lot of meaningless words (to, or, and, it, etc.). These stopwords can
obscure the true insights into some of our clusters. Notably obscured insights occur
in comp.windows.x, in Figure 8.2B, as well as in the rec newsgroups.

8.2 Potential for Application to Verizon Data

Because one of the goals for the Verizon data set is market segmentation, we thought
that this method of gathering insights could be applied after clustering with the
intent of utilizing human insight into the various clusters. For example: if a cluster
were formed, and the principal "direction" of this cluster led you to websites for
tractors, feed, and Cabela’s, a human would realize that we’re dealing with a cluster
of farmers.
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Chapter 9

Results

9.1 20 Newsgroup Results

9.1.1 Measurement

There are plenty of measurements to define the algorithms work well or not, such as
Accuracy, Adjusted Rand Index (ARI) [10] [15], or F-measure. The Adjusted Rand
Index, which is adjusted from the Rand index, is to compare data clusterings by
using contingency tables 9.1. X1, X2, . . . , Xr and Y1, Y2, . . . , Ys are represented two
clusterings of these points. Also, nij means the intersection between X and Y .

TABLE 9.1: The contingency table.

XY Y1 Y2 . . . Ys Sums
X1 n11 n11 . . . n1s a1
X2 n21 n22 . . . n2s a2
. . . . . . . . . . . . . . . . . .
Xr nr1 . . . . . . nrs ar

Sums b1 b2 . . . bs

The below is the formula of ARI . The values of aij , bij , and nij are from the
contingency table which introduced before.

ARI =

∑
ij

(
nij
2

)
− [
∑

j

(
ai
2

)∑
j

(
bj
2

)
]÷
(
n
2

)
1
2 [
∑

i

(
ai
2

)
+
∑

j

(
bj
2

)
]− [

∑
j

(
ai
2

)∑
j

(
bj
2

)
]÷
(
n
2

)
Since we have the ground truth for 20 Newsgroup dataset, we focus on the accu-

racy to test our proof of concept implementation. The accuracy is th percentage of
data points that are truly in the same cluster are predicted to be in the same cluster.

On the other hand, we also record how much time our implementation takes
to evaluate the efficiency. The running time is recorded from the beginning, data
processing, to the end, spectral clustering, including getting the insights. For the
first tasks, the results can done on a laptop equipped with a 2.4 GHz Intel i5 (Sky-
lake) dual core processor. For the remaining two tasks, the results can be done on a
workstation equipped with two 2.4 GHz Intel Xeon (Westmere) quad core processor.
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9.1.2 Performance

Table 9.2 is the summary of the results. These results are applying cosine similarity
without SVD. In general, IDF 2 and Ncut or Diffusion Map performs better than
other combinations, except the fourth task. Our algorithm performs well in the most
of cases.

TABLE 9.2: The accuracy of 6 Tasks without SVD.

ColWeight Clustering 1st 2nd 3rd 4th 5th 6th
IDF NJW 93.83% 63.40% 41.03% 88.74% 49.91% 55.16%
IDF Ncut 94.00% 69.45% 39.37% 88.27% 45.55% 54.54%
IDF Diffusion Map 94.00% 66.43% 41.06% 88.24% 49.17% 54.27%
IDF 2 NJW 95.42% 69.24% 39.39% 78.52% 56.34% 59.01%
IDF 2 Ncut 85.80% 61.18% 40.56% 76.95% 49.86% 60.26%
IDF 2 Diffusion Map 73.12% 69.79% 37.04% 72.31% 56.43% 60.91%

After plotting the results, we could expect that for the easier tasks, such as the
first and the fourth task, the algorithm could attain 88% to 95% accuracy. For the
harder task, such as the second task and the third task, the algorithm could get
around 41% to 70% accuracy. For the full data, the algorithm could achieve 56%
to 61% accuracy.

FIGURE 9.1: The accuracy of 6 Tasks without SVD

Table 9.3 is the other table of the summary of the results. These results are ap-
plying cosine similarity with SVD. In general, NJW performs better than other com-
binations when applying IDF column weighting. Nut and Diffusion Map perform
better when applying IDF 2 column weighting.
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TABLE 9.3: The accuracy of 6 Tasks without SVD.

ColWeigh Clustering 1st 2nd 3rd 4th 5th 6th
IDF NJW 94.62% 89.92% 47.01% 87.49% 51.55% 60.90%
IDF Ncut 95.02% 67.44% 44.64% 87.08% 46.49% 60.99%
IDF Diffusion Map 94.45% 68.03% 44.54% 86.67% 46.01% 61.02%
IDF 2 NJW 95.25% 90.34% 62.32% 86.11% 55.61% 62.00%
IDF 2 Ncut 95.59% 89.29% 53.30% 86.48% 61.58% 70.70%
IDF 2 Diffusion Map 95.53% 90.04% 53.22% 86.42% 60.90% 62.27%

After including SVD step on our data, we could see the trends of the accuracy
lines are similar to the previous results without SVD in the following Figure 9.2.
The results with SVD are better than those without SVD, with improvement ranging
from absolute 1% to 21%. For the harder tasks, such as the second, the third task and
the full data, the accuracies are increasing significantly.

FIGURE 9.2: The accuracy of 6 Tasks with SVD

Our algorithm is also efficient. After plotting the running time, we could expect
that for the small tasks, such as the first four tasks, the algorithm could spend less
than 1 minutes to obtain the results. For the full data, such as the fifth task and the
sixth task, the algorithm could spend less than 5 minutes to get the results.

In general, although IDF 2 and Ncut or Diffusion Map spend more time than
other other combinations, it only spend less than 5 minutes in total. There is not
much differences among clustering methods in Figure 9.3.
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FIGURE 9.3: The running time of 6 Tasks

9.2 Study Sensitivity of Parameters

Since there are different setting for our algorithm, such as dimensions in SVD and
steps in Diffusion Map, we would provide the results to discuss the performance
and decide which parameters we choose for applying Verizon data later.

9.2.1 Different dimensions in SVD

From Figure 9.4, with IDF 2 as column weighting method and diffusion Map as clus-
tering method, we find that for the four tasks, the accuracies in different dimensions
are not differ significantly. For the first task, the accuracy are around 93% to 96%.
For the second task, the accuracy are around 68% to 91%. For the third task, the
accuracy are around 57% to 64%. For the forth task, the accuracy are around 84% to
89%.In most cases, we can see SVD with 200 or 250 dimensions performs better than
other dimensions.
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FIGURE 9.4: Different dimensions in SVD with IDF 2 column weight-
ing method.

In general, we can see that after 300 dimensions, the accuracy would be decreas-
ing. Considering to the performances, we think that for sparse data, such as 20
newsgroup data or Verizon data, we probably use 200 dimensions instead of more
dimensions for getting better results.

9.2.2 Different steps in Diffusion Map

From Figure 9.5, with IDF as column weighting method, we find that for the first
task, the accuracy are around 91% to 93%. For the second task, the accuracy are
around 63% to 67%. For the third task, the accuracy are around 39% to 41%. For the
forth task, the accuracy are around 41% to 88%. For the fifth task, the accuracy are
around 36% to 49%. For the sixth task, the accuracy are around 16% to 51%.
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FIGURE 9.5: Different T in Diffusion Map with IDF column weighting
method.

In general, we can see that after one or two steps, which means t equals to 0.5
or 1, the accuracy would be decreasing. Moreover, for the third task and the sixth
task, the performances are too bad for our algorithm to calculate the accuracy after
few steps. Considering to the performances, we think that for sparse data, such as
20 newsgroup data or Verizon data, we probably use one step or two step instead of
more steps for getting better results.

9.3 Verizon Results

9.3.1 Determine number of clusters

Since we do not have ground of truth for Verizon data, we would use internal eval-
uation to decide numbers of clusters. The ideal clustering method usually produces
clusters with high similarity within a cluster and low similarity between clusters.
We apply basic k-means to explore numbers of clusters. In Figure 9.6, there is no
obvious elbow turning point.
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FIGURE 9.6: Determine numbers of clusters for Verizon data.

We also use another method, which is the ratio of within-clusters variation over
between-cluster variation, to detect number of clusters. [7] We simply try different
number of clusters and compare the results. We can identify 18 clusters for Verizon
data from Table 9.4.

TABLE 9.4: The SSWithin and SSBetween.

Number of cluster Within-cluster Variation Between-cluster Variation
3 10,253 29,678
12 15,816 44,807
18 10,283 36,911

9.3.2 Full data SVD visualization

We use the first three dimensions of SVD to visualize the full Verizon data. In Figure
9.7 we find that there seems some clusters for Verizon data. After rescaling the three
dimensions, we can clearly see there are at least three clusters for Verizon data in
Figure 9.8. For Verizon data, SVD still plays a good role to visualize the data points.
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FIGURE 9.7: Original Scale for full data.

FIGURE 9.8: Rescale by 10−3 for full data.

9.3.3 Some trial Results

From Figure 9.8, we can find three clusters. We apply our algorithm, which use
cosine similarity, IDF as column weighting, and NJW as clustering method. From
Figure 9.9, we can see our algorithm can separate the data points into three clusters.
We can expect that our algorithm is useful for Verizon data.
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FIGURE 9.9: The Visualization for the clustering result.

Besides, we focus on specific variable, dmaMAP, to check the algorithm work
well or not like what we did for the subsets of 20 newsgroup data. To see the clusters
clearly, we rescale the data points by 10−6. Using the same visualization method,
SVD with 10 dimensions, we could see there seems four clusters for dma501 data in
Figure 9.10.

FIGURE 9.10: The Visualization for the data of dma501.

After applying our algorithm for the subset data, which use cosine similarity,
no column weighting, NJW as clustering method, and SVD, we could attain the
following Figure 9.11. We find that our algorithm work well on this subset. The
majority of the data could be separated clearly.
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FIGURE 9.11: The Visualization for the clustering results for the data
of dma501.
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Chapter 10

Future Work

There were many ideas that we left unexplored, due to limited time and atten-
tion. Many of them seem promising in theory, addressing some of the shortcomings
we acknowledge in our own method.

10.1 SVD Approximation of Cosine Similarity

The slowest part of the algorithm is constructing the similarity matrix, gen-
erally requiring the matrix multiplication or manipulation between two extremely
large matrices. Cosine similarity is our fastest similarity algorithm, where the only
intensive operation is the simple matrix multiplication XXT . Many languages are
optimized for this sort of computation, yet CPU limitations will inherently hinder
efficiency when X could feasibly contain millions of rows and columns in practical
situations. Fortunately, XXT is not the object of interest. Rather, it is one step to-
ward the eventual eigendecomposition of D−1/2WD−1/2 in the Diffusion Map al-
gorithm. Recall that W is the similarity matrix but with zeroes on the diagonal
(W = XXT − In, where X has been L2 row-normalized). D is the "Degree ma-
trix", a diagonal matrix with elements equal to the rowsums of the similarity matrix
W . Algebraically, we can manipulate this object:

D−1/2WD−1/2 = D−1/2
(
XXT − In

)
D−1/2

= D−1/2
(
XXT

)
D−1/2 −D−1/2

(
In

)
D−1/2

=
(
D−1/2X

)(
D−1/2X

)T
−D−1

since D−1/2 is a diagonal matrix, making the transpose trivially equivalent. There-
fore,

eigen
(
D−1/2WD−1/2

)
= eigen

((
D−1/2X

)(
D−1/2X

)T
−D−1

)
= eigen

((
D−1/2X

)(
D−1/2X

)T
− d−1 · In

)
= eigen

((
D−1/2X

)(
D−1/2X

)T
)
− d−1

= SVD
(
D−1/2X

)
− d−1

if and only if D−1 = d−1 · In, a scalar multiple of the identity matrix. This tells us
that the eigenvectors of D−1/2WD−1/2 can be found exactly by the Singular Value



Chapter 10. Future Work 49

Decomposition of D−1/2X , and the eigenvalues are the same except subtracted by
the scalar d−1. In practice, d rarely exists – the rowsums of XXT aren’t generally
constant. However, this approximation should be accurate up to the extent that D
approximates a constant matrix. To check this condition, it is actually possible to
calculate the degree matrix D and inspect it, without ever directly computing XXT :

rowsums(XXT − I) =
(
XXT − In

)
·~1

= XXT ·~1− In ·~1

= X
(
XT ·~1

)
−~1

This clever usage of the associative property avoids ever computing the giant
matrix multiplication of XXT . Instead, we compute the very simple matrix–vector
multiplication XT ·~1, which yields a n×1 vector (call it ~Y ), and then we do a second
matrix–vector multiplication X~Y . Subtracting 1 from the diagonal of X~Y produces
the degree vector of rowsums, which contains all of the relevant information.

It should also be mentioned that as d becomes large (e.g. whenX has many rows,
thenXXT gathers more nonzero columns), the scalar value d−1 tends to zero and the
subtraction of d−1 from the eigenvalues becomes insignificant. In essence, this ap-
proximation works great if we have gathered enough observations (with sufficient
similarity between them), or if all the rows have equal total connectivity. Certain
forms of outlier treatment can also be implemented to help achieve uniform con-
nectivity between rows, removing any rows which have abnormally small or large
connectivity. If we can validate one of these two assumptions, then clever usage of
SVD could thereby avoid the direct computation of XXT altogether, bypassing the
slowest part of our algorithm.

10.2 Landmark Centers for Similarity

In practice, the SVD approximation will almost always carry some error, espe-
cially considering that most "real life" cases will have high variability across D, the
rowsums of the similarity matrix W . A different approach toward expediting the
XXT process involves downsizing the XT matrix, to lighten the matrix multiplica-
tion. XXT calculates the inner product between every pair of rows in X , such that
the (i, j)th entry of XXT represents the inner product of row Xi with row Xj . We
then use the XXT matrix to look for groups of rows which are all mutually similar
to each other and dissimilar everywhere else.
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FIGURE 10.1: Here we see a heatmap of the n × n cosine similarity
matrix for three subclusters of the 20News dataset. As expected, we
can see a pattern of three distinct internally-connected squares in the
bottom–left, middle, and bottom–right areas. These disjoint groups
form the basic clustering structure. The signal is not of ideal strength,
but even this faint signal produced 95% accuracy when used with

Diffusion Maps spectral clustering.

This result works perfectly well, but we realized that this n× n similarity matrix
contained far more information than necessary. In reality, we could retrieve the same
clustering information with only a tiny subset of these columns.

FIGURE 10.2: The left figure is a sample similarity matrix in the
"ideal" case, where similarities equal 1 between observations of the
same cluster and equal 0 otherwise. The middle figure highlights a
sample of three columns to be selected from the 9 total columns. The
right figure is the resultant three–column subset. Notice how the left
table and the right table contain essentially the same information, de-

spite the right table having only 1
3 as many rows.

In the figure above, we see that not all n-many columns are needed to extract the
similarity information. The right table is just the result of taking the inner product of
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all n rows with only the 1st, 6th, and 8th rows, as seen in the middle table where those
three rows (which are columns in XXT ) are highlighted. Put more simply, we only
need a small subset of "landmark" rows to compare against; the other information
becomes redundant once we have a good subset of these landmark centers.

Once the subset matrix is taken – let’s call it Y – you can construct the matrix
Y Y T , which compares each pair of rows in terms of their similarity to the chosen
landmark centers, hopefully recovering the full cluster membership information.
This Y Y T matrix is square and symmetric, allowing for easy eigenvalue calcula-
tion and compatibility with the various spectral clustering algorithms. In general,
this may allow for implementation of methods that are not inherently speedy, such
as distance–based or non–linear methods.

We did not dedicate time toward find a method for intelligently identifying land-
mark centers, as our full algorithm already ran very efficiently on our training datasets.
However, we did find that taking a random sample of rows was usually quite effec-
tive, as long as you sampled around 10–20% of rows. The amount of rows necessary
for a strong random sample is proportional to the strength of connectivity/similar-
ity in the dataset. In the dataset referenced by Figure 10.1, we recovered almost the
full accuracy with only 10% of rows sampled. We found that this method required
20% of rows to be sampled in a 6–cluster subset or in a inter–newsgroup dataset
(such as the ".rec" or ".comp" newsgroup subsets) to recover near–complete accu-
racy. 20% is the recommended random sample size for this approach in a cautious
implementation, although smaller sample sizes may be sufficient if efficiency must
be minimized.

Another option is to iterate the process. We could first run the algorithm with
these random centers, finding some preliminary cluster partition. Once we have a
"first guess" at cluster memberships, we can use this to inform a second implemen-
tation of random centers similarity, taking a new subset of rows from each cluster as
a new set of landmark centers. This should allow fair representation of each cluster,
with representation roughly proportional to the size of the cluster. This stratified
sampling may smooth out any potential misrepresentation that is possible with a
completely random, non–stratified sample. It may also allow for smaller subsets to
be sampled; we speculate that multiple iterations could allow very small sampling
proportions, with perhaps only 5% or smaller sampling required.

10.3 Feature Clustering

One popular approach for high–dimensional datasets is to try grouping com-
mon columns together. There is often a lot of redundant information contained in
high–dimensional clustering datasets. For example, the 20 Newsgroup dataset has
distinct columns for the words "car", "automobile", and "vehicle". These words are
almost certainly correlated with each other, and their multiple presences don’t add
any new information to the data.
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FIGURE 10.3: The left matrix shows a sample data matrix, color coded
to highlight the obvious similarity between certain columns. The
right matrix shows one way of grouping those columns together, by
simply summing the values of all correlated columns into one single

column with the sum total.

We never implemented this idea, so we can’t say how well it might work. Of
course, if the goal is to reduce runtime, then it’s important that the time saved is not
simply wasted on the feature clustering step instead. It’s also uncertain the extent
of which redundant or highly correlated columns detract from our clustering algo-
rithm, if they hinder the algorithm at all. A lot of further exploration is required
before implementation of this step.

10.4 Divisive Clustering (Cluster Selection)

Throughout our work on the 20 Newsgroup training datasets, we always had
the ground truth knowledge of how many clusters we were looking for. In the Ver-
izon data, and in many applications, we don’t know the true amount of clusters to
search for. Moreover, there often isn’t one true number of clusters; rather, it is often
an "open question" up to interpretation.

In prior research, we discovered that the NCut algorithm has been adapted to
determine cluster membership iteratively, without requiring the initial knowledge
of number of clusters. The algorithm essentially implements NCut in a divisive
context, partitioning the dataset into two groups at a time until there is no effective
partition left to be made.
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FIGURE 10.4: In this sample dataset, we showcase the procedure of
divisive NCut. The first cut takes the cleanest partition of two data
clusters. The second cutting stage then looks at those two result-
ing groups, and looks for any "good" cuts to be made within those
groups. In this dataset, the left partition has no "good" cut to be made,
while the right partition is once again split into two groups. Within
the three new subgroups (the left cluster, and the two groups on the
clusters), there is no "good" cut left to be made; notice how the third
cut shown bottom–right would necessarily pass through strongly-
connected graph edges (in terms of the mutual similarity between

vertices). We therefore stop after two cuts, or three total clusters.

10.5 Categorical and Missing Data

In many applications, the data is a mix of numerical and categorical data. In
our case, Verizon provided not only website frequency information but also user de-
mographics, such as gender, location, browsing device (browser vs. app), ethnicity,
and others. However, we did not incorporate this data into our algorithm, instead
focusing on the website frequency data for our analysis. There is almost certainly
some useful signal in the other data, but we avoided it partly because we did not
have time to pivot our algorithm toward this extra information and partly because
our training data (the 20 Newsgroup dataset) did not include any categorical infor-
mation we could use in our algorithm construction and testing phases.

In general, one would need to find an approach to balance the information be-
tween demographic and categorical data. Simply concatenating the categorical and
frequency data in our context would almost certainly be ineffective, as the amount of
frequency columns would severely outnumber the amount of categorical columns.
In the Verizon dataset, there are about 70 million unique website ID’s, but only
around 100 demographic variables. This would effectively drown out any signal
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present in the categorical data. Rather, there would need to be careful implemen-
tation of column weighting and/or similarity measurement to reconcile the many
differences between the numerical and categorical data.

Moreover, demographic data may introduce missing values into the data. In
the Verizon dataset, we are given complete information of each web user’s web
browsing, but many people either opted out of or simply never provided their demo-
graphic information (such as gender, ethnicity, etc.). These values may be somewhat
predictable by the content of the count data, but it still introduces new elements of
variability and complexity into the data. A more careful reflection is desired on the
intricacies of such data.
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Appendix A

R Packages and Codes

A.1 R Packages

Matrix
RSpectra
irlba
fclust
rgl
Rtsne
data.table
lattice

A.2 Main Function

1

2 mainfunction <− function(data, nclust,
3

4 # Data input type:
5 sparse=TRUE, convertsparse=TRUE,
6

7 # Saving and/or Returning the output:
8 save=TRUE, return=TRUE,
9

10 # Preset argument combinations:
11 preset = 0,
12

13 # Column weighting argument defaults:
14 weightfunction="IDF", binary=TRUE, lower=2, upper=NULL, par1=NULL,

par2=NULL, mode=NULL,
15

16 # Similarity function argument defaults:
17 simfunction = "cosine", simscale=NULL,
18 rowscaling = NULL, colscaling = NULL, sigma = NULL, centers = NULL, seed

= NULL, distance = NULL,
19

20 # Clustering function argument defaults:
21 clusterfunction="DiffusionMap", t=.5, kmeans.method="kmeans", m=NULL,
22

23 # SVD options for weighted (IDF) data:
24 weight.SVD=FALSE, SVDdim=200, SVDprint=FALSE,
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25 dim1=1, dim2=2, dim3=3, filepath=NULL, # for plotting 3D graphs
26 # specify filepath if you want to save as PDF
27

28 # SVD options for similarity (cosine) matrix:
29 SVDsim=TRUE, simdim=3, dim1sim=1, dim2sim=2, dim3sim=3,

SVDsim.plot=FALSE, sim.filepath=NULL,
30

31 # Cluster Insights :
32 insights=FALSE, vocab=NULL, nfeatures=20, n.ins=NULL, insight.plot =

TRUE, insight.filepath = NULL,
33 # insight . filepath should be a folder , not a filename, if you want to store

multiple files
34

35

36 end.of.arguments=NULL) # end of arguments (for neatness)
37

38 {
39

40 # newfolder <− gsub(":", "_", paste ("~/",Sys.time() ,sep="_"))
41 #
42 # dir . create(newfolder)
43 #
44 # setwd(newfolder)
45

46 require(Matrix)
47

48

49 #####
50 #####
51 ##### PRESET ARGUMENTS #####
52

53 if (preset==1) {
54

55 weight.SVD = TRUE
56 weightfunction = "IDF^2"
57 }
58

59 if (preset==2) {
60

61 kmeans.method="poly.fuzzy"
62 }
63

64 if (preset==3) {
65

66 clusterfunction="NJW"
67 kmeans.method="poly.fuzzy"
68 }
69

70 if (preset==4) {
71

72 weight.SVD = TRUE
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73 weightfunction = "IDF^2"
74 kmeans.method="poly.fuzzy"
75 }
76

77 if (preset==5) {
78

79 weight.SVD = TRUE
80 weightfunction = "IDF^2"
81 clusterfunction="NJW"
82 kmeans.method="poly.fuzzy"
83 }
84

85

86 #####
87 #####
88 ##### DEFINE OUR FUNCTIONS #####
89

90 colweights <− function (data, weightfunction, sparseinput,
91 par1=NULL, par2=NULL, mode=NULL,
92 binary=TRUE, convertsparse=TRUE,
93 lower=2, upper=NULL) {
94

95 #####
96 ##### construct Matrix object for use with "Matrix" package #####
97

98 if (sparseinput==T) { # given a sparse matrix − convert to Matrix
class

99

100 if ( is .matrix(data)) {
101 if (binary==T) {
102 data <− sparseMatrix(i=data[,1], j=data [,2], x=rep(1,

nrow(data)))
103 }
104

105 else {
106 data <− sparseMatrix(i=data[,1], j=data [,2], x=data[,3])
107 }
108 }
109

110 else if ( is .data.frame(data)) {
111

112 if (binary==T) {
113 data <− sparseMatrix(i=data[,1], j=data [,2], x=rep(1,

nrow(data)))
114 }
115

116 else {
117 data <− sparseMatrix(i=data[,1], j=data [,2], x=data[,3])
118 }
119 }
120
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121 else if (binary==T) {
122

123 data[data>0]<−1
124

125 }
126

127 }
128

129 else { # given a dense matrix (sparseinput == F)
130

131 if (binary==TRUE) {
132

133 data[data>0]<−1
134

135 }
136

137 if (convertsparse==TRUE) { # convert dense matrix to sparse matrix
138 if ( is .matrix(data)) {
139 data <−Matrix(data, sparse=T)
140 }
141

142 else if ( is .data.frame(data)) {
143 data <− as.matrix(data)
144 data <−Matrix(data)
145 }
146 }
147

148 else { # keep data in dense format, but convert to class = Matrix
149 data <− as.matrix(data)
150 data <−Matrix(data)
151 }
152

153 }
154

155

156

157 #####
158 #####
159 ##### Find density proportion of each column #####
160

161 weightfunction <− as.character(weightfunction)
162

163 if (binary==F) {
164

165 temp <− data
166 temp[temp>0]<−1
167 colsum <− colSums(temp)
168 colprop <− colsum/nrow(temp)
169

170 }
171
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172 else {
173 colsum <− colSums(data)
174 colprop <− colsum/nrow(data)
175 }
176

177

178 #####
179 #####
180 ##### Remove columns outside your threshold (and monitor the rows)

#####
181

182 if ( ! ( is .null(lower))) {
183

184 data <− data[,which(colsum >= lower)] # colsum is the sum of
nonzero entries

185

186 colsum <− colsum[which(colsum >= lower)]
187

188 }
189

190 if ( ! ( is .null(upper))) {
191

192 data <− data[,which(colsum <= upper)] # colsum is the sum of
nonzero entries

193

194 colsum <− colsum[which(colsum <= upper)]
195

196 }
197

198 rowsum <− rowSums(data)
199

200 if (min(rowsum) <= 0) { # some rows could lose all nonzero entries when
you trim columns

201

202 # resp <− readline(prompt="One or more rows has zero weight. \n
203 # Make sure that you fix this before continuing. \n
204 # Press the ENTER key to continue. \n")
205

206 badrows <−which(rowsum<=0)
207

208 data <− data[−badrows,]
209

210 cat(length(badrows), " rows have zero weight, and will be removed.")
211

212

213

214 }
215

216

217

218
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219 #####
220 #####
221 ##### Calculate column−weighted matrix & return #####
222

223 if (sparseinput==F & convertsparse==F) { # if you insist on using a
dense matrix

224

225 if (weightfunction == "beta") { # par1 = alpha, par2 = beta
226

227 x <− seq(0,1, length=1000)
228 mode.beta <−max(dbeta(x, shape1=par1, shape2=par2))
229

230 colweights <− dbeta(colprop, shape1=par1, shape2=par2)
231 colweights <− colweights/max(mode.beta) # scale to (0,1) range
232 colweights <− sqrt(colweights)
233 return(t ( t (data)/colweights))
234

235 }
236

237 else if (weightfunction == "step") { # par1 = min cutoff, par2 =
max cutoff

238

239 return(data[,colprop > par1 & colprop < par2])
240

241 }
242

243 else if (weightfunction == "linear") {
244

245 slope1 = 1/mode
246 slope2 = −1/(1−mode)
247

248 linweight <− function (density) {
249 if (density < mode) { return(slope1∗density) }
250 else {return(slope2∗(density−1) ) }
251 }
252

253 colweights <− sapply(colprop, linweight)
254 colweights <− sqrt(colweights)
255 return(t ( t (data)/colweights))
256

257 }
258

259 else if (weightfunction == "IDF") {
260

261 # IDF column weighting = log( N/ 1+density )
262 data.idf <− log(nrow(data)/(1 + colsum))
263 data.idf .diag <− Diagonal(n = length(data.idf), x=data.idf)
264

265 # multiply each column by its IDF weight
266 data. tfidf <− crossprod(t(data), data.idf .diag)
267 return(data. tfidf )
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268

269 # Row normalize
270 # data. tfidf .rn <− data.tfidf/ sqrt(rowSums(data.tfidf^2))
271 # data. tfidf .rn <− data.tfidf/ rowSums(data.tfidf)
272 # return(data. tfidf .rn)
273

274 }
275

276 else if (weightfunction == "IDF^2") {
277

278 # IDF column weighting = log( N/ 1+density )
279 data.idf <− (log(nrow(data)/(1 + colsum)))^2
280

281 # Multiply each column by its IDF weight
282 data.idf .diag <− Diagonal(n = length(data.idf), x=data.idf)
283 data. tfidf <− crossprod(t(data), data.idf .diag)
284 return(data. tfidf )
285

286 # Row normalize
287 # data. tfidf .rn <− data.tfidf/ sqrt(rowSums(data.tfidf^2))
288 # data. tfidf .rn <− data.tfidf/ rowSums(data.tfidf)
289 # return(data. tfidf .rn)
290

291 }
292

293 else if (weightfunction == "none") {
294

295 return(data)
296

297 }
298

299 else {stop("Pick a valid weight method.")}
300

301 }
302

303 else { # sparse matrix calculations
304

305 if (weightfunction == "beta") { # par1 = alpha, par2 = beta
306

307 x <− seq(0,1, length=1000)
308 mode.beta <−max(dbeta(x, shape1=par1, shape2=par2))
309

310 colweights <− dbeta(colprop, shape1=par1, shape2=par2)
311 colweights <− colweights/max(mode.beta) # scale to (0,1) range
312 colweights <− sqrt(colweights)
313 return(t ( t (data)/colweights))
314

315 }
316

317 else if (weightfunction == "step") { # par1 = min cutoff, par2 =
max cutoff
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318

319 return(data[,colprop > par1 & colprop < par2])
320

321 }
322

323 else if (weightfunction == "linear") {
324

325 slope1 = 1/mode
326 slope2 = −1/(1−mode)
327

328 linweight <− function (density) {
329 if (density < mode) { return(slope1∗density) }
330 else {return(slope2∗(density−1) ) }
331 }
332

333 colweights <− sapply(colprop, linweight)
334 colweights <− sqrt(colweights)
335 return(t ( t (data)/colweights))
336

337 }
338

339 else if (weightfunction == "IDF") {
340

341 # IDF column weighting = log( N/ density )
342 data.idf <− log(nrow(data)/(colsum))
343

344 # Multiply each column by its IDF weight
345 data.idf .diag <− Diagonal(n = length(data.idf), x=data.idf)
346 data. tfidf <− crossprod(t(data), data.idf .diag)
347 return(data. tfidf )
348

349 # Row normalize
350 # data. tfidf .rn <− data.tfidf/ sqrt(rowSums(data.tfidf^2))
351 # data. tfidf .rn <− data.tfidf/ rowSums(data.tfidf)
352 # return(data. tfidf .rn)
353

354 }
355

356 else if (weightfunction == "IDF^2") {
357

358 # IDF column weighting = log( N/ density )
359 data.idf <− (log(nrow(data)/(colsum)))^2
360

361 # Multiply each column by its IDF weight
362 data.idf .diag <− Diagonal(n = length(data.idf), x=data.idf)
363 data. tfidf <− crossprod(t(data), data.idf .diag)
364 return(data. tfidf )
365

366 # Row normalize
367 # data. tfidf .rn <− data.tfidf/ sqrt(rowSums(data.tfidf^2))
368 # data. tfidf .rn <− data.tfidf/ rowSums(data.tfidf)
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369 # return(data. tfidf .rn)
370

371 }
372

373 else if (weightfunction == "none") {
374

375 return(data)
376

377 }
378

379 else {stop("Pick a valid weight method.")}
380

381 }
382

383 }
384

385

386 similarity <− function(data, method, rowscaling = NULL, colscaling = NULL,
387 sigma = NULL, centers = NULL, seed = NULL, distance = NULL,
388 sparse = T, simscale) {
389

390 #####
391 ##### Column scaling #####
392

393 if ( ! ( is .null( colscaling) ) ) {
394 if ( colscaling == "standardize") {
395 data <− apply(data, 2, scale ) }
396

397 else {stop("Pick a valid column scaling.")}
398

399 }
400

401 #####
402 #####
403 ##### Row scaling #####
404

405 if ( ! ( is .null(rowscaling))) {
406

407 if (rowscaling == "L2") {
408 data <− data/sqrt(rowSums(data^2)) }
409

410 else if (rowscaling == "L1") {
411 data <− data/rowSums(data) }
412

413 else {stop("Pick a valid row scaling.") }
414

415 }
416

417 #####
418 #####
419 ##### Distance −> Gaussian similarity (if applicable) #####
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420

421 if (method == "Gaussian") {
422

423 # Calculate a distance metric.
424

425 if (distance == "JSdivergence") {
426

427 jsdiv <− function(P){
428 nrows <− length(P[,1])
429 ncols <− length(P[1,])
430 D <−matrix(rep.int(0, nrows ∗∗ 2), nrow = nrows)
431 P[is .nan(P)] <− 0
432 for( i in 2:nrows){
433 p.row <− P[i,]
434 for( j in 1: i−1){
435 q.row <− P[j,]
436 m.row <− 1/2 ∗ (p.row + q.row)
437 D[i, j ] <− D[j,i ] <− (1/2 ∗ sum(p.row ∗

log(p.row/m.row), na.rm =TRUE) + 1/2 ∗
sum(q.row ∗ log(q.row/m.row), na.rm = TRUE))

438 }
439 }
440 return(D)
441 }
442

443 dist <− jsdiv(data) }
444

445 else if (distance == "L2") {
446

447 dist <− as.matrix(dist(data)) }
448

449 else if (distance == "L1") {
450

451 dist <− as.matrix(dist(data, method = "manhattan")) }
452

453 else {stop("Pick a valid distance. ") }
454

455

456 # Convert distance to similarity
457

458 if ( is .null(sigma)) {stop("Choose a sigma value.")}
459

460 else { Similarity <− exp(−1 ∗ dist^2 / (2∗sigma)) }
461

462 }
463

464 #####
465 #####
466 ##### Compute the NxN similarity matrix and return #####
467

468 ###
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469 ### dense matrix:
470 ###
471

472 if (sparse == F) {
473

474 if ( is .null(centers) ) {
475

476 if (method == "correlation") {
477

478 centeredcolumns <− t(t(data)−colMeans(data)) # center the
data by column

479

480 rowvar <− rowSums(centeredcolumns^2) # store the
variances for each row (where colMeans=0)

481

482 Cov.matrix <− tcrossprod(centeredcolumns) # calculate the
covariance matrix (dot product all rows)

483

484 # corr = cov(x,y) / sqrt(var(x)var(y)
485 Corr.true <− Cov.matrix/sqrt(rowvar)
486 Similarity <− t(t(Corr.true)/sqrt(rowvar))
487

488 # # scale the matrix to (0,1) , excluding the diagonal
489 # diag(Similarity) <− rep(0,nrow(Similarity))
490 # Similarity <− (Similarity −

min(Similarity))/(range(Similarity) [2] −
range(Similarity) [1])

491 # diag(Similarity) <− rep(0, nrow(Similarity))
492

493 # Set any negative similarities equal to zero
494

495 Similarity [ Similarity<0] <− 0
496

497 }
498

499 else if (method == "corr.hack") {
500

501 # center the data by column
502 centeredcolumns <− t(t(data)−colMeans(data))
503 # # store the variances for each row (where colMeans=0)
504 # rowvar <− rowSums(centeredcolumns^2)
505 # calculate the covariance matrix (dot product all rows)
506 Cov.matrix <− tcrossprod(centeredcolumns)
507 # calculate the length of each row (eventually scale by

row&col)
508 cov.rowsums <− rowSums(Cov.matrix^2)
509 Corr.hack <− Cov.matrix/sqrt(cov.rowsums)
510 Similarity <− t(t(Corr.hack)/sqrt(cov.rowsums))
511

512 # # scale the matrix to (0,1) , excluding the diagonal
513 # diag(Similarity) <− rep(0,nrow(Similarity))
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514 # Similarity <− (Similarity −
min(Similarity))/(range(Similarity) [2] −
range(Similarity) [1])

515 # diag(Similarity) <− rep(0, nrow(Similarity))
516

517 # Set any negative similarities equal to zero
518

519 Similarity [ Similarity<0] <− 0
520

521 }
522

523 else if (method == "cosine") {
524

525 rowlength <− rowSums(data^2)
526 Dot.prods <− tcrossprod(data)
527 Cosines <− Dot.prods/sqrt(rowlength)
528 Similarity <− t(t(Cosines)/sqrt(rowlength))
529 # diag(Similarity) <− rep(0,nrow(Similarity))
530 # Similarity <− (Similarity −

min(Similarity))/(range(Similarity) [2] −
range(Similarity) [1])

531 # diag(Similarity) <− rep(0, nrow(Similarity))
532

533 # Set any negative similarities equal to zero
534

535 Similarity [ Similarity<0] <− 0
536

537 }
538

539 else if (method == "dotproduct") {
540

541 Similarity <− tcrossprod(data)
542 # diag(Similarity) <− rep(0,nrow(Similarity))
543 # Similarity <− (Similarity −

min(Similarity))/(range(Similarity) [2] −
range(Similarity) [1])

544 # diag(Similarity) <− rep(0, nrow(Similarity))
545

546 # Set any negative similarities equal to zero
547

548 Similarity [ Similarity<0] <− 0
549

550 }
551

552 }
553

554 #####
555 #####
556 ##### Random centers similarity matrix #####
557

558 else {
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559

560 if ( is .numeric(seed)) { set .seed(seed) }
561

562 if (method == "correlation") {
563

564 centeredcolumns <− data−colMeans(data) # center the data
by column

565

566 rowvar.full <− rowSums(centeredcolumns^2) # store the
variances for each row (where colMeans=0)

567

568 # rcenters is rxN matrix, r = kcenters % of rows, sampled
randomly

569 kcenters <− centers∗nrow(data)
570 rcenters <−

as.matrix(centeredcolumns[sample(nrow(data),kcenters,replace
= FALSE), ])

571

572 rowvar.centers <− rowSums(rcenters^2)
573

574 dotprod.centers <− tcrossprod(centeredcolumns,rcenters)
575

576 # corr = cov(x,y) / sqrt(var(x)var(y)
577 Corr.true <− dotprod.centers/sqrt(rowvar.full)
578 Corr.centers <− t(t(Corr.true)/sqrt(rowvar.centers))
579

580 Similarity <− tcrossprod(Corr.centers)
581

582 # scale the matrix to (0,1) , excluding the diagonal
583 diag(Similarity) <− rep(0,nrow(Similarity))
584 Similarity <− (Similarity −

min(Similarity))/(range(Similarity) [2] −
range(Similarity) [1])

585 diag(Similarity) <− rep(1, nrow(Similarity))
586

587 }
588

589 else if (method == "corr.hack") {
590

591 centeredcolumns <− data−colMeans(data) # center the data
by column

592

593 # rcenters is rxN matrix, r = kcenters % of rows, sampled
randomly

594 kcenters <− centers∗nrow(data)
595 rcenters <−

as.matrix(centeredcolumns[sample(nrow(data),kcenters,replace
= FALSE), ])

596

597 dotprod.centers <− tcrossprod(centeredcolumns,rcenters)
598
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599 rowlengths <− rowSums(dotprod.centers)
600 collengths <− colSums(dotprod.centers)
601

602 # hack = cov(x,y) / sqrt(length(x)length(y))
603 Corr.hack <− dotprod.centers/sqrt(rowlengths)
604 Corrhack.centers <− t(t(Corr.hack)/sqrt(collengths))
605

606 Similarity <− tcrossprod(Corrhack.centers)
607

608 # scale the matrix to (0,1) , excluding the diagonal
609 diag(Similarity) <− rep(0,nrow(Similarity))
610 Similarity <− (Similarity −

min(Similarity))/(range(Similarity) [2] −
range(Similarity) [1])

611 diag(Similarity) <− rep(1, nrow(Similarity))
612

613 }
614

615 else if (method == "cosine") {
616

617 rowlengths.full <− rowSums(data^2) # store the variances for
each row (where colMeans=0)

618

619 kcenters <− centers∗nrow(data)
620 rcenters <−

as.matrix(data[sample(nrow(data),kcenters,replace =
FALSE), ])

621

622 rowlengths.centers <− rowSums(rcenters^2)
623

624 dotprod.centers <− tcrossprod(data,rcenters)
625

626 # cos = <x,y> / sqrt(length(x)length(y))
627 Cosine <− dotprod.centers/sqrt(rowlengths.full)
628 Cosine.centers <− t(t(Cosine)/sqrt(rowlengths.centers))
629

630 Similarity <− tcrossprod(Cosine.centers)
631

632 # scale the matrix to (0,1) , excluding the diagonal
633 diag(Similarity) <− rep(0,nrow(Similarity))
634 Similarity <− (Similarity −

min(Similarity))/(range(Similarity) [2] −
range(Similarity) [1])

635 diag(Similarity) <− rep(1, nrow(Similarity))
636

637 }
638

639 else if (method == "dotproduct") {
640

641 kcenters <− centers∗nrow(data)
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642 rcenters <−
as.matrix(data[sample(nrow(data),kcenters,replace =
FALSE), ])

643

644 dotprod.centers <− tcrossprod(data,rcenters)
645

646 Similarity <− tcrossprod(dotprod.centers)
647

648 # scale the matrix to (0,1) , excluding the diagonal
649 diag(Similarity) <− rep(0,nrow(Similarity))
650 Similarity <− (Similarity −

min(Similarity))/(range(Similarity) [2] −
range(Similarity) [1])

651 diag(Similarity) <− rep(1, nrow(Similarity))
652

653 }
654

655 }
656

657 #####
658 #####
659

660 }
661

662 ###
663 ### sparse matrix:
664 ###
665

666 else {
667

668 if ( is .null(centers) ) {
669

670 if (method == "correlation") {
671

672 # centeredcolumns <− data
673 #
674 # rowvar <− rowSums(centeredcolumns^2) # store the

variances for each row (where colMeans=0)
675 #
676 # Cov.matrix <− tcrossprod(centeredcolumns) # calculate the

covariance matrix (dot product all rows)
677 #
678 # # corr = cov(x,y) / sqrt(var(x)var(y)
679 # Corr.true <− Cov.matrix/sqrt(rowvar)
680 # Similarity <− t(t(Corr.true)/sqrt(rowvar))
681 #
682 # # scale the matrix to (0,1) , excluding the diagonal
683 # diag(Similarity) <− rep(0,nrow(Similarity))
684 # Similarity <− (Similarity −

min(Similarity))/(range(Similarity) [2] −
range(Similarity) [1])
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685 # diag(Similarity) <− rep(0, nrow(Similarity))
686

687 stop("Correlation does not work on a sparse matrix. Try
using a dense matrix instead.")

688

689 }
690

691 else if (method == "corr.hack") {
692

693 # centeredcolumns <− data
694 # # # store the variances for each row (where colMeans=0)
695 # # rowvar <− rowSums(centeredcolumns^2)
696 # # calculate the covariance matrix (dot product all rows)
697 # Cov.matrix <− tcrossprod(centeredcolumns)
698 # # calculate the length of each row (eventually scale by

row&col)
699 # cov.rowsums <− rowSums(Cov.matrix^2)
700 # Corr.hack <− Cov.matrix/sqrt(cov.rowsums)
701 # Similarity <− t(t(Corr.hack)/sqrt(cov.rowsums))
702 # # scale the matrix to (0,1) , excluding the diagonal
703 # diag(Similarity) <− rep(0,nrow(Similarity))
704 # Similarity <− (Similarity −

min(Similarity))/(range(Similarity) [2] −
range(Similarity) [1])

705 # diag(Similarity) <− rep(0, nrow(Similarity))
706

707 stop("Correlation does not work on a sparse matrix. Try
using a dense matrix instead.")

708

709 }
710

711 else if (method == "cosine") {
712

713 rowlength <− rowSums(data^2)
714 data <− data/sqrt(rowlength) # cosine normalizes each

vector to unit length
715 Similarity <− tcrossprod(data)
716

717 if ( is .null(simscale)) {
718

719 if (weight.SVD==TRUE) {simscale="negative"}
720

721 if (weight.SVD==FALSE) {simscale="0−1"}
722 }
723

724 if (simscale == "negative") {
725

726 # Set any negative similarities equal to zero
727

728 Similarity [ Similarity<0] <− 0
729 diag(Similarity) <− rep(0, nrow(Similarity))
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730 }
731

732 else if (simscale == "0−1") {
733

734 # rescale to (0,1) interval
735

736 diag(Similarity) <− rep(0,nrow(Similarity))
737 Similarity <− (Similarity −

min(Similarity))/(range(Similarity) [2] −
range(Similarity) [1])

738 diag(Similarity) <− rep(0, nrow(Similarity))
739 }
740

741 }
742

743 else if (method == "dotproduct") {
744

745 Similarity <− tcrossprod(data)
746

747 if ( is .null(simscale)) {
748

749 if (weight.SVD==TRUE) {simscale="negative"}
750

751 if (weight.SVD==FALSE) {simscale="0−1"}
752 }
753

754 if (simscale == "negative") { # Set negative similarities to
zero

755

756 Similarity [ Similarity<0] <− 0
757 }
758

759 else if (simscale == "0−1") { # rescale to (0,1) interval
760

761 diag(Similarity) <− rep(0,nrow(Similarity))
762 Similarity <− (Similarity −

min(Similarity))/(range(Similarity) [2] −
range(Similarity) [1])

763 diag(Similarity) <− rep(0, nrow(Similarity))
764 }
765

766 }
767

768 }
769

770 #####
771 #####
772 ##### Random centers similarity matrix #####
773

774 else {
775
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776 if ( is .numeric(seed)) { set .seed(seed) }
777

778 if (method == "correlation") {
779

780 centeredcolumns <− data−colMeans(data) # center the data
by column

781

782 rowvar.full <− rowSums(centeredcolumns^2) # store the
variances for each row (where colMeans=0)

783

784 # rcenters is rxN matrix, r = kcenters % of rows, sampled
randomly

785 kcenters <− centers∗nrow(data)
786 rcenters <−

as.matrix(centeredcolumns[sample(nrow(data),kcenters,replace
= FALSE), ])

787

788 rowvar.centers <− rowSums(rcenters^2)
789

790 dotprod.centers <− tcrossprod(centeredcolumns,rcenters)
791

792 # corr = cov(x,y) / sqrt(var(x)var(y)
793 Corr.true <− dotprod.centers/sqrt(rowvar.full)
794 Corr.centers <− t(t(Corr.true)/sqrt(rowvar.centers))
795

796 Similarity <− tcrossprod(Corr.centers)
797

798 # scale the matrix to (0,1) , excluding the diagonal
799 diag(Similarity) <− rep(0,nrow(Similarity))
800 Similarity <− (Similarity −

min(Similarity))/(range(Similarity) [2] −
range(Similarity) [1])

801 diag(Similarity) <− rep(1, nrow(Similarity))
802

803 }
804

805 else if (method == "corr.hack") {
806

807 centeredcolumns <− data−colMeans(data) # center the data
by column

808

809 # rcenters is rxN matrix, r = kcenters % of rows, sampled
randomly

810 kcenters <− centers∗nrow(data)
811 rcenters <−

as.matrix(centeredcolumns[sample(nrow(data),kcenters,replace
= FALSE), ])

812

813 dotprod.centers <− tcrossprod(centeredcolumns,rcenters)
814

815 rowlengths <− rowSums(dotprod.centers)
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816 collengths <− colSums(dotprod.centers)
817

818 # hack = cov(x,y) / sqrt(length(x)length(y))
819 Corr.hack <− dotprod.centers/sqrt(rowlengths)
820 Corrhack.centers <− t(t(Corr.hack)/sqrt(collengths))
821

822 Similarity <− tcrossprod(Corrhack.centers)
823

824 # scale the matrix to (0,1) , excluding the diagonal
825 diag(Similarity) <− rep(0,nrow(Similarity))
826 Similarity <− (Similarity −

min(Similarity))/(range(Similarity) [2] −
range(Similarity) [1])

827 diag(Similarity) <− rep(1, nrow(Similarity))
828

829 }
830

831 else if (method == "cosine") {
832

833 rowlengths.full <− rowSums(data^2) # store the variances for
each row (where colMeans=0)

834

835 kcenters <− centers∗nrow(data)
836 rcenters <−

as.matrix(data[sample(nrow(data),kcenters,replace =
FALSE), ])

837

838 rowlengths.centers <− rowSums(rcenters^2)
839

840 dotprod.centers <− tcrossprod(data,rcenters)
841

842 # cos = <x,y> / sqrt(length(x)length(y))
843 Cosine <− dotprod.centers/sqrt(rowlengths.full)
844 Cosine.centers <− t(t(Cosine)/sqrt(rowlengths.centers))
845

846 Similarity <− tcrossprod(Cosine.centers)
847

848 # scale the matrix to (0,1) , excluding the diagonal
849 diag(Similarity) <− rep(0,nrow(Similarity))
850 Similarity <− (Similarity −

min(Similarity))/(range(Similarity) [2] −
range(Similarity) [1])

851 diag(Similarity) <− rep(1, nrow(Similarity))
852

853 }
854

855 else if (method == "dotproduct") {
856

857 kcenters <− centers∗nrow(data)
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858 rcenters <−
as.matrix(data[sample(nrow(data),kcenters,replace =
FALSE), ])

859

860 dotprod.centers <− tcrossprod(data,rcenters)
861

862 Similarity <− tcrossprod(dotprod.centers)
863

864 # scale the matrix to (0,1) , excluding the diagonal
865 diag(Similarity) <− rep(0,nrow(Similarity))
866 Similarity <− (Similarity −

min(Similarity))/(range(Similarity) [2] −
range(Similarity) [1])

867 diag(Similarity) <− rep(1, nrow(Similarity))
868

869 }
870

871 }
872

873 #####
874 #####
875

876 }
877

878 return(Similarity )
879

880 }
881

882

883 clustering <− function(Weights, k, method, t=NULL, sparse=T,
884 kmeans.method="kmeans", m=NULL) {
885

886 if (method == "NJW") {
887

888 D <− rowSums(Weights) # Degrees matrix #####
889

890 ###
891 ### Check: if row has zero similarity , problems arise
892 ###
893

894 if ( min(D) <= 0) {
895

896 resp <− readline(prompt="One of your similarity rows has zero
weight. Would you like to set

897 a 1 on the diagonal of the similarity ? Type Y or N \n")
898 if (resp == "Y" | resp == "y") {
899 n <−which(D == 0)
900 D[n] <− 1
901 }
902

903 else { stop("One of your rows has zero weight.") }
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904 }
905

906 #####
907 ##### Subspace Projection #####
908 #####
909

910 D <− Diagonal(n=nrow(Weights),(D^−.5))
911 Z <− D %∗% Weights %∗% D
912

913

914 if (kmeans.method=="RKM") {
915

916 ###
917 ### Define the RKM function
918 ###
919

920 RKM <− function (data, nclus, ndim, alpha = NULL, method =
"RKM", center = TRUE,

921 scale = TRUE, rotation = "none", nstart = 10, smartStart =
NULL,

922 seed = 1234) {
923

924 require(ggplot2)
925 require(dummies)
926 require(grid)
927 require(corpcor)
928

929 ssq = function(a) {
930 t (as.vector(c(as.matrix(a))) )%∗%as.vector(c(as.matrix(a)))
931 }
932

933 if ( is .null(alpha) == TRUE) {
934 if (method == "RKM") {
935 alpha = 0.5
936 }
937 else if (method == "FKM") {
938 alpha = 0
939 }
940 }
941 odata = data
942 data = scale(data, center = center, scale = scale)
943 # data = data.matrix(data)
944 n = dim(data)[1]
945 m = dim(data)[2]
946 conv = 1e−06
947 func = {
948 }
949 index = {
950 }
951 AA = {
952 }
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953 FF = {
954 }
955 YY = {
956 }
957 UU = {
958 }
959

960 require( irlba )
961

962 for (run in c (1: nstart ) ) {
963 if ( is .null(smartStart)) {
964 myseed = seed + run
965 set .seed(myseed)
966 randVec = matrix(ceiling(runif(n) ∗ nclus) , n, 1)
967 }
968 else {
969 randVec = smartStart
970 }
971 U = dummy(randVec)
972 P = U %∗% pseudoinverse(t(U) %∗% U) %∗% t(U)
973

974

975 # A = eigen(t(data) %∗% ((1 − alpha) ∗ P − (1 − 2 ∗
alpha) ∗

976 # diag(n)) %∗% data)$vectors
977 # A = A[, 1:ndim]
978

979

980 testobj <− t(data) %∗% ((1 − alpha) ∗ P − (1 − 2 ∗
alpha) ∗ diag(n)) %∗% data

981

982 A <− partial_eigen(x=testobj, n = ndim, symmetric =
TRUE)$vectors

983

984

985 G = data %∗% A
986 Y = pseudoinverse(t(U) %∗% U) %∗% t(U) %∗% G
987 f = alpha ∗ ssq(data − G %∗% t(A)) + (1 − alpha) ∗

ssq(data %∗%
988 A − U %∗% Y)
989 f = as.numeric(f)
990 fold = f + 2 ∗ conv ∗ f
991 iter = 0
992 while (f < fold − conv ∗ f) {
993 fold = f
994 iter = iter + 1
995 outK = try(kmeans(G, centers = Y, nstart = 100),
996 silent = T)
997 if ( is . list (outK) == FALSE) {
998 outK = EmptyKmeans(G, centers = Y)
999 }
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1000 v = as. factor (outK$cluster)
1001 U = diag(nlevels(v)) [v, ]
1002 P = U %∗% pseudoinverse(t(U) %∗% U) %∗% t(U)
1003

1004 # A = eigen(t(data) %∗% ((1 − alpha) ∗ P − (1 − 2 ∗
1005 # alpha) ∗ diag(n)) %∗% data)$vectors
1006 # A = A[, c (1: ndim)]
1007

1008 testobj <− t(data) %∗% ((1 − alpha) ∗ P − (1 − 2 ∗
alpha) ∗ diag(n)) %∗% data

1009

1010 A <− partial_eigen(x=testobj, n = ndim, symmetric =
TRUE)$vectors

1011

1012

1013 G = data %∗% A
1014 Y = pseudoinverse(t(U) %∗% U) %∗% t(U) %∗% G
1015 f = alpha ∗ ssq(data − G %∗% t(A)) + (1 − alpha) ∗
1016 ssq(data %∗% A − U %∗% Y)
1017 }
1018 func[run] = f
1019 FF[[run]] = G
1020 AA[[run]] = A
1021 YY[[run]] = Y
1022 UU[[run]] = U
1023 cat("Just finished iteration " , run, "\n")
1024 }
1025 mi = which.min(func)
1026 U = UU[[mi]]
1027 cluID = apply(U, 1, which.max)
1028 csize = round((table(cluID)/sum(table(cluID))) ∗ 100, digits

= 2)
1029 aa = sort (csize , decreasing = TRUE)
1030 require(plyr)
1031 cluID = mapvalues(cluID, from = as.integer(names(aa)), to =

as. integer(names(table(cluID))))
1032 centroid = YY[[mi]]
1033 centroid = centroid[as. integer(names(aa)), ]
1034 if ( rotation == "varimax") {
1035 require( stats )
1036 AA[[mi]] = varimax(AA[[mi]])$loadings
1037 FF[[mi]] = data %∗% AA[[mi]]
1038 centroid = pseudoinverse(t(U) %∗% U) %∗% t(U) %∗%

FF[[mi]]
1039 centroid = centroid[as. integer(names(aa)), ]
1040 }
1041 else if ( rotation == "promax") {
1042 AA[[mi]] = promax(AA[[mi]])$loadings[1:m, 1:ndim]
1043 FF[[mi]] = data %∗% AA[[mi]]
1044 centroid = pseudoinverse(t(U) %∗% U) %∗% t(U) %∗%

FF[[mi]]
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1045 centroid = centroid[as. integer(names(aa)), ]
1046 }
1047 out = list ()
1048 mi = which.min(func)
1049 out$obscoord = FF[[mi]]
1050 rownames(out$obscoord) = rownames(data)
1051 out$attcoord = data.matrix(AA[[mi]])
1052 rownames(out$attcoord) = colnames(data)
1053 out$centroid = centroid
1054 names(cluID) = rownames(data)
1055 out$cluID = cluID
1056 out$criterion = func[mi]
1057 out$csize = round((table(cluID)/sum(table(cluID))) ∗ 100,
1058 digits = 1)
1059 out$odata = odata
1060 out$scale = scale
1061 out$center = center
1062 out$nstart = nstart
1063 class (out) = "cluspca"
1064 return(out)
1065 }
1066

1067

1068 ###
1069 ### Run RKM on the normalized Z matrix
1070 ###
1071

1072 cluster .out = RKM(Z, nclus=k, ndim=k, method = "RKM",
rotation = "varimax", nstart=10)

1073

1074

1075 return(cluster .out)
1076 }
1077

1078

1079 # RSpectra is efficient for dense matrices
1080

1081

1082 if (k=="eigenvalue") {
1083

1084 require( irlba )
1085

1086 k <− 20
1087

1088 EZ <− partial_eigen(x=Z, n = k, symmetric = TRUE)$value
1089

1090 print(EZ)
1091

1092 k <− readline(prompt="\n Here is a list of the first 20
eigenvalues.

1093 Pick whichever eigenvalue appears best. \n")
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1094

1095 k <− as.numeric(k)
1096

1097 }
1098

1099

1100 if (sparse==F) {
1101 require(RSpectra)
1102 EZ <− eigs_sym(Z, k+1, ’LM’)$vector
1103 EZ <− EZ[,1:k]
1104 }
1105

1106

1107 # irlba is efficient and accurate for sparse matrices
1108

1109 else {
1110 require( irlba )
1111 EZ <− partial_eigen(x=Z, n = k+1, symmetric = TRUE)$vectors
1112 EZ <− EZ[,1:k]
1113 }
1114

1115

1116 # U is the L2−normalized eigenspace
1117

1118 U <− EZ/sqrt(rowSums(EZ^2))
1119

1120

1121 #####
1122 ##### k−Mmeans in this normalized eigenspace:
1123 #####
1124 {
1125 # Regular k−means
1126 if (kmeans.method=="kmeans") {
1127 cluster .out <− kmeans(U, centers=k, nstart = 100)
1128 }
1129

1130 # Fuzzy k−means
1131 else if (kmeans.method=="fuzzy") {
1132 require( fclust )
1133 if ( is .null(m)) {
1134 m <− 2
1135 }
1136 cluster .out <− FKM(X=U,k=k, m=m, RS=10)
1137 }
1138

1139 # Polynomial fuzzy k−means
1140 else if (kmeans.method=="poly.fuzzy") {
1141 require( fclust )
1142 if ( is .null(m)) {
1143 m <− .5
1144 }
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1145 cluster .out <− FKM.pf(X=U,k=k, b=m, RS=10)
1146 }
1147

1148 else {stop("Pick a valid k−means method.")}
1149 }
1150

1151 }
1152

1153

1154 else if (method == "Ncut") {
1155

1156 n <− nrow(Weights)
1157 dvec_inv = 1/sqrt(rowSums(Weights))
1158 #W_tilde = Matrix(rep(dvec_inv,n), ncol=n) ∗Weights ∗

t(Matrix(rep(dvec_inv,n),ncol=n))
1159 W_tilde = Diagonal(n,dvec_inv) %∗% Weights %∗%

Diagonal(n,dvec_inv)
1160 W_tilde = (W_tilde+t(W_tilde))/2
1161

1162 # diag(dvec_inv) %∗% Weights %∗% diag(dvec_inv) ?
1163 # why the average part?
1164

1165 if (sparse==F) {
1166 require(RSpectra)
1167 EZ <− eigs_sym(W_tilde, k, ’LM’)$vector }
1168 else {
1169 require( irlba )
1170 EZ <− partial_eigen(x=W_tilde, n = k, symmetric = TRUE)$vectors
1171 }
1172

1173 V <− EZ
1174 V = matrix(rep(dvec_inv,k−1), ncol = k−1) ∗ V[,2:k]
1175 V = V / (matrix(rep(sqrt(rowSums(V^2)),k−1),ncol=k−1))
1176

1177

1178 if (kmeans.method=="kmeans") {
1179 cluster .out <− kmeans(V, centers=k, nstart = 100)
1180 }
1181

1182 else if (kmeans.method=="fuzzy") {
1183 require( fclust )
1184 if ( is .null(m)) {
1185 m <− 2
1186 }
1187 cluster .out <− FKM(X=V,k=k, m=m, RS=10)
1188 }
1189

1190 else if (kmeans.method=="poly.fuzzy") {
1191 require( fclust )
1192 if ( is .null(m)) {
1193 m <− .5
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1194 }
1195 cluster .out <− FKM.pf(X=V,k=k, b=m, RS=10)
1196 }
1197

1198 else {stop("Pick a valid k−means method.")}
1199

1200 }
1201

1202

1203 else if (method == ’DiffusionMap’){
1204

1205 if ( is .null( t ) ) {
1206

1207 stop("Specify a t value.") }
1208

1209 require(RSpectra)
1210

1211 n <− nrow(Weights)
1212 dvec_inv = 1/sqrt(rowSums(Weights))
1213 #W_tilde = matrix(rep(dvec_inv,n), ncol=n) ∗Weights ∗

t(matrix(rep(dvec_inv,n),ncol=n))
1214 W_tilde = Diagonal(n,dvec_inv) %∗% Weights %∗%

Diagonal(n,dvec_inv)
1215 W_tilde = (W_tilde+t(W_tilde))/2
1216

1217 if (kmeans.method=="RKM") {
1218

1219 ###
1220 ### Define the RKM function
1221 ###
1222

1223 RKM <− function (data, nclus, ndim, alpha = NULL, method =
"RKM", center = TRUE,

1224 scale = TRUE, rotation = "none", nstart = 10, smartStart =
NULL,

1225 seed = 1234) {
1226

1227 require(ggplot2)
1228 require(dummies)
1229 require(grid)
1230 require(corpcor)
1231

1232 ssq = function(a) {
1233 t (as.vector(c(as.matrix(a))) )%∗%as.vector(c(as.matrix(a)))
1234 }
1235

1236 if ( is .null(alpha) == TRUE) {
1237 if (method == "RKM") {
1238 alpha = 0.5
1239 }
1240 else if (method == "FKM") {
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1241 alpha = 0
1242 }
1243 }
1244 odata = data
1245 data = scale(data, center = center, scale = scale)
1246 # data = data.matrix(data)
1247 n = dim(data)[1]
1248 m = dim(data)[2]
1249 conv = 1e−06
1250 func = {
1251 }
1252 index = {
1253 }
1254 AA = {
1255 }
1256 FF = {
1257 }
1258 YY = {
1259 }
1260 UU = {
1261 }
1262

1263 require( irlba )
1264

1265 for (run in c (1: nstart ) ) {
1266 if ( is .null(smartStart)) {
1267 myseed = seed + run
1268 set .seed(myseed)
1269 randVec = matrix(ceiling(runif(n) ∗ nclus) , n, 1)
1270 }
1271 else {
1272 randVec = smartStart
1273 }
1274 U = dummy(randVec)
1275 P = U %∗% pseudoinverse(t(U) %∗% U) %∗% t(U)
1276

1277

1278 # A = eigen(t(data) %∗% ((1 − alpha) ∗ P − (1 − 2 ∗
alpha) ∗

1279 # diag(n)) %∗% data)$vectors
1280 # A = A[, 1:ndim]
1281

1282

1283 testobj <− t(data) %∗% ((1 − alpha) ∗ P − (1 − 2 ∗
alpha) ∗ diag(n)) %∗% data

1284

1285 A <− partial_eigen(x=testobj, n = ndim, symmetric =
TRUE)$vectors

1286

1287

1288 G = data %∗% A
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1289 Y = pseudoinverse(t(U) %∗% U) %∗% t(U) %∗% G
1290 f = alpha ∗ ssq(data − G %∗% t(A)) + (1 − alpha) ∗

ssq(data %∗%
1291 A − U %∗% Y)
1292 f = as.numeric(f)
1293 fold = f + 2 ∗ conv ∗ f
1294 iter = 0
1295 while (f < fold − conv ∗ f) {
1296 fold = f
1297 iter = iter + 1
1298 outK = try(kmeans(G, centers = Y, nstart = 100),
1299 silent = T)
1300 if ( is . list (outK) == FALSE) {
1301 outK = EmptyKmeans(G, centers = Y)
1302 }
1303 v = as. factor (outK$cluster)
1304 U = diag(nlevels(v)) [v, ]
1305 P = U %∗% pseudoinverse(t(U) %∗% U) %∗% t(U)
1306

1307 # A = eigen(t(data) %∗% ((1 − alpha) ∗ P − (1 − 2 ∗
1308 # alpha) ∗ diag(n)) %∗% data)$vectors
1309 # A = A[, c (1: ndim)]
1310

1311 testobj <− t(data) %∗% ((1 − alpha) ∗ P − (1 − 2 ∗
alpha) ∗ diag(n)) %∗% data

1312

1313 A <− partial_eigen(x=testobj, n = ndim, symmetric =
TRUE)$vectors

1314

1315

1316 G = data %∗% A
1317 Y = pseudoinverse(t(U) %∗% U) %∗% t(U) %∗% G
1318 f = alpha ∗ ssq(data − G %∗% t(A)) + (1 − alpha) ∗
1319 ssq(data %∗% A − U %∗% Y)
1320 }
1321 func[run] = f
1322 FF[[run]] = G
1323 AA[[run]] = A
1324 YY[[run]] = Y
1325 UU[[run]] = U
1326 cat("Just finished iteration " , run, "\n")
1327 }
1328 mi = which.min(func)
1329 U = UU[[mi]]
1330 cluID = apply(U, 1, which.max)
1331 csize = round((table(cluID)/sum(table(cluID))) ∗ 100, digits

= 2)
1332 aa = sort (csize , decreasing = TRUE)
1333 require(plyr)
1334 cluID = mapvalues(cluID, from = as.integer(names(aa)), to =

as. integer(names(table(cluID))))
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1335 centroid = YY[[mi]]
1336 centroid = centroid[as. integer(names(aa)), ]
1337 if ( rotation == "varimax") {
1338 require( stats )
1339 AA[[mi]] = varimax(AA[[mi]])$loadings
1340 FF[[mi]] = data %∗% AA[[mi]]
1341 centroid = pseudoinverse(t(U) %∗% U) %∗% t(U) %∗%

FF[[mi]]
1342 centroid = centroid[as. integer(names(aa)), ]
1343 }
1344 else if ( rotation == "promax") {
1345 AA[[mi]] = promax(AA[[mi]])$loadings[1:m, 1:ndim]
1346 FF[[mi]] = data %∗% AA[[mi]]
1347 centroid = pseudoinverse(t(U) %∗% U) %∗% t(U) %∗%

FF[[mi]]
1348 centroid = centroid[as. integer(names(aa)), ]
1349 }
1350 out = list ()
1351 mi = which.min(func)
1352 out$obscoord = FF[[mi]]
1353 rownames(out$obscoord) = rownames(data)
1354 out$attcoord = data.matrix(AA[[mi]])
1355 rownames(out$attcoord) = colnames(data)
1356 out$centroid = centroid
1357 names(cluID) = rownames(data)
1358 out$cluID = cluID
1359 out$criterion = func[mi]
1360 out$csize = round((table(cluID)/sum(table(cluID))) ∗ 100,
1361 digits = 1)
1362 out$odata = odata
1363 out$scale = scale
1364 out$center = center
1365 out$nstart = nstart
1366 class (out) = "cluspca"
1367 return(out)
1368 }
1369

1370

1371 ###
1372 ### Run RKM on the normalized W_tilde matrix
1373 ###
1374

1375 cluster .out = RKM(W_tilde, nclus=k, ndim=k+1, method =
"RKM", rotation = "varimax", nstart=10)

1376

1377 return(cluster .out)
1378 }
1379

1380 require( irlba )
1381

1382 if (k=="eigenvalue") {
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1383

1384 k <− 20
1385

1386 EZ <− partial_eigen(x=W_tilde, n = k, symmetric = TRUE)$value
1387

1388 print(EZ)
1389

1390 k <− readline(prompt="\n Here is a list of the first 20
eigenvalues.

1391 Pick whichever eigenvalue appears best. \n")
1392

1393 k <− as.numeric(k)
1394

1395 }
1396

1397 EV <− eigs_sym(W_tilde, k+1, ’LM’)
1398 V <− EV$vector
1399 lambda <− EV$value
1400

1401 V_inv = 1/sqrt((rowSums(V[,2:(k+1)]^2)))
1402 V <−matrix(rep(V_inv,k), ncol=k) ∗ V[,2:(k+1)]
1403 V = matrix(rep(dvec_inv,k), ncol = k) ∗ V
1404

1405 V <− abs(matrix(rep(lambda[2:(k+1)], each=n), ncol=k))^(t)∗ V
1406

1407 # V = (matrix(rep(lambda[2:(k)], each=n), ncol=k−1)^t )∗ V
1408

1409 # if ( ( t%%1) != 0){
1410 # V <− abs(matrix(rep(lambda[1:(k)], each=n), ncol=k)^(t))∗ V
1411 # }
1412 # else {
1413 # V <− abs(matrix(rep(lambda[1:(k)], each=n), ncol=k)^(t))∗ V
1414 # }
1415

1416 # run kmeans in eigenspace:
1417

1418 if (kmeans.method=="kmeans") {
1419 cluster .out <− kmeans(V, centers=k, nstart = 100)
1420 }
1421

1422 else if (kmeans.method=="fuzzy") {
1423 require( fclust )
1424 if ( is .null(m)) {
1425 m <− 2
1426 }
1427 cluster .out <− FKM(X=V,k=k, m=m, RS=10)
1428 }
1429

1430 else if (kmeans.method=="poly.fuzzy") {
1431 require( fclust )
1432 if ( is .null(m)) {
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1433 m <− .5
1434 }
1435 cluster .out <− FKM.pf(X=V,k=k, b=m, RS=10)
1436 }
1437

1438 else if (kmeans.method=="RKM") {
1439 require(clustrd)
1440 cluster .out = cluspca(V, nclus=k, ndim=k, method = "RKM",

rotation = "varimax", nstart=10)
1441 }
1442

1443 }
1444

1445

1446 else {stop("Pick a valid clustering method.") }
1447

1448 }
1449

1450

1451 #####
1452 #####
1453 ##### RUN OUR FUNCTIONS #####
1454

1455

1456 ### Store a copy of the data for summary statistics later ###
1457

1458 copydata <− colweights(data, weightfunction="none", sparseinput=sparse,
binary=T)

1459

1460

1461 ### Column weighting ###
1462

1463 col .args = list (data=data, weightfunction=weightfunction,
sparseinput=sparse,

1464 par1=par1, par2=par2, mode=mode,
1465 binary=binary, convertsparse=convertsparse,
1466 lower=lower, upper=upper)
1467

1468

1469 weighteddata <− do.call(colweights, col.args)
1470

1471

1472 cat("Column weighting is finished. \n")
1473

1474

1475 ### if we want to get insights later , we need to store a copy of the data
1476

1477 if ( insights==TRUE & weight.SVD==TRUE){weighteddata2 <−
weighteddata}

1478

1479
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1480 ### change "sparse" to true if you converted to sparse in colweights step:
1481

1482 if (convertsparse==T) {sparse=T}
1483

1484

1485 ### Do you want to calculate SVD on the weighted data? ###
1486

1487 svd.data = NULL
1488

1489 if (weight.SVD==TRUE) {
1490

1491 require( irlba )
1492 all .svd <− irlba(weighteddata, SVDdim)
1493 svd.data <−weighteddata %∗% all.svd$v
1494

1495 if (SVDprint==TRUE) { # print the SVD results
1496

1497 require(rgl )
1498 svdoutput <− plot3d(svd.data[,dim1], svd.data[,dim2],

svd.data[,dim3], col="blue")
1499

1500 if ( ! ( is .null( filepath ) ) ) {
1501

1502 snapshot3d(filepath)
1503 }
1504 }
1505

1506 weighteddata <− svd.data
1507

1508 sparse = F
1509

1510 convertsparse = F
1511

1512 cat("SVD is finished. \n")
1513

1514 }
1515

1516

1517 ### Similarity Matrix ###
1518

1519 sim.args = list (data=weighteddata, method=simfunction,
1520 rowscaling = rowscaling, colscaling = colscaling ,
1521 sigma = sigma, centers = centers , seed = seed,
1522 distance = distance, sparse = sparse, simscale=simscale)
1523

1524 simdata <− do.call(similarity , sim.args)
1525

1526 diag(simdata) <− 0
1527

1528

1529 cat("Similarity matrix is finished. \n")
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1530

1531

1532 ### Do you want to plot the SVD of the Similarity matrix? ###
1533

1534 simdata.svd = NULL
1535

1536 if (SVDsim==TRUE) {
1537

1538 require( irlba )
1539 sim.svd <− irlba(simdata, simdim)
1540 simdata.svd <− simdata %∗% sim.svd$v
1541

1542 if (SVDsim.plot==T) {
1543 require(rgl )
1544 svdoutput <− plot3d(simdata.svd[,dim1sim], simdata.svd[,dim2sim],

simdata.svd[,dim3sim], col="blue")
1545 }
1546

1547 if ( ! ( is .null(sim.filepath ) ) ) {
1548

1549 snapshot3d(sim.filepath)
1550 }
1551

1552 cat("Similarity SVD is finished. \n")
1553

1554

1555 }
1556

1557

1558 ### Clustering step ###
1559

1560 clust .args = list (Weights=simdata, k=nclust, method=clusterfunction,
1561 t=t, sparse=sparse, kmeans.method=kmeans.method, m=m)
1562

1563

1564 clusterdata <− do.call(clustering , clust .args)
1565

1566

1567 cat("Clustering is finished. \n")
1568

1569

1570 #####
1571 #####
1572 ##### Cluster Insights #####
1573

1574 if ( insights==TRUE & weight.SVD==TRUE){weighteddata <−
weighteddata2}

1575

1576 insight .output = NULL
1577

1578 if ( insights==TRUE) {
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1579

1580 getInsights <− function(cluster, vocab, n,
1581 plot , file ) {
1582

1583 require(RSpectra)
1584 require( lattice )
1585 svd.out <− svds(cluster, 4)
1586 v <− svd.out$v #dim(v) 61066 4
1587

1588 b_clr <− c("steelblue" , "darkred")
1589 key <− simpleKey(rectangles = TRUE, space = "top", points=FALSE,
1590 text=c("Positive" , "Negative"))
1591 key$rectangles$col <− b_clr
1592

1593 v1_top <− order(abs(v[,1]), decreasing = T)[1:n]
1594 v1_top_po <− v1_top[which(v[,1][v1_top] > 0)] # positive values
1595 v1_top_ne <− v1_top[which(v[,1][v1_top] < 0)] # negative values
1596 v1_top_t <− c(v1_top_po,v1_top_ne)
1597 v1_topn <− v[,1][v1_top_t]
1598 v1_top.words <− as.matrix(vocab[v1_top_t])
1599

1600 if (plot) {
1601 b1 <− barchart(as.table(v1_topn),
1602 main="First column",
1603 horizontal=FALSE, col=ifelse(v1_topn > 0,
1604 b_clr [1], b_clr [2]) ,
1605 ylab="Impact value",
1606 scales= list (x= list (rot=55, labels=v1_top.words, cex=0.9)),
1607 key = key)
1608 if ( ! is .null( file ) ) {
1609 png(file )
1610 print(b1)
1611 dev.off ()
1612 } else {
1613 print(b1)
1614 }
1615 }
1616

1617 return( list (magnitude = v1_topn, keywords =
as.character(v1_top.words)))

1618

1619 }
1620

1621

1622 if ( is .null(n.ins) ) { n.ins <− nclust }
1623

1624 insight .output = list ()
1625

1626 for (clustID in 1:n.ins) {
1627
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1628 insight .output[[n.ins ]] <−
getInsights(cluster=weighteddata[clusterdata$clus==clustID,],
vocab=vocab,

1629 n=nfeatures, plot=T, file =insight. filepath )
1630

1631 }
1632

1633 cat("Cluster insights is finished. \n")
1634

1635 }
1636

1637

1638

1639

1640 #####
1641 #####
1642 ##### Gather the Output #####
1643

1644 # Gather any statistics of interest :
1645

1646 summarystats <− list(
1647 dimensions=dim(copydata),
1648 colsum=colSums(copydata),
1649 rowsum=rowSums(copydata),
1650 density=nnzero(copydata),
1651 max(copydata)
1652 )
1653

1654

1655 # Remove any data from the output:
1656

1657 col .args <− col.args[−1]
1658 sim.args <− sim.args[−1]
1659 clust .args <− clust.args[−1]
1660

1661

1662 # Output a list of relevant objects :
1663

1664 output <− list(col .args=col.args, sim.args=sim.args, clust .args=clust.args,
1665 summarystats=summarystats, clusterdata=clusterdata,
1666 svd.data=svd.data, simdata.svd=simdata.svd,

insight.output=insight.output
1667 )#[which(c(T,T,T,T,T, weight.SVD, SVDsim, insights))]
1668

1669 if (save==T) {save(output, file = gsub(":" , "_" , paste
("~/",Sys.time() ,sep="_")) ) }

1670

1671 if (return==T) {return(output)}
1672

1673 # test <− list (w,x,y,z)[which(c(a,b,c ,d))]
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Appendix B

R Main Function Documentation

Important Arguments

Mandatory Arguments

These inputs must always be provided; there are no default values.

• data: any matrix, data frame, or object from the Matrix package.

• nclust: how many clusters do you want to find? Integer, or set “divisive
kmeans” for an adaptive method, or set “eigenvalue” to see the eigenvalues
of the similarity matrix before choosing.

Data Input Type

The function works most efficiently with sparse matrices, but can work with full–
size matrices if necessary.

• sparse: Is your data already in sparse format? Specify sparse = TRUE if your
data is a Nx3 “long format” matrix, or a Sparse object from the Matrix package.
Default: TRUE, but make sure that this is correct.

• convertsparse: If your data is a full dense matrix (i.e. you set sparse=FALSE),
specify convertsparse = TRUE convert the matrix to a sparse object for maxi-
mum efficiency. Default: TRUE.

Returning and/or Saving Output

• save: save the output into your working file directory as a .R list object, with
file name = Sys.time(). Default: TRUE.

– The file name is the result of calling Sys.time(), to guarantee unique names.
If you cannot find the file in your directory, search for the current date in
Y-M-D format (ex: “2017-05-08”)

• return: store the output into your local workspace and explore the results.
Default: TRUE.
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Cluster Insights

Explore the clusters that we found in the main algorithm, analyzing their Singular
Value Decomposition (SVD).

• insights: TRUE if you want this information, or = FALSE otherwise. Default:
FALSE.

• vocab: input the vector of column names (from your raw input data). This
is required for any meaningful analysis, providing the interpretation for the
important features.

• nfeatures: number of top features to display for each cluster. Default = 20.

Presets

Pre-designated combinations of input arguments, showcasing our empirically strongest
combinations. Polynomial fuzzy kmeans is used to measure results, but is not re-
quired for functional performance (and will slow down the algorithm drastically, if
speed is important). Any unspecified input is ran with the default value.

• preset = 1: SVD with IDF2 column weighting.

• preset = 2: polynomial fuzzy kmeans.

• preset = 3: NJW spectral clustering with polynomial fuzzy kmeans.

• preset = 4: SVD with IDF2 column weighting and polynomial fuzzy kmeans.

• preset = 5: SVD with IDF2 column weighting, NJW clustering, and polynomial
fuzzy kmeans.

Function Output

This function outputs a list object, containing many sub–lists and other output ob-
jects. This main output list returns the following objects:

• $col.args: a list of the input arguments used for column weighting (for future
reference purposes).

• $sim.args: a list of the input arguments used for the similarity matrix calcula-
tion (for future reference purposes).

• $clust.args: a list of the input arguments used for the spectral clustering algo-
rithm.

• $summarystats: some basic summary statistics from the data: dimensions, a
list of column densities from each column, a list of row densities from each
row, the number of nonzero entries in the matrix, and the overall maximum
value from the dataset.

• $clusterdata: The kmeans output from the final step of spectral clustering. This
is another list, containing cluster IDs, sum-squares information, and other ba-
sic kmeans output.
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– Output$clusterdata$cluster will give the final cluster ID’s, where "Out-
put" is the object returned by the mainfunction output (you may store
this object under a different name).

• $SVD.data: the dimensionally-reduced data, if SVD is used.

– The SVD–reduced data will include 200 SVD columns by default. This
can be changed with input argument SVDdim = .

• $simdata.svd: A dimensionally-reduced version of the similarity matrix. Only
returned if SVDsim=TRUE.

• $insight.output: The various statistics and summary graphics about the con-
tent of each cluster. Only returned if insights=TRUE and if the “vocab” (a
vector containing the true column names) is supplied.

Examples

1. Output <- mainfunction(data=Data, ncluster=5)

• Data is a Nx3 long format matrix or a sparse object from the Matrix pack-
age

• ncluster = 5 runs the algorithm for 5 clusters

• Output will be a list of various objects, which can be referenced by the $
command

• Output is automatically saved into your computer/server directory, with
name equal to the specific time on your machine given by Sys.time() (ex:
file name “2017-05-08 10:00:00”).

• All other arguments are set to their default values, described below.

2. Output <- mainfunction(data=Data, ncluster=5, sparse=FALSE, convertsparse=TRUE)

• Same specifications as example 1, except the input object "Data" would be
a dense matrix in this case rather than a sparse matrix (as noted by the
"sparse=FALSE" argument).

• "convertsparse=TRUE" specifies that the data will be converted to a Sparse
object (as found in the Matrix package) for maximal efficiency.

3. mainfunction(data=Data, ncluster=5, preset=1, return=FALSE)

• "preset=1" will run the function with preset arguments, specified in sec-
tion B. This option could take any integer value 1 through 5.

• "return=FALSE" prevents the function from printing any output or stor-
ing it in your workspace. Notice how we are not storing the result into
any variable name. Instead, the function will save the output as a list ob-
ject in your main file directory (as described in example 1) without print-
ing any output.

4. Output <- mainfunction(data=Data, ncluster=5, insights=TRUE, vocab=website.names)
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• "insights=TRUE" will run our cluster insights function, which identifies
the defining variables for each cluster.
• The input argument for vocab must be a vector of column names, which

I represented with a dummy variable “website.names”.

Other Optional Arguments

Colweights Function

Here, we specify all of the pre-processing steps. The main features are:

• weightfunction: method for column weighting. Options: "IDF", "IDF2̂", "beta",
"step", "linear", "none". Default: “IDF”, also try “IDF2̂” for more aggressive
weighting.

• binary: specify "binary=TRUE" if you want to convert your data to binary, or
if your data is already binary. Default: TRUE.

Similarity Function

Compute the NxN similarity matrix. The main features are:

• simfunction: specify the method for measuring pairwise similarity. Options:
"cosine", "Gaussian", "correlation", "dotproduct". Default: “cosine”.

Clustering Function

Run a spectral clustering algorithm to partition the data into clusters.

• clusterfunction: choose a spectral clustering algorithm. Options: "Diffusion-
Map", "NJW", "Ncut". Default: “DiffusionMap”.

• t: number of ‘steps’ to calculate in the diffusion mapping (if "DiffusionMap"
is chosen as the clustering algorithm). Larger values give bolder clusters, but
seem overaggressive in practice. Default = .5.

• kmeans.method: kmeans variations for subspace clustering. Options: "kmeans",
"fuzzy" (fuzzy kmeans, with probabilistic clustering), "poly.fuzzy" (fuzzy kmeans,
but with a polynomial fuzzifier). Warning: both types of fuzzy clustering are
VERY slow. Default: “kmeans”.

SVD Options for Weighted Data

Run Singular Value Decomposition on the weighted data matrix for dimension re-
duction (before calculating the similarity matrix).

• weight.svd: set =TRUE to run SVD, if desired. It appears that SVD dimension
reduction may eliminate noise and improve results. Default: FALSE.

• SVDdim: number of dimensions to project with SVD. We have achieved max-
imal results by using around 100–200 SVD dimensions. Default: 200.
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SVD Options for Similarity Matrix

Strictly for visualization purposes on the similarity matrix; not actually used in the
clustering partition.

• SVDsim: set =TRUE if you want to output the visualization plots. Default:
TRUE .
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