
San José State University

Department of Mathematics and Statistics

Large-Scale Spectral Clustering

Methods for Image and Text Data

Team Leaders:
Jeffrey Lee, Scott Li
Team Members:
Jiye Ding, Maham Niaz,
Khiem Pham, Xin Xu,
Zhengxia Yi, Xin Zhang

Faculty Supervisor:
Dr. Guangliang Chen

August 27, 2018



Abstract

Verizon is a telecommunications company that receives a large amount of data
from cell phone users. Clustering is one way to draw insights from this data in order
to make better business decisions. While spectral clustering has many advantages
over other clustering algorithms, it involves computationally expensive steps which
limit its application to large datasets. In this report, we explore three methods
- Scalable Spectral Clustering using Cosine Similarity, Landmark-Based Spectral
Clustering, and Landmark-Based Bipartite Graph Spectral Clustering to improve
the scalability of current spectral clustering algorithms while maintaining clustering
performance.



Acknowledgements

We would like to thank Prof. Guangliang Chen for his guidance and supervision
with this project and Prof. Slobodan Simic for helping to organize this project We
also express deep gratitude to Verizon for their generous sponsorship.



Contents

1 Introduction 6
1.1 CAMCOS Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Report Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background 8
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Clustering and Clustering Components . . . . . . . . . . . . . . . . . 8
2.3 Spectral Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Normalized Cut (NCut) . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Diffusion Maps (DM) . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.3 Ng, Jordan, and Weiss (NJW) . . . . . . . . . . . . . . . . . . 10

2.4 Implementing The Algorithms . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Strengths and Challenges Of Spectral Clustering . . . . . . . . . . . . 10
2.6 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Scalable Spectral Clustering using Cosine
Similarity 11
3.1 Setting for Scalable Spectral Clustering . . . . . . . . . . . . . . . . . 12

3.1.1 Cosine Similarity . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.2 Assumptions for Scalable Spectral Clustering . . . . . . . . . . 12

3.2 Derivation of Scalable Spectral Clustering . . . . . . . . . . . . . . . 12
3.3 Scalable Spectral Clustering Algorithm Overview . . . . . . . . . . . 14

3.3.1 Outlier Classification . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4.1 Speed and Accuracy . . . . . . . . . . . . . . . . . . . . . . . 15
3.4.2 Robustness to Outliers . . . . . . . . . . . . . . . . . . . . . . 15

3.5 Other Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5.1 Different Similarity Measures . . . . . . . . . . . . . . . . . . 20
3.5.2 Other Clustering Methods . . . . . . . . . . . . . . . . . . . . 21
3.5.3 Additional Remarks . . . . . . . . . . . . . . . . . . . . . . . 23

4 Landmark-Based Spectral Clustering 24
4.1 Algorithm Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Landmark Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Similarity Computation . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4 Nearest Landmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.5 Outlier Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.6 Clustering Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27



CONTENTS 4

4.6.1 Data Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.6.2 Landmark Clustering . . . . . . . . . . . . . . . . . . . . . . . 28
4.6.3 Diffusion Maps . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.7 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.7.1 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.7.2 Parameter Sensitivity . . . . . . . . . . . . . . . . . . . . . . . 29

4.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.9 Image Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.9.1 Similarity Matrix . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.9.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Landmark-Based Bipartite Graph Spectral Clustering 40
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1.1 The bipartite graph . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2 Spectral Clustering on Bipartite Graph . . . . . . . . . . . . . . . . . 41

5.2.1 Formulation and a shortcut . . . . . . . . . . . . . . . . . . . 41
5.2.2 Computational complexity for sparse matrix . . . . . . . . . . 43

5.3 Landmark-based Bipartite Spectral Clustering . . . . . . . . . . . . . 44
5.3.1 Intuition and related work . . . . . . . . . . . . . . . . . . . . 44
5.3.2 Diffusion map . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.4.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 48
5.4.2 Results for K-means sampling LBDM . . . . . . . . . . . . . . 51
5.4.3 Results for Random sampling LBDM . . . . . . . . . . . . . . 52
5.4.4 Clustering accuracy and Run time . . . . . . . . . . . . . . . . 52
5.4.5 Parameter sensitivity study . . . . . . . . . . . . . . . . . . . 53

6 Simultaneous Document and Word embeddings 54
6.1 The problem of low-degree nodes . . . . . . . . . . . . . . . . . . . . 55
6.2 Is co-clustering good? . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3 Finding topic words through spectral embedding . . . . . . . . . . . . 56

6.3.1 Centroid distance . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3.2 Word-document embedding distance . . . . . . . . . . . . . . 61
6.3.3 Kernel density estimation . . . . . . . . . . . . . . . . . . . . 63

7 Cluster Interpretation 65
7.1 Sum of TF-IDF values . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.2 Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . . . 66

8 Conclusion and Future Work 68
8.1 More Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 68



CONTENTS 5

8.2 Recursive Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.3 Demographic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A Packages and Codes 72
A.1 R Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
A.2 R Accuracy Computation . . . . . . . . . . . . . . . . . . . . . . . . 72
A.3 Team 1 Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A.3.1 Scalable Spectral Clustering . . . . . . . . . . . . . . . . . . . 74
A.3.2 Plain Spectral Clustering . . . . . . . . . . . . . . . . . . . . . 77
A.3.3 Cluster Interpretation with Rank 1 SVD . . . . . . . . . . . . 80
A.3.4 Classification of Outliers . . . . . . . . . . . . . . . . . . . . . 82

A.4 Team 2 Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
A.4.1 LSC Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

A.5 Team 3 Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
A.5.1 LBDM Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92



1 INTRODUCTION 6

1 Introduction

This project is sponsored by Verizon. Verizon receives a large stream of data from
their cell-phone users, such as browsing history and demographic data. Drawing
insights from this data to provide better services or making better business decisions
is critical for company growth or survival. Clustering is one way to analyze this data.

Figure 1: Cell phone user data

Clustering has many business applications including customer segmentation,
market segmentation, and grouping web pages.

1.1 CAMCOS Project

This Spring 2018 CAMCOS project is a continuation of the Spring 2017 project,
which was also sponsored by Verizon. The previous group performed a proof of
concept study to cluster a famous document dataset. They worked on a general
framework and considered data visualization, different data preprocessing meth-
ods, different similarity measures, and tested different clustering algorithms. They
concluded that spectral clustering techniques could be applied effectively to the
documents dataset.

This group is focused on techniques to improve the scalability of spectral clus-
tering algorithms, and understanding the clustering results. There are three teams
which focused on three different techniques:

1. Use cosine similarity and clever matrix manipulations to bypass some compu-
tationally expensive steps.

2. Use landmarks to find a sparse representation of the data.
3. Use landmarks and the given data to build bipartite graph models.

1.2 Report Organization

The report will start by giving background material on general clustering as well
as spectral clustering in particular. We will also introduce any datasets we used



1 INTRODUCTION 7

Figure 2: Group clustering illustration

for testing. Because the CAMCOS group was divided into three teams, the report
will present the methodology, results, and conclusions of each team in order. Then,
cluster interpretation will be examined. Finally, overall conclusions and future work
can be presented.



2 BACKGROUND 8

2 Background

2.1 Notation

• Vectors are denoted with bold, lower case letters: b denotes vector b.
• Matrices are denoted in bold, upper case letters: B denotes matrix B.
• Entries in a matrix are denoted as subscripts under matrix notation: Bi,j

denotes the matrix entry corresponding to row i and column j.
• The identity matrix will be denoted in bold ’I’. The size of the identity matrix

will vary according to context, but we assume that these matrices are of sizes
that conform with the given situation: I denotes an identity matrix.
• A constant vector of one will be denoted in bold ’1’. The length of this vector

will vary according to context but we assume that these vectors are of lengths
that conform with the given situation: 1 denotes a constant vector of 1.

2.2 Clustering and Clustering Components

Clustering is an unsupervised machine learning task. The goal of clustering is to
group data in a way that data within a group are more similar to each other than
they are to data in different groups. Some applications for clustering include cus-
tomer and market segmentation and identifying groups of web pages.
The components in a clustering process is as follows:

• Data. We will consider data in the form of a matrix, where each row represents
an observation xi.
• The number of clusters to be formed that is specified by the user. It

is assumed that the user already has an optimal number of clusters in mind.
Methods for selecting a number of clusters given that it is unknown is outside
the scope of this project and will require additional research.
• A similarity measure to measure how similar different observations are to

each other. Similarity measures between two observations x and y are denoted
S(x, y)
• A specified clustering algorithm to perform the clustering. One example

of an algorithm could be spectral clustering with cosine similarity or landmark
clustering.
• A criterion to evaluate the clusters. For our study, we will evaluate our

clustering algorithms by accuracy and runtime. For text data, since we have
the vocabulary for our data, we will also consider the cluster interpretations
of our output by looking at the top significant words in each cluster.



2 BACKGROUND 9

2.3 Spectral Clustering

Given data, spectral clustering uses spectral decomposition with the similarity ma-
trix. Some spectral clustering methods use a degree matrix, D, which is a diagonal
matrix where each diagonal entry is the sum of all weights for a corresponding
observation in the data. Then, k-means clustering is used on the resulting top k
eigenvectors from the spectral decomposition. For our project, we consider three
different methods of spectral clustering. Simple manipulations of the weight matrix
and the degree matrix will allow us to perform spectral clustering with one of the
following three algorithms: The Normalized Cut algorithm (NCut) [14], the Diffu-
sion Maps algorithm (DM) [4], and the Ng, Jordan, and Weiss algorithm (NJW)
[10].

2.3.1 Normalized Cut (NCut)

We discuss the Normalized Cut method first, because it is the most intuitive. Under
Normalized Cut, spectral clustering can be considered to be a graph cut problem
where each observation is a vertex and each pair of vertices are connected by an
edge with the corresponding similarity weights.

Figure 3: Graph Representation of Data

For Normalized Cut, the clustering criterion will ”cut” the edges of the graph
in a way that minimizes the separation of the edges while maximizing the remaining
weights within each group after the cut.

This criterion can be summarized as follows:

minA,B Ncut(A,B) =
Cut(A,B)

V ol(A)
+
Cut(A,B)

V ol(B)

Where Cut(A,B) is the sum of all of weights of all of the edges that have been
removed after partitioning the vertices into two disjoint sets A and B, and V ol(A)
is the sum of all of the existing pairwise weights within set A.



2 BACKGROUND 10

It can be shown that this criterion is approximated by solving an eigenvalue
problem on the transition matrix P = D−1W. To cluster, we would use the second
to kth largest eigenvectors for k-means clustering.

2.3.2 Diffusion Maps (DM)

The Diffusion Maps algorithm is very similar to the NCut algorithm. The difference
is that here, the eigenvalue decomposition is done on Pt for some positive integer t
instead of just P. In this case, we have a transition matrix that represents t time
steps.

2.3.3 Ng, Jordan, and Weiss (NJW)

Much of our project is focused on the use of the Ng, Jordan, and Weiss spectral clus-
tering. Here, instead of the transition matrix P, the NJW method uses a symmetric
normalization of the weight matrix, W̃ = D−

1
2 WD−

1
2 .

2.4 Implementing The Algorithms

We specify the NJW algorithm first and then the adjustments required to perform
the other two algorithms.

• NJW algorithm:
Input: Data x1, . . . , xn, specified number k, α fraction cutoff for outliers

1. W =(Wi,j) ∈ Rn×n, where Wi,j = S(xi, xj)
2. D = diag(W · 1)

3. Symmetric normalization: W̃ = D−
1
2 WD−

1
2

4. Compute the top k eigenvectors of W̃. Let these row normalized eigen-
vectors be Ũ.

5. Run k-means on Ũ to cluster.
Output: Cluster labels

• NCut algorithm: Adjustment to step 5: Instead of running k-means on Ũ,
run k-means on U, where U = D−

1
2 Ũ, to cluster.

• DM algorithm: Adjustment to step 5: Instead of running k-means on Ũ, run
k-means on U(t) = UΛt, where Λ is a diagonal matrix of the top k eigenvalues
of W̃, to cluster.

2.5 Strengths and Challenges Of Spectral Clustering

Spectral clustering is an improvement on regular k-means clustering, because it can
handle arbitrarily shaped clusters. It is also equivalent to some graph cut problems,



3 SCALABLE SPECTRAL CLUSTERING USING COSINE
SIMILARITY 11

which is desirable because of the availability of the use of graph theory and other
applications. From earlier, we see that the Spectral Clustering algorithms can be
implemented with 5 or 6 steps.

However, Spectral Clustering is expensive for large datasets in terms of storage,
which is O(n2), and computation, which is O(n3). This is an important motivation
for our project’s focus on scalability of the clustering algorithms.

2.6 Datasets

The 6 datasets that we will test our methods on are classified into document data
and image data. They are as follows:

Table 1: Datasets

Type Dataset Instances Features Classes
20 Newsgroups 18,768 55,570 20

Text Reuters 8,067 18,933 30
TDT2 9,394 36,771 30
USPS 9,298 256 10

Image Pendigits 10,992 16 10
MNIST 70,000 784 10

Note that the text datasets are sparse, and the image datasets are low dimension.
The 6 datasets that we used are sourced from the following websites:
• 20 Newsgroups: http://qwone.com/∼jason/20Newsgroups/
• Reuters: http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
• TDT2: http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
• USPS: https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
• Pendigits: https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
• MNIST: http://yann.lecun.com/exdb/mnist/

3 Scalable Spectral Clustering using Cosine

Similarity

Although spectral clustering is expensive, we will show that we can omit the simi-
larity matrix calculation, which is one of the more costly parts of the algorithm, and
still be able to cluster with the NJW algorithm (as well as NCut and DM) under
the use of cosine similarity.



3 SCALABLE SPECTRAL CLUSTERING USING COSINE
SIMILARITY 12

3.1 Setting for Scalable Spectral Clustering

Many clustering problems involve document data or image data. For these types of
data, cosine similarity is appropriate to use.

3.1.1 Cosine Similarity

The cosine similarity between objects x and y takes the form:

S(x, y) = cosθ =
x · y

||x|| · ||y||
Let A be a data matrix where each row has been normalized into unit vectors. Then,
under cosine similarity, the form of the similarity matrix becomes:

W = AAT − I

3.1.2 Assumptions for Scalable Spectral Clustering

For the scalable method, we will assume that:
• Any given data will either be sparse or low dimensional.
• Cosine similarity is used as the similarity measure.

3.2 Derivation of Scalable Spectral Clustering

Recall the NJW algorithm from Section 2.4. If we plug in W = AAT − I, then two
important things happen:

(1) D = diag(W · 1)
= diag((AAT − I) · 1)
= diag(A(AT1)− 1)
which can be calculated without W

(2) W̃ = D−
1
2 (AAT − I)D−

1
2

= D−
1
2 AATD−

1
2 −D−1

= ÃÃT −D−1

where Ã = D−
1
2 A

From (1), we see that because the similarity matrix has a specific form, we can
manipulate the matrix multiplications in an efficient way. A result of (1) is that we
can omit calculating W and directly calculate D, the degree matrix, with just A.

From (2), since W̃ = ÃÃT −D−1, we will consider some observations:
• Consider ÃÃT without the subtraction term. Also consider the singular value

decomposition of Ã, where Ã = ŨΣVT. Then ÃÃT = (ŨΣVT)(VΣTŨT),
and it can be shown that under these considerations, Ũ is analogous to the
top k eigenvectors of W̃ from step 4 of the NJW algorithm in Section 2.4.
• Consider W̃ = ÃÃT −D−1. If D−1 has constant diagonals, then the eigen-

vectors of W̃ will be the same as those of ÃÃT (but their eigenvalues are



3 SCALABLE SPECTRAL CLUSTERING USING COSINE
SIMILARITY 13

different). This implies that one can use the SVD of Ã to compute the eigen-
vectors of W̃ when D−1 has a constant diagonal.
Although we mention constant diagonal entries for D−1, this condition is rarely

the case in practice. However, this condition can be made nearly true if we remove
an appropriate fraction of the observations that have the lowest degrees from the
data when we perform the clustering, which would result in a D−1 with small and
nearly constant diagonals. In this sense, the data that are removed can be considered
as outliers, due to their low degrees.

Figure 4: Inverse degrees of the observations ordered from large to small. Red
degrees indicate that the corresponding observations are considered to be outliers.

We note the following while keeping in mind that low degree means high inverse
degree:
• There tends to be a small fraction of observations with low degree denoted

in red. If there exist data where a large portion of the observations have low
degree, then clustering would be bad for analyzing the data in the first place.
• After removing the red observations, the remaining blue observations are nu-

merically similar. For practical purposes, we will consider the blue observations
to have approximately equal degrees.



3 SCALABLE SPECTRAL CLUSTERING USING COSINE
SIMILARITY 14

With the above graph, equations (1) and (2), and their results in mind, it is
possible to implement a scalable spectral NJW clustering algorithm that omits the
W calculation and only requires the data matrix A to approximate clustering results
of the NJW algorithm from Section 2.4 (from this point on, that algorithm will be
referred to as the Plain NJW algorithm).

3.3 Scalable Spectral Clustering Algorithm Overview

Input: Data A, Specified number k, clustering method (NJW, Ncut or DM)
and α fraction cutoff for outliers

1. L2 normalize A. Compute degree matrix D (refer to equation (1)), remove
outliers from D and A

2. Compute Ã = D−
1
2 A

3. Compute the Ũ, the top k left singular vectors of Ã
4. Convert Ũ according to clustering method and run k-means

Output: Cluster labels, including a label for outliers

3.3.1 Outlier Classification

In order to check accuracy of a clustering algorithm, we can compare the true labels
and cluster labels while excluding the algorithm-marked outliers. If we want to
include all of the observations, then we classify the outliers by doing the following:
• Take the clustered observations and average each cluster. These averages will

be a cluster center.
• Classify each of the outliers with the Nearest Centroid Classifier, which is done

by computing each of the cluster centers and assigning each of the outliers to
its nearest cluster center.

3.4 Experiments

To test the scalable algorithm, we use it and compare it with the plain algorithm for
all 6 datasets mentioned in Section 2.6. The criteria used for evaluation of cluster
algorithms are accuracy and runtime. Each specified clustering run is conducted for
5 seeds each, and the results are averaged. All codes in these experiments are imple-
mented in R and conducted on a server called Golub at San Jose State University,
which is equipped with the following:

• Two Xeon E5620 Intel Processors with four cores and support for eight threads
per physical processor running at 2.4GHz
• The server has 48GB of memory and two 2TB mirror providing 2TB of storage



3 SCALABLE SPECTRAL CLUSTERING USING COSINE
SIMILARITY 15

3.4.1 Speed and Accuracy

The following results in this section are from experiments done with α = 0.01. Note
that under the plain algorithm, MNIST clustering runs were unsuccessful because
of memory issues.

Table 2: Here are comparisons between the Scalable NJW algorithm and the Plain
NJW algorithm for each of the datasets. From the runtime table, we can see that
the Scalable NJW is much faster than the Plain NJW method.

Runtime (Seconds)
Dataset Scalable Plain
20 Newsgroup 57.7 154.9
Reuters 5.9 51.1
TDT2 25.3 53.9
USPS 1.1 52.9
Pendigits 3.4 102.0
MNIST 36.2 Out of Memory

Table 3: Accuracies in this section are computed after classifying the outliers. From
the accuracy table, we can see that both methods are similar in accuracy. The Plain
NJW method is slightly more accurate.

Accuracy (%)
Dataset Scalable Plain
20 Newsgroup 64.40 64.95
Reuters 24.60 25.23
TDT2 51.20 51.80
USPS 67.53 67.47
Pendigits 73.56 73.56
MNIST 52.60 Out of Memory

3.4.2 Robustness to Outliers

For each dataset, we also experimented on the α from 0.01 to 0.10. This is to get an
idea of how sensitive the Scalable NJW algorithm is to the fraction of data that are
removed, since there is no rule of thumb to decide how much of the data should be
considered outliers. Note that a larger α means that more data will be considered
to be outliers (see Section 3.3).



3 SCALABLE SPECTRAL CLUSTERING USING COSINE
SIMILARITY 16

Figure 5: Accuracy as a function of α for each dataset. For this figure, the accuracies
of the Scalable NJW algorithm are calculated after classifying each of the outliers
(see Section 3.3.1).



3 SCALABLE SPECTRAL CLUSTERING USING COSINE
SIMILARITY 17

Figure 6: Accuracy as a function of α for each dataset. For this figure, the accuracies
of the Scalable NJW algorithm are calculated without the outliers.

In the both figures above, both the Scalable NJW and the Plain NJW algorithms
perform similarly in accuracy for different α. For the Newsgroup dataset, we see
that accuracy of the Scalable NJW is low at α = 0, but it improves and becomes
comparable with the Plain NJW after increasing α to 0.125.



3 SCALABLE SPECTRAL CLUSTERING USING COSINE
SIMILARITY 18

Figure 7: Run time as a function of α for each dataset. For this figure, the run times
of the Scalable NJW algorithm are calculated after classifying each of the outliers
(see Section 3.3.1).



3 SCALABLE SPECTRAL CLUSTERING USING COSINE
SIMILARITY 19

Figure 8: Run time as a function of α for each dataset. For this figure, the run times
of the Scalable NJW algorithm are calculated without the outliers.

From the run time plots, we see that with the exception of MNIST experiments, in
most cases, run time does not increase much, and the Scalable NJW remains faster
in general.

By applying the cosine similarity and adequately removing the low degree observa-
tions, the scalable spectral clustering method saves computation time while having
accuracies that are comparable to the plain spectral clustering method.

Because we see that accuracy can have a positive (for USPS, Pendigits, and MNIST)
or negative (for 20 Newsgroup, Reuters, TDT2) association with α, we only recom-
mend an α that is large enough only to capture all of the outliers for the purpose
of implementing the Scalable NJW algorithm. For our study, we found 1% to be
sufficient, but further studies on α are recommended.



3 SCALABLE SPECTRAL CLUSTERING USING COSINE
SIMILARITY 20

3.5 Other Considerations

In addition to implementing and testing the Scalable NJW clustering algorithm
with cosine similarity, we explored using the Scalable NJW algorithm with different
similarity measures, and we also extended the NJW algorithm to be able to perform
Normalized Cut and Diffusion Maps.

3.5.1 Different Similarity Measures

Scalable NJW Clustering assumed the use of sparse data matrices and cosine simi-
larity. One idea that we explored involves using data with n observations to create
a similarity matrix of dimension n by n with any similarity measure, like Gaussian
similarity. Then, a random landmark selection method is used to reduce the dimen-
sion of the matrix. Landmark selection is a way to select a subset of the observations
to represent the entire data when computing the similarities so that each of the n
observations will only be compared with each of the p landmarks. Under this setting,
the resulting similarity matrix becomes size n by p, which has smaller dimensions.
At this point, each row will keep only the top r most similar landmarks, and the
rest of the similarities in that row are set 0. The result is a sparse matrix of weights
with low dimension. This matrix will become our ”data” matrix A that we use for
the Scalable spectral NJW algorithm.

Figure 9: Illustration of Landmark Selection. Left: the form of the affinity matrix
after taking the nearest landmarks. Landmarks are x’s and observations are dots.
Right: a graph representation of this matrix.

Implementation of Scalable NJW with Gaussian similarity.
• Randomly select k observations to be landmarks



3 SCALABLE SPECTRAL CLUSTERING USING COSINE
SIMILARITY 21

• Calculate the Gaussian similarity weight matrix to form an n by k matrix
• Keep the top r weights for each row and turn all other weights to 0
• Use the resulting sparse matrix as an input for the Scalable NJW, which is

specified in Section 3.3.

Test Results (accuracy and speed). For this extension of the scalable NJW, we
tested only on the image datasets with α = 0.01.

Table 4: Runtime and Accuracy of Scalable NJW with Gaussian Similarity. Note
that results for MNIST data is an average of only 3 runs under different seeds due
to the length of time per run.

Dataset
Runtime
(Seconds)

Accuracy
(%)

USPS 88.7 53.69
Pendigits 117.2 72.33
MNIST* 16138.1 50.0

For future work, we do note that the similarity matrix computation can be sped up
in terms of the Euclidean distance:

||x− y||2 = ||x||2 + ||y||2 − 2x · y

This would speed up computation under Gaussian similarity, which takes the form:

S(x, y) = e
− ||x−y||

2

2βσ2

with variance parameters β and σ.

3.5.2 Other Clustering Methods

Implementation - Turning NJW into NCut and DM. As mentioned in Sec-
tion 2.4, the Scalable NJW algorithm can be easily modified into a Normalized Cut
algorithm by turning Ũ into U or a Diffusion Maps algorithm of t steps by turning
Ũ into U(t). In this setting, we note that t = −1 represents NJW, t = 0 represents
Normalized Cut, and Diffusion Maps of step t are represented by a positive t.

Results (accuracy and speed).



3 SCALABLE SPECTRAL CLUSTERING USING COSINE
SIMILARITY 22

Table 5: Accuracy of Scalable Normalized Cut and Diffusion Maps.

t steps
Dataset

0 1 2 3 4

20 Newsgroup 64.41 62.54 57.36 51.95 50.59
Reuters 24.6 25.9 23.25 22.84 21.03
TDT2 51.2 54.76 57.57 55.12 48.08
USPS 67.53 64.93 52.83 41.8 38.95
Pendigits 73.56 71.41 68.55 62.25 61.76
MNIST 52.61 55.79 51.8 42.31 41.85

Table 6: Runtime of Scalable Normalized Cut and Diffusion Maps.

t steps
Dataset

0 1 2 3 4

20 Newsgroup 49.5 49.8 49.8 50.0 49.7
Reuters 6.4 6.2 6.2 6.3 6.2
TDT2 22.4 22.1 22.1 21.9 22.0
USPS 1.2 1.3 1.3 1.4 1.4
Pendigits 3.4 3.1 3.2 3.2 3.1
MNIST 38.0 37.9 38.0 36.4 36.6

The runtimes are very similar, but we note that as t increases, the accuracy tends
to decrease.



3 SCALABLE SPECTRAL CLUSTERING USING COSINE
SIMILARITY 23

Figure 10: Plot of accuracies as t increases. Here, t = −1 is a representation of
Scalable NJW to compare with t = 0, which is NCut, and positive t, which is DM.

3.5.3 Additional Remarks

Although the extension of Scalable NJW is slow, there exist faster ways to implement
different similarities, especially with Gaussian Similarity. Also, for future studies,
it would be of interest to take a closer look at Diffusion Maps and how our matrix
manipulations affect the accuracies of the clustering algorithm.



4 LANDMARK-BASED SPECTRAL CLUSTERING 24

4 Landmark-Based Spectral Clustering

Another approach to improve the efficiency of spectral clustering is Landmark-based
methods [2]. These methods involves selecting p (p << n) landmarks, or represen-
tative points from n observations to find a sparse representation of the data. This
representation is smaller, takes up less memory, and is faster to perform computa-
tions on.

Figure 11: Landmark or representative points highlighted in red.

The sparse affinity matrix between p landmarks yj and n data points xi is de-
noted as A. A =(Ai,j) ∈ Rn×p, where Ai,j = S(xi, yj). The original LSC algorithm
clusters the data based on the left singular vectors of the matrix A, after two normal-
ization steps. First, Let A1 be the L1 row normalization of A (A1 = D1

−1A, where

D1 = diag(A·1)). Next, Let A2 be L2 column normalization of A1 (A2 = A1D2
− 1

2 ,
where D2 = diag(1T ·A1)). The weight matrix of the LSC algorithm is W = A2A

T
2 .

We show that the degree matrix is the identity matrix below:

Proof. First, by definition,
W = A2A

T
2 ,

A1 = D1
−1A,

A2 = A1D2
− 1

2 .
It follows that,

A2A
T
2 = A1D

−1
2

2 D
−1

2
2 AT

1 = A1D
−1
2 AT

1 ,
D = diag(W · 1) = diag(A1D

−1
2 AT

1 1) = diag(A11) = I.
(AT

1 1 is a vector of column sums of A, which means it’s a vector of diag(D2).)



4 LANDMARK-BASED SPECTRAL CLUSTERING 25

The eigenvectors of W can be computed by SVD of A2, which are the left
singular vectors of A2. K-means is performed on the eigenvectors of W to cluster
the data.

4.1 Algorithm Overview

Input: n data points x1, x2, ..xn, cluster number k, number of landmarks p, and
number of nearest landmarks r

1. Produce p landmark points using k-means or random selection;
2. Construct an affinity matrix A ∈ Rn×p between data points and landmark

points, with the affinity calculated using Gaussian or cosine similarity;
3. Make A sparse by preserving only r largest entries per row
4. Normalize A using L1 row normalization first to get A1 and square root L1

column normalization, to obtain A2

5. Apply SVD on A2 to compute the top k left singular vectors and form a matrix
U = [u1 . . . uk] and perform k-means on the row vectors of U.

Output: k clusters

4.2 Landmark Selection

Two main methods of selecting landmarks were considered: Random Selection and
k-means selection.

Random selection randomly selects p landmarks from the data using Uniform
probability distribution. Therefore, each data point has a 1/n probability of becom-
ing a landmark. This method is really fast compared to k-means.

k-means selection uses the k-means algorithm to select p centroids from the
data. As seen in the figure, these centroids are much more evenly spread throughout
the data and are more representative, thus, boosting accuracy. However, k-means
selection can be really slow for large datasets. Therefore, there is a runtime-accuracy
trade-off between the two methods.

4.3 Similarity Computation

Gaussian kernel with Euclidean distance is one of the most commonly used similarity
measures. This method requires estimation of the variance. When using random
selection method, estimation of the variance requires calculating Euclidean distance
between n data points and p landmarks. Equation 4.3a is used to calculate Gaussian



4 LANDMARK-BASED SPECTRAL CLUSTERING 26

Figure 12: Left: random uniform landmark selection. Right: k-means landmark
selection.

similarity between x and y.

S(x, y) = e
− ||x−y||

2

2βσ2 (4.3a)

With k-means selection, the average variance between p landmark centroids pro-
vided by the k-means algorithm can be used as an estimate for variance.

Cosine Similarity was also considered to compute the nxp affinity matrix. As
explained in Section 2, this method works really well for text data. It is compu-
tationally efficient and fast. Equation 4.3b is used to calculate cosine similarity
between x and y.

S(x, y) = cosθ =
x · y

||x|| · ||y||
(4.3b)

Figure 13: Left: an example of the Gaussian kernel with varying the variance tuning
parameter. Right: an example of cosine similarity.



4 LANDMARK-BASED SPECTRAL CLUSTERING 27

4.4 Nearest Landmarks

After computing the similarity matrix, the matrix needs to be made sparse. In
order to do that, r largest similarities are kept for each row, and the rest are set
to zero. The sparsity speeds up computations and makes clustering more robust to
noise since only nearest landmarks are considered. At this point, the affinity matrix
is n rows (corresponding to the observations) by p columns (corresponding to the
landmarks), with r nonzero entries in each row. Figure 14 illustrates the affinity
matrix for a small dataset with r = 3.

Figure 14: Left: the form of the affinity matrix after taking the nearest landmarks.
Landmarks are x’s and observations are dots. Right: a graph representation of this
matrix.

4.5 Outlier Removal

From the affinity matrix, we can define two kinds of outliers: data outliers and
landmark outliers. Data outliers have low row sums, meaning they are dissimilar
from most landmark points. Landmark outliers have low column sums meaning they
are dissimilar from most data points.

Landmark outliers can simply be removed. Data outliers can either be given
the zero label, or removed from the clustering steps and reclassified later with the k
nearest neighbor (kNN) classifier.

4.6 Clustering Steps

After computing the sparse affinity matrix, the final step is to do clustering. The
original LSC algorithm clusters data points, while we will propose new methods



4 LANDMARK-BASED SPECTRAL CLUSTERING 28

that cluster landmarks and then use the kNN algorithm to classify observations into
clusters.

4.6.1 Data Clustering

The first step in data clustering is normalization. First the rows of A, the sparse
affinity matrix between the data and landmarks, are normalized using L1 row nor-
malization. This step ensures that each row sums to 1 and the non-zero entries are
weights for the landmarks. After normalizing the rows, the columns are also nor-
malized by square root L1 normalization. After the two normalization steps, top k
left singular vectors are extracted, resulting in matrix U = [u1 . . . uk] ∈ Rn×k. Then,
k-means is applied to the row vectors of U to get k clusters

4.6.2 Landmark Clustering

Landmark Clustering essentially has the same steps as data clustering and a few
additional steps. The rows are normalized using L1 normalization and columns
are normalized using square root L1 normalization. Instead of selecting top k left
singular vectors, top k right singular vectors are used, resulting in matrix V =
[v1 . . . vp]. The row vectors of this matrix represent a k-dimensional embedding of
the p landmarks. The rest of the steps are similar to clustering the given data
points into k clusters. After clustering landmarks, kNN classification is used to
label the original data. We tested a commonly used majority vote and a simple
weighted classification scheme. For the majority vote, the most common label, or
class, among the nearest landmarks is chosen, with ties randomly broken. Equation
4.6.2a, for majority vote, states that the predicted class for point y is the majority
class for the knn number of nearest points, where f returns the class indicator. For
the weighted classification, the votes are weighted by the similarities of each label.
Equation 4.6.2b is the weighting scheme in which a class’s total weight is the sum
of the cosine similarity values of the points in that class.

f̂(y) = argmax
knn∑
i=1

f(xi) (4.6.2a)

f̂(y) = argmax
knn∑
i=1

s(y, xi)f(xi) (4.6.2b)

4.6.3 Diffusion Maps

The diffusion map idea can also be applied to data clustering in this setting. This
it done by treating W = A2A2

t as a probability transition matrix. Then the t-step



4 LANDMARK-BASED SPECTRAL CLUSTERING 29

transition probability matrix is given by:

U(t) = UΣt

where Σ is the diagonal matrix of singular values and U = [u1 . . . uk]. By default
the time-step parameter is 0.

4.7 Experimental Setup

The following section presents different experiments to evaluate the different LSC
methods and parameter settings. The evaluation metrics considered are overall
accuracy and run-time. In order to account for the variability in landmark selection
and k-means, all tests are conducted for 20 seeds and the results are averaged. All
codes in these experiments are implemented in R. With these LSC methods we
tested on the six datasets mentioned before. However, we used the 100-dimensional
projection for the 20Newsgroups dataset.

4.7.1 Comparisons

The main comparisons focus on cosine similarity. The NJW algorithm with cosine
similarity serves as a baseline. There are four LSC methods to compare:

• R-D: Random landmark selection with data clustering
• R-LM: Random landmark selection with landmark clustering
• KM-D: k-means landmark selection with data clustering
• KM-LM: k-means landmark selection with landmark clustering

To compare these methods, the parameters are fixed at p = 500, r = 6, knn = 1
and no outlier removal. These parameters are also the default in these experiments
unless varied for parameter sensitivity.

4.7.2 Parameter Sensitivity

There are many parameters to choose with these LSC methods. To test their sensi-
tivity, each parameter is varied with the others fixed for one particular method for
some of the datasets. The parameters tested are as follows:

• p: the number of landmarks
• r: the number of nearest landmarks
• t: time-step parameter
• β: variance tuning parameter
• α1: percentage of data outlier removal



4 LANDMARK-BASED SPECTRAL CLUSTERING 30

• α2: percentage of landmark outlier removal
• knn: number of nearest neighbors for landmark clustering

4.8 Results

The accuracy and run-times for the compared algorithms are presented in the tables
below.

Table 7: Clustering accuracy (%)

Dataset
Random LM Selection k-means LM Selection

NJWData
Clustering

Landmark
Clustering

Data
Clustering

Landmark
Clustering

20Newsgroups 65.51 58.37 69.42 60.69 63.36
Reuters 25.37 27.50 27.38 31.21 25.68
TDT2 59.85 64.34 59.45 65.69 44.38
USPS 62.12 66.70 67.83 74.70 67.74
Pendigits 78.81 78.76 77.94 81.59 73.75
MNIST 63.32 59.41 69.43 65.10 –

Table 8: Clustering run-time (s)

Dataset
Random LM Selection k-means LM Selection

NJWData
Clustering

Landmark
Clustering

Data
Clustering

Landmark
Clustering

20Newsgroups 5.95 3.78 12.75 11.16 150.96
Reuters 7.38 6.61 451.88 444.28 52.31
TDT2 12.12 11.67 1912.68 1862.29 49.46
USPS 3.93 3.56 11.65 11.76 55.46
Pendigits 2.70 2.25 3.76 3.63 95.13
MNIST 31.05 27.62 584.06 619.06 –

We see from Table 7 and Table 8 that k-means landmark selection gives a
better accuracy than random landmark selection for most datasets but the run-time
does not scale well. For the larger datasets, the landmark selection steps take much
longer than the entire NJW algorithm, even with 10 maximum iterations of the k-
means algorithm. Landmark clustering gives a better accuracy than data clustering
for all datasets except for 20Newsgroups and MNIST. Considering random landmark
selection, there is a clear speed improvement over NJW with all the datasets.



4 LANDMARK-BASED SPECTRAL CLUSTERING 31

Figure 15: Varying the number of landmarks (%)

Figure 16: Varying the number of landmarks (s)

Varying the number of landmarks affects the accuracy for USPS but it is fairly
robust for 20Newsgroups. Still, the number of landmarks is a parameter that should
be tuned for higher accuracy. The increase in run-time is linear with increasing
number of landmarks, as expected.



4 LANDMARK-BASED SPECTRAL CLUSTERING 32

Figure 17: Varying the number of nearest landmarks

Figure 17 shows that varying the number of nearest landmarks can moderately
influence the accuracy. The behavior is different between these two datasets. USPS
prefers less nearest landmarks whereas 20Newsgroups prefers more.

Figure 18: Data and landmark outlier removal

Figure 18 shows that landmark removal was not very effective in improving
the overall accuracy. Further work is needed to determine a better way of defining
outliers.



4 LANDMARK-BASED SPECTRAL CLUSTERING 33

Figure 19: Varying the variance tuning parameter for Gaussian similarity

As seen in Figure 19, for Gaussian similarity, the accuracy for 20Newsgroups
is poor but works well for USPS. However, tuning the β parameter results in a
moderate increase in accuracy.

Figure 20: Varying the time-step parameter

Figure 20 shows accuracy for random landmark selection with the diffusion
maps method and varying time-step numbers. Increasing the parameter does not
affect MNIST or 20News a significant amount but improves accuracy noticeably for
TDT2 and USPS.



4 LANDMARK-BASED SPECTRAL CLUSTERING 34

Figure 21: Varying r and knn for random landmark selection with landmark clus-
tering for USPS. Left: majority vote. Right: weighted vote.

Landmark clustering is often faster than data clustering because kNN is much
faster than k-means, especially because the required similarities are already com-
puted in a previous step. In this test for the USPS dataset, we vary the number of
nearest neighbors for kNN from 1 to r and vary r from 2 to 30. The majority vote
and weighted vote methods achieve very similar results. Low r and knn parameters
achieve the best results for USPS. With a fixed r, a lower knn parameter achieves
slightly better results. For simplicity, we recommend using a majority vote with a
knn parameter of 1. It is the fastest to compute and gives good results with this
dataset.

4.9 Image Segmentation

Image segmentation is partitioning an image into different regions for different ob-
jects (see Figure 22 for an example). One application for image segmentation is with
medical imaging, where the size and location of a tumor can be determined. In our
case, only gray scale images are considered.

The input data is an image with m×n pixels and k objects inside. The output
is the k clusters of mn pixels. NJW and LSC is applied to the pixels after producing
similarity matrix.



4 LANDMARK-BASED SPECTRAL CLUSTERING 35

Figure 22: Image segmentation example for four clusters.

While spectral clustering algorithms can perform image segmentation tasks,
this is very computationally demanding because pixel to pixel similarity is consid-
ered, resulting in a mn × mn similarity matrix. Thus, we test and compare the
scalable LSC algorithm and NJW algorithm for this task.

4.9.1 Similarity Matrix

Similarities are computed by Gaussian similarity considering both location and in-
tensity values. When the pixels are far from each other, they are considered to have
zero similarity. Therefore, for a pixel, the similarities are only computed for the
pixels inside the B ×B patch, whose center is this pixel, of the image.

Figure 23: If B = 3, Pixels A and E have zero similarity because pixel A is not
within a 3 × 3 patch of the image with center pixel E. Pixels C and D have zero
similarity because of intensity.

For the original NJW spectral clustering, the elements in the similarity matrix



4 LANDMARK-BASED SPECTRAL CLUSTERING 36

are computed by:

Wi,j = e
−
|Li−Lj |

2

2σ2
L

−
|Pi−Pj |

2

2σ2
P

where Li and Lj are the location of pixels i and j; Pi and Pj are the pixel values of
pixels i and j; σL = (B − 1)/2; σP is a parameter.

Figure 24: For the black point, only consider the pixels in the small box in the
image.

For the landmark based clustering, the elements in the similarity matrix are
computed by:

Ai,j = e
−
|Li−Lj |

2

2σ2
L

−
|Pi−P

′
j |

2

2σ2
P

where Li and Lj are the location of pixel i and j; Pi is the pixel values of pixel i; P ′j
is the mean intensity of the pixels in the grid box of the landmark j; σL = (B−1)/2;
σP is a parameter.

The points in Figure 25 are the landmarks of the image. The size of the big
box is B × B and only the pixels inside it can have similarities to the landmark in
the small box. When computing similarities for this landmark, the mean intensity
of the pixels in the small box is used.



4 LANDMARK-BASED SPECTRAL CLUSTERING 37

Figure 25: In the image, the black points are landmarks. Only the pixels in the big
purple box have similarities with the landmark in the center of the small red box.
When calculating the similarities for this landmark, the mean intensity of the pixels
in the small red box is used for robustness.

4.9.2 Results

Three images are tested by both NJW and LSC methods. The segmentation results
are shown in Figures 26 to 31.

Figure 26: The size of original image is 2883× 3875. Reduced to 93× 125 to speed
the processing.



4 LANDMARK-BASED SPECTRAL CLUSTERING 38

Figure 27: NJW(left): time = 74.17s, B = 11, σP = 0.05. LSC(right): time = 6.85s,
B = 25, b = 3, σP = 0.03.

Figure 28: The size of original image is 710 × 1150. Reduced to 71 × 115 to speed
the processing

Figure 29: NJW(left): time = 28.02s, B = 25, σP = 0.02. LSC(right): time = 3.55s,
B = 25, b = 3, σP = 0.03.



4 LANDMARK-BASED SPECTRAL CLUSTERING 39

Figure 30: The size of original image is 3360× 3510. Reduced to 112× 117 to speed
the processing

Figure 31: NJW(left): time = 27.22s, B = 11, σP = 0.1. LSC(right): time = 3.45s,
B = 17, b = 3, σP = 0.1.

The LSC method is much faster than the NJW method on image segmentation
because of the size of the similarity matrix of them. The number of columns of W is
nine times the number of columns of A in all three images (the grid size b is 3), and
they have same number of rows. For achieving similar results, the LSC algorithm is
about ten times faster than the NJW algorithm.



5 LANDMARK-BASED BIPARTITE GRAPH SPECTRAL CLUSTERING 40

5 Landmark-Based Bipartite Graph Spectral Clus-

tering

In this section, we study the bipartite graph and use it as the underlying model for
a fast approximate Spectral Clustering algorithm. Bipartite graph is naturally used
when there is relation between unequivalent groups, or when the relation only holds
one way but not the other (i.e. directed graph). This section will be ordered as
follows: Section 5.1 introduces the bipartite graph. Section 5.2 shows how to apply
spectral clustering on bipartite graph. Section 5.3 introduces the main algorithm:
landmark-based bipartite spectral clustering and diffusion map. Section 5.4 uses
experiments to compare the effectiveness of our algorithm with several state-of-the-
art approximate clustering algorithms.

5.1 Introduction

5.1.1 The bipartite graph

Various datasets have a common structure: There is a set of main entities called
observations (i.e images, documents...). The observations share a set of feature. The
feature is represented by a value that varies among the observations, and thus it is
also called variable. For example, in a natural image dataset, the features are pixels.
The pixel at position 1 in an image may be different from the pixel in position 1 of
a different image. The features of an image, however, can be other characteristics
as well, such as colors, edges, or more elaborated features such as Gabor filters,
histogram of oriented gradients and GIST descriptors. Sometimes, the features can
be subject to learning as well, i.e we want to perform classification or clustering on
these features. The most common way to do this is to treat feature the same as
observation. For example, a popular type of document dataset is the bag-of-word
model, where each feature is the number of occurrence of a word in a document.
Word can be observation as well, of which documents where it appears become its
feature. We can see a symmetry of relationship: whereas word feature tells how
different the documents are, document features conversely tells how different the
words are. This relationship can be represented as an edge in a bipartite graph. We
will define it next.

Let G be a graph consisting of a set of vertices V and a set of edges E. Com-
monly, existence of an edge represents connection between 2 vertices, but a vertex
can also have an edge to itself (self-edge). Let V = V1 ∪∗ V2 be the disjoint union
of 2 sets of vertices. As a recurring example, consider V1 the set of documents, V2

the set of words and E the set of edges between documents and words. Associate
with each edge the number of occurrence of the word in a document. The larger



5 LANDMARK-BASED BIPARTITE GRAPH SPECTRAL CLUSTERING 41

1

3

Document Word

2

1

1

2

5

1

1

1

1

2

Figure 32: Biparite graph of bag-of-word model. The number on each edge represents
the number of word occurrence.

the value, the more often that word appears in that document. There is no edge
between any 2 documents as well as between any 2 words: we have only information
of relationship between document and word. Thus it is a bipartite graph. We can
add edges between 2 vertices of the same group, but the graph will no longer be bi-
partite. Figure 32 demonstrates the equivalence of bipartite graph and bag-of-word
model.

5.2 Spectral Clustering on Bipartite Graph

5.2.1 Formulation and a shortcut

The Spectral Clustering algorithm derived from section 2.3 can be immediately
applied to a bipartite graph. Let the affinity matrix of the bipartite graph be:

M =

[
0 A
AT 0

]
(1)



5 LANDMARK-BASED BIPARTITE GRAPH SPECTRAL CLUSTERING 42

We have ordered the vertices such that document vertices go first. Thus in the first
row, 0 represents the affinity matrix between document and document (of which
there is no information) and A represents the affinity matrix between document and
word, which is simply the bag-of-word model (AT is the ”bag-of-document”). The
normalized Laplacian matrix is then:

M̂ =

[
D−11 0

0 D−12

]
×M

=

[
0 D−11 A

D−12 AT 0

]
(2)

where D1 is diagonal matrix of row-sums of A and D2 is diagonal matrix of row-sums
of AT (equivalently D2 is of column-sums of A)

Let the number of documents be m and number of words be n. Then A is of
size n×m and M is of size (n+m)× (n+m). The eigenvalue decomposition takes
O(n+m)3 times to compute. This is however rather redundant, because the matrix
M only contains as much information as A in the non-zero blocks and the rest are 0.
In fact, as shown in [5], we can retrieve all eigenvectors and eigenvalues of M̂ from
a singular-value decomposition of a smaller matrix:

Ã = D
−1/2
1 AD

−1/2
2 (3)

Theorem 1. Let Ṽ1 and Ṽ2 be the left and right singular vectors of Â. Also let S

be the diagonal matrix of singular values of Ã. Let V =

[
V1
V2

]
be the eigenvector of

M̂ in which V1 is the upper half of V corresponding to document vertices and V2 is
the lower half corresponding to word vertices (remember that we placed documents
first). Then

Ã = V̂1 × S × V̂2
T

and

M̂ =

[
D
−1/2
1 V̂1

D
−1/2
2 V̂2

]
× S ×

[
D
−1/2
1 V̂1

D
−1/2
2 V̂2

]T
(4)

Thus the eigenvectors of M̂ are V1 = D
−1/2
1 V̂1 and V2 = D

−1/2
2 V̂2 and the diagonal

eigenvalue matrix is exactly S

Proof. Since V is eigenvectors of M, we have

M̂V = ΛV



5 LANDMARK-BASED BIPARTITE GRAPH SPECTRAL CLUSTERING 43

From (3) and by definition, we have the system:

D−11 AD
−1/2
2 V2 = ΛD

−1/2
1 V1

D−12 ATD
−1/2
1 V1 = ΛD

−1/2
2 V2

Multiply the first equation by D
1/2
1 and the second by D

1/2
2

D
−1/2
1 AD

−1/2
2 V2 = ΛV1

D
−1/2
2 ATD

−1/2
1 V1 = ΛV2

From (4)

ÃV2 = ΛV1

ÃTV1 = ΛV2

From definition of singular value decomposition, V1 and V2 are left and right singular
vectors of Â, and Λ = S the singular values of Ã.

The singular value decomposition of Â takes O(nm2 + m3). If we had used a
much smaller m than n, we would get a significant speed-up.

5.2.2 Computational complexity for sparse matrix

The above analysis applies for general matrix, however in many cases the input
matrix is sparse: it has only a very small percentage of non-zero entries. This is
especially true for graph that comes from real world such as social network. An edge
in a social network represents the connection of 2 people. In real life, a person has on
average hundreds of friends, whereas most inactive people will have only dozens of
friends. Compare to the size of the number of participating people, which could be
in the millions, a person only has about 0.01% of possible connections. On the other
hand, when constructing a relational graph by the similarity distance of datapoints,
we can also use sparse affinity matrix from using the k-nearest-neighbor or ε-nearest
neighbor criterion. This has the advantage of fast computation and less storage.
Given x1, x2, ..., xn ∈ Rn, the distance between 2 points is calculated as:

For k-nearest-neighbor: dist(xi, xj) =

e
||xi−xj ||

2

2σ2 ifxi ∈ Nk(xj) or xj ∈ Nk(xi),

0 otherwise

For ε-nearest neighbor: dist(xi, xj) =

e
||xi−xj ||

2

2σ2 ife
||xi−xj ||

2

2σ2 ≤ ε,

0 otherwise

As suggested by [8], sparse nearest-neighbor graph is often preferred and should
be tried first. There are also works in the manifold literature which says adequately



5 LANDMARK-BASED BIPARTITE GRAPH SPECTRAL CLUSTERING 44

sparse affinity matrix can well approximate topological property of the full one.
Intuitively, nearest-neighbor tries to preserve the local structure surrounding each
datapoint only, letting global structure to be implied from it.

More importantly, regarding computational complexity of algorithm, opera-
tions on sparse matrix can benefit a lot from a supporting linear algebra package.
Suppose the matrix is of size n×m and k neighbors are used to. It still takes O(mn)
time to construct the full matrix, O(mnk) time to find k nearest neighbors for each
row. However, rank-s SVD of the matrix can be calculated in only O(nks), in con-
trast to O(nm2 + m3). This can be done, for example, using the Lanczos method,
where only sparse matrix-vector operations are used.

5.3 Landmark-based Bipartite Spectral Clustering

In this section, we will use the bipartite graph model to approximate the original
spectral clustering (specifically the Ncut algorithm). First we provide the intuition
behind it along with detail of implementation. We also extend the original algorithm
with diffusion map. Finally, we show experiments comparing it with several other
approximate algorithms and also study parameter sensitivity.

5.3.1 Intuition and related work

The main idea of our work is to reduce the size of the dataset while still preserving
much of the original structure. The first work along this line was [16], where the
author uses k-means sampling and perform original spectral clustering algorithm
on the reduced set. However, this algorithm completely skipped the information of
original datapoints and instead worked with reduced set. This often leads to crude
separation.

The second work is LSC [2]. The authors used dictionary learning and sparse
coding to create new feature vectors based on landmark points. This algorithm
improves from KASP in the sense that datapoints appear on the final matrix, thus
often allowing points to be clustered free of centroids. Moreover, the algorithm takes
advantage of sparsity which both leads to run-time boost and superior clustering
quality. However, they used a normalization formula that lacks foundation.

Our work can be seen as a direct generalization of KASP as well as an im-
provement to LSC. First we also sample using k-means like KASP, then build a
sparse affinity matrix like LSC. However, we then use the bipartite formulation to
justify a normalization step that not only makes intuitive senses but also enables 1)
landmark clustering and 2) diffusion map.



5 LANDMARK-BASED BIPARTITE GRAPH SPECTRAL CLUSTERING 45

Figure 33: The affinity matrix between data points and sampled centroids, where
number of nearest neighbors is 3. Datapoints (rows) have been ordered together if
they are in the same cluster. The result is a majority of non-zero entries stay in
well-separated blocks in the diagonal.

5.3.2 Diffusion map

Diffusion map [4] is a close variant of spectral clustering. It integrates local simi-
larities by generating random walks in data, connecting points that are far but lie
in a continous manifold. It does this by taking the power of the transition proba-
bility matrix. Recall the normalized Laplacian matrix in equation 2. M̂ itself is a
random walk matrix that contains 2 block random walk matrices: from datapoints
to landmarks (D−11 A) and from landmarks to datapoints (D−12 AT ). To apply dif-
fusion map, we generate random walks from each data points to get probability of
”jumping” from one node to the other in a certain step size. Consider figures 34 and
35. Because initially we only consider landmarks neighbors, there is no connection
between the 2 blue datapoints (figure 34). After running a random walk of length 2,
however, the datapoints connect with probability equaling the sum of probabilities
of 3 possible paths through the landmarks (figure 35).

With odd random walk length, datapoints go to landmarks, retaining the bi-
partite structure. We can thus follow co-clustering algorithm of Dhillon [5]. With
even random walk length, we have 2 disconnected components: one consists of dat-
apoints to datapoints and the other landmarks to landmarks (see figure 34 and 35).
Clustering with datapoints embedding results directly in cluster assignments, while
clustering with landmarks requires one more step of extending the landmark cluster
assignments to datapoints, which can be easily done through s-nearest-landmark-



5 LANDMARK-BASED BIPARTITE GRAPH SPECTRAL CLUSTERING 46

neighbors. The algorithm, named Landmark-based Diffusion Map (LBDM) is shown
in algorithm 1
Note this duality is the result of using the bipartite graph formulation, whereas LSC
used the same affinity matrix in figure 33 but came to a different normalization. The
landmarks in LSC do not have an equal interpretation and thus can not be used for
landmark clusterings.

More formally, we have the following theorem:
Theorem 2. The p-dimensional diffusion coordinates at time step α are[

D
−1/2
1 V̂1S

α

D
−1/2
2 V̂2S

α

]
∈ R(m+n)×p

where S is the diagonal matrix of eigenvalues of M̂ .
Finally, we note that landmark clustering turns out to be the best algorithm

on average, as demonstrated in later experiments. It is also faster because of running
last k-means clustering only on the smaller set of landmarks. We think that it could
be due to k-means having an easier time clustering the landmark sets which are
regularized and less noisy.

1
2

1
3

1
4

1
5

1
6

1
7

Figure 34: datapoints-to-landmarks. There is no edge between any 2 datapoints or
any 2 landmarks. We can use co-clustering to cluster both.



5 LANDMARK-BASED BIPARTITE GRAPH SPECTRAL CLUSTERING 47

0.19

Figure 35: datapoints-to-datapoints connection resulting from running random walk
of length 2. There is only edge between datapoints (conversely between landmarks),
thus we can cluster datapoints or landmarks separately.

The following figures demonstrate the ability of diffusion map to strengthen
the connections of points in the same manifolds. As t increases, each half-moon
manifold darkens by the increasing number of edges generated by diffusion map.

(a) t = 1 (b) t = 5

(c) t = 9

Figure 36: diffusion map of odd length



5 LANDMARK-BASED BIPARTITE GRAPH SPECTRAL CLUSTERING 48

(a) t = 2 (b) t = 6

(c) t = 10

Figure 37: diffusion map of even length, only datapoints are shown

5.4 Experiments

In this section, we conduct extensive experiments to evaluate the practical perfor-
mance of Alg. 1 with α = 1, 2, 3. For the two odd values of α (i.e., 1 and 3), for
which the co-clustering method has to be used, we denote the corresponding imple-
mentations by LBDM(1) and LBDM(3). For the even value α = 2, we use both the
direct clustering and landmark clustering methods and denote them as LBDM(2,X)

and LBDM(2,Y ), respectively.

5.4.1 Experimental setup

We compare our methods with the following algorithms, all implemented/executed
in MATLAB 2016b on a computing server with 48GB of RAM and 2 CPUs with 12
total cores:
• KASP [16]: We implement a multiway version of the authors’ R code at
https://people.eecs.berkeley.edu/~jordan/fasp.html.
• LSC [2]: We use the fully optimized MATLAB code (implemented by the au-

thors), available at http://www.cad.zju.edu.cn/home/dengcai/Data/Clustering.
html.
• cSPEC(n): We adapt the column-sampling spectral clustering (cSPEC) al-

gorithm [15], which only works for unnormalized spectral clustering, for the



5 LANDMARK-BASED BIPARTITE GRAPH SPECTRAL CLUSTERING 49

Algorithm 1 Landmark-based Bipartite Diffusion Maps (LBDM)

Require:
Data set X = {x1, x2, ..., xn} ⊂ Rd,
# clusters k,
similarity function δ (Gaussian RBF, cosine, etc.),
landmark selection method (kmeans, uniform sampling),
# landmark points m,
# nearest landmark points s,
# diffusion steps α,
clustering method: direct or landmark (for even α), or co-clustering (for odd α).

Ensure:
A partition of X into k clusters.

1: Use the indicated landmark selection method to find m landmarks Y =
{y1, . . . , ym} ⊂ Rd.

2: Form the affinity matrix A between the input data X and their respective s
nearest landmark points in Y by using the given similarity function δ.

3: Find the row and column sums of A and use them to normalize A to obtain Ã
(as in (3)).

4: Find the largest k − 1 singular values (excluding 1) and corresponding left and

right singular vectors of Ã.
5: Compute the diffusion coordinates matrix V(α) according to theorem 2 (with
p = k − 1).

6: Use the indicated clustering method to divide the input data set X into k clus-
ters.



5 LANDMARK-BASED BIPARTITE GRAPH SPECTRAL CLUSTERING 50

Table 9: Data sets used in the experiments of this section.

Datasets # instances # features # classes

usps 9,298 256 10

pendigits 10,992 16 10

letter 20,000 16 26

protein 24,387 357 3

shuttle 58,000 9 7

mnist 70,000 784 10

normalized spectral clustering [10]

W̃ = D−1/2WD−1/2, D = diag(W1) (5)

by regarding the first D matrix as having the row sums of W and the second D
the column sums of W . Since our goal is now to sample columns of W̃ in order
to use the matrix SVD to estimate its eigenvectors, we propose to normalize
A in a similar way:

Ã = D
−1/2
1 AD

−1/2
2 , (6)

where D1, D2 are diagonal matrices consisting of the row sums and column
sums of A, respectively. Interestingly, this leads to the same matrix Ã that
is used by our algorithm (but we obtained it from a bipartite graph model).
However, such a normalized version of cSPEC, which we denote by cSPEC(n),
will just use the left singular vectors of Ã as an embedding of the input data
while our methods will further multiply them by the degree matrix (from

left) and the singular values of Ã (from right) to generate multiscale diffusion
coordinates.
• Dhillon’s co-clustering algorithm [5]: Originally designed for simultane-

ously clustering documents and terms, we use it here in the same way as
LBDM(α) (for odd values of α) to cluster only the input data, that is, first
co-clustering the input data and landmarks and then removing the landmarks
from the clusters.
We choose for our study six benchmark data sets - usps, pendigits, letter, pro-

tein, shuttle, mnist - from https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/

datasets/; see Table 9 for their summary information.
In order to have fair comparisons between the different algorithms, we use the

same parameter values (whenever the parameter is shared). In particular, we fix m =
500 (for all methods) and s = 5 (for LSC, Dhillon and LBDM with α = 1, 2, 3). Also,



5 LANDMARK-BASED BIPARTITE GRAPH SPECTRAL CLUSTERING 51

we feed all the algorithms with the same landmark set found by kmeans (with 10
iterations, 1 restart), which is initialized with the centroids obtained by preliminary
kmeans clustering on 10% of the data set (with 100 iterations, 10 restarts). In all
methods we use the Gaussian RBF kernel as the similarity function. For the choice
of σ in the RBF kernel, we use (for our method):

σ =
1

m

m∑
i=1

√
σi
|Si|

(7)

where σi and |Si| are the total variance and size of the ith k-means cluster, re-
spectively, and m is the number of k-means clusters. This means we calculate the
variance of each cluster, then approximate our global variance by averaging over all
clusters.

In the last step of each algorithm, where kmeans is applied to cluster data in the
associated embedding space, we use 100 iterations and 10 restarts. The reason is that
the quality of the sampled centroids is not too dependent on k-means’ optimality,
whereas the quality of clustering of the last k-means is obviously critical. Moreover,
the first k-means is the main bottleneck of the algorithm, which will become clear.

Although not directly compared in clustering task, k-means is a critical com-
ponent in the algorithms that use it. We used the same MATLAB implementation
of [2], which can be found in their web page 1. K-means has 2 main variables: the
maximum number of iterations and the number of restarts. For k-means in step 1,
we use a similar approach by [16]: First run k-means (max 100 iterations, 5 restarts)
on 10% of the data set to select a set of initial centroids, then run k-means (max
50 iterations, 1 restart) on the full data set initialized with those centroids. For
k-means in step 7, we run k-means with max 100 iterations and 10 restarts. The
reason is that the quality of the sampled centroids is not too dependent on k-means’
optimality, whereas the quality of clustering of the last k-means is obviously criti-
cal. Moreover, the first k-means is the main bottleneck of the algorithm, which will
become clear.

We evaluate the different algorithms in terms of clustering accuracy and CPU
time, with the former being calculated by first finding the best match between the
output clusters and the ground truth and then computing the fraction of correctly
assigned points. Each algorithm is repeated 50 times in order to average out the
randomness caused by landmark sampling.

5.4.2 Results for K-means sampling LBDM

We refer to [12] for the results of K-means sampling. It is found that LBDM and
especially LDBM(2,Y ) performed consistently well, beating other baseline algorithms

1http://www.cad.zju.edu.cn/home/dengcai/Data/Clustering.html



5 LANDMARK-BASED BIPARTITE GRAPH SPECTRAL CLUSTERING 52

Table 10: Average clustering accuracy (%) using random landmark sampling

Dataset LSC cSPEC(n) Dhillon LBDM(1) LBDM(3) LBDM(2,X) LBDM(2,Y )

usps 62.00 67.05 62.39 62.26 62.95 63.72 62.52

pendigits 77.44 70.12 77.35 77.35 77.35 77.43 77.30

letter 30.14 36.33 25.55 25.42 25.66 24.86 25.25

protein 45.17 40.79 45.16 45.16 45.16 45.19 45.16

shuttle 40.31 34.64 47.14 49.69 48.90 29.61 51.05

mnist 59.01 54.31 59.49 59.13 59.71 60.08 59.55

on a large number of datasets.

5.4.3 Results for Random sampling LBDM

Lastly, instead of k-means sampling of landmarks which can be time-prohibitive
(O(nmk)), we can uniformly random a subset of original data points. Experimental
setup is kept the same as last section with 1 exception: since we can not estimate the
Gaussian RBG kernel parameter σ with k-means, we will use the mean of squared
distance from each point to its 7-nearest neighbor:

σ =
1

n

n∑
i

||xi − 7nn(xi)||

Note that this can be a better estimation for σ but it is also more costly (finding
the 7-nearest-neighbor of n points requires computing all n2 distances and 7n more
operations). A better strategy may be to estimate from a subset of data e.g 50
points. In the experiments, we actually used 5000 points to get as accurate as
possible the variance.

We now present each experiment result with random sampling.

5.4.4 Clustering accuracy and Run time

In general, clustering accuracy decreases but the amount varies for each dataset
(table 10). The maximum accuracy in k-means sampling and random sampling are:
• usps 69.45 (LBDM (2,X))→ 67.05 (cSPEC)
• pendigits 77.93 (LSC)→ 77.44 (LSC)
• letter 32.21 (LBDM (2,X))→ 36.33 (cSPEC)
• protein 45.88 (LBDM (2,Y ))→ 45.19 (LBDM (2,Y ))
• shuttle 82.78 (cSPEC)→ 51.05 (LBDM (2,Y ))



5 LANDMARK-BASED BIPARTITE GRAPH SPECTRAL CLUSTERING 53

200 400 600 800 1000

m (# landmarks)

54

56

58

60

62

64

66

68

a
c
c
u

ra
c
y
 (

%
)

usps

200 400 600 800 1000

m (# landmarks)

15

20

25

30

35

40

a
c
c
u

ra
c
y
 (

%
)

letter

200 400 600 800 1000

m (# landmarks)

37

38

39

40

41

42

43

44

45

a
c
c
u

ra
c
y
 (

%
)

protein

LBDM2Y

LBDM2X

cSPEC

LSC

Dhillon

200 400 600 800 1000

m (# landmarks)

50

52

54

56

58

60

62

64

a
c
c
u

ra
c
y
 (

%
)

mnist

200 400 600 800 1000

m (# landmarks)

0

2

4

6

8

10

12

C
P

U
 t

im
e

 (
s
)

usps

200 400 600 800 1000

m (# landmarks)

0

5

10

15

20

25

30

35

C
P

U
 t

im
e

 (
s
)

letter

200 400 600 800 1000

m (# landmarks)

0

2

4

6

8

10

12

14

16

C
P

U
 t

im
e

 (
s
)

protein

200 400 600 800 1000

m (# landmarks)

0

10

20

30

40

50

60

70

80

C
P

U
 t

im
e

 (
s
)

mnist

Figure 38: Sensitivity study of the parameter m with random landmark sampling
(20 replications). Top row: clustering accuracy; bottom row: CPU time.

• mnist 73.29 (LBDM (2,Y ))→ 60.08 (LBDM (2,X))
Surprisingly, cSPEC performs very well on the usps and letter datasets. It is

a good place to look into since cSPEC uses a dense matrix, and random sampling
may requires dense information from the dataset.

Another surprise is that most algorithms perform better than k-means sam-
pling in the pendigits and protein, and cSPEC in the letter dataset. Do these changes
only depend on the datasets? Or is it because we did not use the same parameter σ
for these experiments? We suspect the former reason because all algorithm performs
poorly on shuttle and mnist with random sampling by a large margin.

5.4.5 Parameter sensitivity study

We observe the general trend in landmark sensitivity (figure 38) as in k-means
sampling: In 3 of the datasets the accuracy increases monotonically as the number
of landmarks increases. cSPEC has the best accuracies on usps and letter throughout
but the worst on protein and mnist again. This further shows that the datasets are
quite different in nature.

Disregarding cSPEC, LBDM (2,Y ) performs quite well, which is again similar
to k-means sampling in the same experiment.

Again, the accuracies decrease as the number of nearest landmarks increases,
in accordance with earlier experiment.

Overall, k-means sampling are much more robust. Only when k-means becomes
prohibitive should we resort to random sampling, since we use k-means to save time
in the first place. For example, when each feature vector is too large, making distance
calculation significantly slower, or when memory is limited since k-means requires
accessing a matrix of size n×m for each iteration.



6 SIMULTANEOUS DOCUMENT AND WORD EMBEDDINGS 54

0 2 4 6 8 10

s (#nearest landmarks)

59

60

61

62

63

64

65

66

a
c
c
u

ra
c
y
 (

%
)

usps

0 2 4 6 8 10

s (#nearest landmarks)

22

24

26

28

30

32

34

a
c
c
u

ra
c
y
 (

%
)

letter

0 2 4 6 8 10

s (#nearest landmarks)

34

36

38

40

42

44

46

a
c
c
u

ra
c
y
 (

%
)

protein

LBDM2Y

LBDM2X

cSPEC

LSC

Dhillon

0 2 4 6 8 10

s (#nearest landmarks)

48

50

52

54

56

58

60

62

64

a
c
c
u

ra
c
y
 (

%
)

mnist

0 2 4 6 8 10

s (#nearest landmarks)

1

2

3

4

5

6

7

8

ti
m

e
 (

s
)

usps

0 2 4 6 8 10

s (#nearest landmarks)

0

5

10

15

20

25

ti
m

e
 (

s
)

letter

0 2 4 6 8 10

s (#nearest landmarks)

4

4.5

5

5.5

6

6.5

7

7.5

ti
m

e
 (

s
)

protein

0 2 4 6 8 10

s (#nearest landmarks)

15

20

25

30

35

40

45

50

55

ti
m

e
 (

s
)

mnist

Figure 39: Sensitivity study of the parameter s with random landmark sampling (20
replications). Top row: clustering accuracy; bottom row: CPU time.

6 Simultaneous Document and Word embeddings

In this section, we introduce a ”side application” of spectral clustering: Embedding
both words and documents in the same space so that nodes (either word or docu-
ment) that are close in the embedding space are closely related. It is known that
the eigenvectors of Spectral Clustering can be used as good non-linear dimensional-
ity reduction. The Laplacian eigenmap [1] is one such algorithm that uses almost
the same algorithm procedure. The authors noted that the quadratic form of the
Laplacian, fLf ′, where f is a scalar embedding (a number) of nodes, is equivalent
to:

fLf ′ =
1

2

∑
i,j

(fi − fj)2Wij (8)

Proof. Note L = D −W . We have:∑
i,j

(fi − fj)2Wij

=
∑
ij

f 2
iWij +

∑
ij

f 2
jWij − 2fifjWij

=
∑
ij

f 2
i Dii +

∑
ij

f 2
jDjj − 2fifjWij

= 2fLf ′

We take a closer look at the above equation when the task is to minimize fLf ′.
There are 3 observations:



6 SIMULTANEOUS DOCUMENT AND WORD EMBEDDINGS 55

• When Wij is large, fi and fj tend to be close together to reduce the loss.
• Wij and (fi − fj)2 are non-negative
• The additional condition fDf ′ = 1 translates the optimization to an eigen-

problem. It also removes an arbitrary scaling factor in the embedding [1].
For embedding F ∈ Rn, we can show that the problem is minimization of

tr(FLF ). Going back to bipartite graph, since Wij = 0 every time when i and i are
both documents or both words, we have:

tr(DocLWord′) =
∑
i,j

||Doci −Wordj||2Wij (9)

It is obvious that when a word j appears many times in document i, then Doci and
Wordj must be close. This in turn results in proximity among words and among
documents themselves. Moreover, even when a word is not in a document, there can
still be similarity if through intermediate words and documents they are actually
related. As in previous section, we can always run a diffusion map to strengthen
this connection.

6.1 The problem of low-degree nodes

Though easily said, a straight eigen-decomposition of the Laplacian matrix will fail
for some datasets, especially document datasets such as 20news (figure 40a). The
reason is that many words appear in only 2 or less documents, and some documents
are relatively shorter and have less distinct number of words.

Stochastic block model [9] is one of the staple models in the statistical network
community and is often used to model real-world network exhibiting cluster behav-
ior. However, it was found that the simple model lacks variation in node degrees
inside each clusters. To make up for this weakness, recent research has proposed the
degree-corrected stochastic block model [7]. Later research [13, 3] proposed several
ways to improve spectral clustering via its usage as an approximation to the degree-
corrected block model. The simplest variant, the regularized spectral clustering [13],
which simply ”inflates” the degrees of all nodes such that low-degree nodes become
higher asymptotically, and has been well-received.

Technically, given affinity matrix W and diagonal degree matrix D, regularized
spectral clustering takes the average degree δ = 1

n

∑
diag(D) where diag(D) takes

only the diagonal of D. The inflated matrix is:

Ŵ = W + δI

Similarly, D̂ = D + δI. We have the normalized Laplacian:

L̂ = D̂−1/2Ŵ D̂−1/2



6 SIMULTANEOUS DOCUMENT AND WORD EMBEDDINGS 56

In the case of bipartite graph, we need to inflate degrees of both words and docu-
ments. The take average document degree δ1 = 1

n

∑
diag(D1) and δ2 = 1

m

∑
diag(D2).

Finally, the inflated version of Ã is:

Ã = D̂
−1/2
1 ÂD̂

−1/2
2

6.2 Is co-clustering good?

During experiments, we found an intriguing issue: K-means to cluster embeddings
might fail to return balanced clusters. When number of words is much bigger than
number of documents, it happens often that k-means returns a cluster of only words.
Here 10 random groups from the 20news dataset were co-clustered 41:

cluster #docs #words
group1 866 28026
group2 2415 7555
group3 129 10484
group4 1103 15123
group5 989 0
group6 1015 0
group7 0 0
group8 947 0
group9 1126 0
group10 968 0

This however does not happen to landmark-based clustering. This issue shows
that there is a subtle difference between a ”geometric” bipartite graph and a document-
word bipartite graph. ”Geometric” means that the landmarks encode information of
their surrounding datapoints. Landmarks always lie in a mixed cluster with at least
its surrounding datapoints inside. On the contrary, document-word bipartite graph
is not similarly regular, and can show unbalanced clusters of arbitrary nodes, some-
times only word or only documents. Thus we recommend using direct-clustering
for out-of-the-box bipartite graph, even though that means not being able to get
topic words through co-clustering. Figure 42 shows confusion matrix of document
embeddings only clustering.

6.3 Finding topic words through spectral embedding

In this section, we attempt to find in each cluster a set of words representative of
that cluster and through which we can identify what the documents from the same



6 SIMULTANEOUS DOCUMENT AND WORD EMBEDDINGS 57

alt.atheism

comp.graphics

rec.sport.baseball

sci.electronics

sci.med

(a) 5 news embeddings without regularization

religion

she

god
atheistsatheism

medical
disease

doctor

-0.8

keith

-0.6

pitt

-0.8

-0.4

radio-0.2

0

0.6

0.2

-0.6

electronicsvoltage

0.4

circuit

image

0.6

0.4-0.4

baseball

program

files

0.2-0.2

year

graphics

00

thanksthanks

team

games
game

-0.20.2
-0.40.4

-0.60.6
0.8 -0.8

1 -1

alt.atheism

comp.graphics

rec.sport.baseball

sci.electronics

sci.med

(b) 5 news embedding with regularization

Figure 40: spectral embedding of 5 groups from the 20 news dataset. The regularized
version has much interpretable words inside clusters



6 SIMULTANEOUS DOCUMENT AND WORD EMBEDDINGS 58

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Figure 41: Confusion matrix of 10 random groups (20news) accuracy using co-
clustering. Note the zero diagonal entry. The accuracy is 25.5%

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Figure 42: Confusion matrix of 10 random groups (20news) accuracy using direct
clustering (clustering document embeddings only). The accuracy is 81.10%



6 SIMULTANEOUS DOCUMENT AND WORD EMBEDDINGS 59

-0.5 0 0.5
-1

-0.5

0

dieing

-0.6 -0.4 -0.2 0 0.2 0.4

0

0.5

1

logitech

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
0

0.5

1

exakta

-0.4 -0.2 0 0.2 0.4 0.6

-0.5

0

0.5

1

shifter

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

season

-0.6 -0.4 -0.2 0 0.2 0.4
-1

-0.5

0

0.5

eachus

-0.6 -0.4 -0.2 0 0.2 0.4
0.2

0.4

0.6

0.8

1

wtm

-0.6 -0.4 -0.2 0 0.2 0.4
-1

-0.5

0

0.5

elisa

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.5

0

0.5

hagoromo

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
-1

-0.5

0

0.5

handgun

Figure 43: Document embeddings of each cluster along with the centroid and its
nearest word

cluster is about. To make the problem simpler, we only focus on a subset of 10 distin-
guishable news groups: alt.atheism, comp.sys.mac.hardware, misc.forsale, rec.autos,
rec.sport.hockey, sci.crypt, sci.electronics, sci.med, sci.space, talk.politics.guns. We
used 3 methods: centroid distance, word-document distance and kernel den-
sity estimation. Note in 6.2, we have seen that co-clustering might lead to bad
clusters. From here on, we only cluster document embeddings and use this grouping
to aid us in finding topic words.

6.3.1 Centroid distance

Given a cluster of documents, we can find its centroid, then find which words are
closest to it. Words near cluster centroid must be close to other documents in the
cluster as well. Centroid is a good representative of the cluster, being the empirical
mean, but also a very simple way requiring little computation.

We list the top 20 words nearest to each cluster’s centroid along with their
cosine distance from their respective centroid:



6 SIMULTANEOUS DOCUMENT AND WORD EMBEDDINGS 60

alt.atheism

0.9978 0.998 0.9982 0.9984 0.9986 0.9988 0.999 0.9992

score

glamorous
undecided

stalinist
blond

hashed
oxymoronic

nostradamus
morals

muhammed
belief

reasonalble
contemptable

unhip
christain

acoording
germane

morally
moralities

homosexual
dieing

w
o
rd

comp.sys.mac.hardware

0.996 0.9965 0.997 0.9975 0.998

score

toaster
cpus
pga

hook
printer

expander
sumex
socket

bundled
fujitsu

xanadu
microchannel

clubmac
minis

toshiba
upgrade

multimedia
fwb

cord
logitech

w
o
rd

misc.forsale

0.945 0.95 0.955 0.96 0.965 0.97 0.975 0.98

score

lfo
robo
jazz

pentax
hifi

jam
mens

handel
nikon

accommodations
piano

postage
penthouse

playmate
pack

canvas
pressman
spiratone

tessar
exakta

w
o
rd

rec.autos

0.997 0.9975 0.998 0.9985

score

qht
suspension

lube
roomy
corolla
spokes

rear
tranny

fog
ericy

xiv
vette

wheel
brakes
creaks
rattles

shifting
tires

car
shifter

w
o
rd

rec.sport.hockey

0.994 0.995 0.996 0.997 0.998

score

netted
rafters
kenora

avco
gerald

andreychoke
playing

gund
penguins

taint
morten

mkr
nhl

rout
unbeaten

chipmunks
playoffs

stomped
players
season

w
o
rd

sci.crypt

0.9965 0.997 0.9975 0.998

score

divulging
distributing

eavesdropping
tampered

unbreakable
encrypted

chipsets
broadcasted

ply
hilary
rogue

secrets
secom
secure

cryptography
untested
royalties

encryption
security
eachus

w
o
rd

talk.politics.guns

0.9945 0.995 0.9955 0.996 0.9965

score

armageddon
klu

sadder
sobs

richly
pipex

pwd
romp

siezure
prevented

weapons
fireman

armed
garands

wounded
handgrenades

raids
perished

savers
handgun

w
o
rd

sci.electronics

0.984 0.986 0.988 0.99 0.992

score

qst
fulbright

windowed
dgj

divider
voltages

databook
nromally

cps
wide

duane
skimpy
circuit
diode

wire
rootstown

ckt
neoucom
mayhew

wtm

w
o
rd

sci.med

0.9975 0.998 0.9985 0.999

score

cyst
neuroscientist

menstrual
fas

prednisone
symptoms

psoriasis
atherosclerosis

gallstones
waits

meditation
retina

allergic
dietary

misdiagnosed
fsphy

picl
calcified

gastro
elisa

w
o
rd

sci.space

0.9972 0.9974 0.9976 0.9978 0.998 0.9982

score

atraction
gravitacional

sattellite
millgram

cognito
lije

telescope
flexing

stupendous
lawson
swarm

cobe
comsats

hubble
flown

dispatched
hga

dismount
polymer

hagoromo
w

o
rd

Figure 44: Top 20 words of each of 10 groups in with 81.10% accuracy (only 10
groups are clustered here) ranked by distance to centroid

However, a downside of centroid method is it is too simple: it is very susceptible
to noise, especially when the learned cluster contains documents from other groups.
Words closer to centroids do not necessarily mean they are more representative of
the cluster, especially when the clusters exhibit diversity in topics. For example, in



6 SIMULTANEOUS DOCUMENT AND WORD EMBEDDINGS 61

cluster misc.forsale, the word ”sale” does not turn up very often, but the cluster has
a diverse vocabulary ranging from car models to superheros (supposedly from comic
magazine sales). Thus it is very hard to capture all needed words in a specific region
of the cluster when many of them scatter across space.

6.3.2 Word-document embedding distance

To better cover the whole cluster region, we now pick words by how close they are
to the documents. For each word wordi and each cluster C containing the set of
documents docj, we use the score:

scoreC(wordi) =
∑
docj∈C

〈wordi, docj〉

It gives how ”close” wordi is to C. Note we use inner product (or cosine affinity)
because embeddings have been normalized to length 1. We now give the top 20
words for each cluster using this score:



6 SIMULTANEOUS DOCUMENT AND WORD EMBEDDINGS 62

alt.atheism

727.8 728 728.2 728.4 728.6

score

oxymoronic
catholic

indecision
glamorous
undecided

stalinist
blond

nostradamus
belief

reasonalble
contemptable

unhip
christain

acoording
germane

muhammed
christians
moralities

dieing
homosexual

w
o
rd

comp.sys.mac.hardware

856.8 857 857.2 857.4 857.6 857.8 858 858.2 858.4

score

splice
cpus
bnc
fwb

microsystems
upgrades

hook
powerbooks

eggert
csufresno
connector

lapis
mhz

socket
upgrade
logitech
clubmac

connectors
nec

sumex

w
o
rd

misc.forsale

746 747 748 749 750

score

lotus
speakers

cpm
mese

blackwlf
asking

tuner
deck

unopened
ricoh
bose

foxfire
cds

shutter
sale
lux

zoom
equilizer

autofocus
cdp

w
o
rd

rec.autos

845 845.5 846 846.5 847 847.5

score

oep
wolfson

ugle
tires
suv

synchros
trans

suspension
ford

brakes
ericy

creaks
tranny
roomy

rpms
rattles
wheel
shifter

shifting
car

w
o
rd

rec.sport.hockey

855.5 856 856.5 857 857.5 858

score

coach
rafters

andreychoke
gund

kenora
avco

gerald
penguins

rout
playing

nhl
chipmunks

taint
morten

mkr
unbeaten

playoffs
players

stomped
season

w
o
rd

sci.crypt

868.2 868.4 868.6 868.8 869 869.2

score

subvert
untested

semantically
cgm

hounix
synercom

mattair
encryption

secure
royalties

cryptography
broadcasted

ply
eavesdropping

unbreakable
chickens

secrets
rogue

eachus
security

w
o
rd

talk.politics.guns

8 8.2 8.4 8.6 8.8 9 9.2 9.4

score (cosine distance from centroid) 10 5

bungled
oldham

undeniably
earier

vqinneb
transports
retreating
survivors

loudspeakers
compound

suicide
cult

fokes
worshipers

clem
wod

davidians
affair
arras

atf

w
o
rd

sci.electronics

685 686 687 688 689

score

cps
databook

flasher
vdc

regulator
ckt

photofact
dion
vcrs

diode
optoisolator

voltages
divider

rootstown
circuit

skimpy
wide

neoucom
mayhew

wtm

w
o
rd

sci.med

826.5 827 827.5 828

score

ibd
bmdelane
deficiency

misdiagnosed
gallstones

waits
ileum

meditation
headache

fas
prostanoid

stenson
macdermott

gastro
dilate

picl
elisa

symptoms
fsphy
retina

w
o
rd

sci.space

864.4 864.6 864.8 865 865.2 865.4 865.6

score

iqd
unexciting

oxidizer
sails

lawson
flybys

orbiter
flyby

swarm
orbit

dispatched
hga

flown
solar
hiten

trajectory
hubble

orbiting
comsats

hagoromo
w

o
rd

Figure 45: Top 20 words ranked by sum of word distances to cluster.

Note that the distance to centroid is still high, but not as close as the first
methods. In fact, many words rank in the 1000th via their distance to centroids.



6 SIMULTANEOUS DOCUMENT AND WORD EMBEDDINGS 63

6.3.3 Kernel density estimation

Recall the problem with centroid distance: if there is noise and if there are diversity
in the cluster, then centroid can not capture all the representative words. If we
consider each cluster as a probability distribution, then using centroid only makes
sense when the distribution is unimodal, having high concentration in only 1 region.
When the space is multimodal, having high concentration in separate regions, we
need to capture the density of all these regions to better understand the diversity
of the topic. Thus we propose to estimate the density documents, then give word
the same score as the density of that region. We will use kernel density estimation
algorithm [11] with the Gaussian kernel for this purpose.



6 SIMULTANEOUS DOCUMENT AND WORD EMBEDDINGS 64

alt.atheism

4.3 4.4 4.5 4.6 4.7 4.8 4.9 5

score) 10 6

mithras
purge

atheism
hoopla
rashid

benedikt
utopia

xenophobia
transgresses

teachings
protestants

khan
muhammad

outwardly
imam
umar

muslim
islam

muslims
hadiths

w
o
rd

comp.sys.mac.hardware

1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

score) 10 6

config
undimmed
multisync

iici
cpu

micropolis
motherboard

duo
iisi

quadra
adnausium

discusse
mhz

monitor
adaptors

ram
powerbook
connector

fpu
scsi

w
o
rd

misc.forsale

2.1 2.15 2.2 2.25 2.3 2.35 2.4

score) 10 5

trackman
roctec
addon
ribbon

ribbons
qic

microchannel
sequencer
formatted
scanman

toshiba
eisa

keyboard
toaster
floppy

ands
micronics
comtrade

afn
halperin

w
o
rd

rec.autos

7.6 7.8 8 8.2 8.4 8.6

score) 10 5

sxi
gibbonsa

kadett
opels

lemans
tulane

impreza
caprices

amin
opel

chintan
telxon
llama

eliot
bmws

joes
heller

lanmola
urbanachampaign

marquis

w
o
rd

rec.sport.hockey

1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1

score) 10 6

ellett
courtnall

lowry
gosselin

hawerchuk
crossman
creighton

tor
lidster
baron

felsner
linden

khmylev
lidstrom

slegr
shanahan

poulin
carney
janney

sidorkiewicz

w
o
rd

sci.crypt

2.5 2.6 2.7 2.8 2.9 3 3.1

score) 10 6

bera
dissident

wiretapped
clipper
escrow

escrowed
yearwood

tapped
keys

beckman
dse
dsg

subvert
royalties

optilink
cellphone

decrypting
crypto

eavesdropping
secure

w
o
rd

talk.politics.guns

8 8.2 8.4 8.6 8.8 9 9.2 9.4

score) 10 5

bungled
oldham

undeniably
earier

vqinneb
transports
retreating
survivors

loudspeakers
compound

suicide
cult

fokes
worshipers

clem
wod

davidians
affair
arras

atf

w
o
rd

sci.electronics

1.2 1.3 1.4 1.5 1.6

score) 10 4

gratitude
compariator

interface
pricey

ntr
screen

microphone
equipments

speedup
sns

verity
tranceiver

inputs
rxd

hendricks
augustin

birlinghoven
schloss
latches
strobe

w
o
rd

sci.med

1.2 1.21 1.22 1.23 1.24 1.25 1.26

score) 10 6

jod
infection

amphotericin
sinuses

immunocompromised
diagnosis

gordon
prostate

treatment
fungal

anal
medications

fractures
autosomal

steere
recessive

lyme
disease

sinus
patients

w
o
rd

sci.space

1.95 2 2.05 2.1 2.15 2.2 2.25

score) 10 6

uihepa
prb

unexciting
svr

pluto
orbit

oxidizer
hagoromo

stresses
sunos

dormant
zoo

dragless
utzoo

zoology
henry
hiten

iqd
flown

maneuvering
w

o
rd



7 CLUSTER INTERPRETATION 65

7 Cluster Interpretation

After getting the clusters of text data, the most important words of each cluster can
interpret the meaning of it. Cluster interpretation gives another way to evaluate the
clustering results and helps us understand the final results. TF-IDF (term frequency-
inverse document frequency) is a statistic that reflects the importance of each word
in a document. There are two components to this statistic: TF(t) = (the number of
times term t appears in a document)/(the total number of terms in the document)
and IDF(t) = log(the total number of documents/the number of documents that
contain term t). The final TF-IDF score is the product of these quantities.

Common words such as ”the, a, and” are called stop words. Stop words have
high frequencies within each document and in the whole data set, so they have low
TF-IDF values. A representative word has a higher frequency within a document
and lower frequency in the whole data set. The two ways of cluster interpretation
are based on the data after TF-IDF transformation.

7.1 Sum of TF-IDF values

This method involves ranking the sum of TF-IDF values in each cluster. The most
significant words of each cluster have high total TF-IDF values, and the stop words
and less representative words have low total TF-IDF values. The figure below shows
the top 15 TF-IDF scores for 12 clusters of the 20Newsgroups dataset after applying
the LSC algorithm.



7 CLUSTER INTERPRETATION 66

Figure 46: Top 15 words for 12 groups in 20Newsgroups by ranking frequencies
based on results of the LSC method with 72.34% accuracy.

7.2 Singular Value Decomposition

Another method is to perform SVD on a subset (the collection of documents belong-
ing to one cluster) of the dataset after TF-IDF weighting. The first right singular
vector of SVD for this cluster is the first principal component of this cluster as well.
The entries of this vector indicate how close the corresponding words (which are
the dimensions) are to the principal direction of the cluster. Thus, one can rank
the words based on the magnitude of the entries (larger means closer) and look at
the top-ranked words to determine the topic of the cluster. This method produces
similar results with ranking sum of TF-IDF values, but it is slower because of the
SVD processing step. The results, shown in the figure below, are similar to the
TF-IDF sum, but the sets of words differ by a word or two.



7 CLUSTER INTERPRETATION 67

Figure 47: Top 15 words of 12 groups in 20Newsgroups by raking coefficients in the
basis vector based on results of the LSC method with 72.34% accuracy.



8 CONCLUSION AND FUTURE WORK 68

8 Conclusion and Future Work

We worked on three ideas for scalable spectral clustering methods. They are often
faster and more accurate than older spectral clustering algorithms. A selection of
results for each method are compared in table below. In terms of each method, we
see that the landmark and bipartite methods yield more accurate results, and the
Scalable NJW using cosine similarities is more computationally efficient.

Table 11: Comparison between the three methods

1. Cosine 2. Landmark 3. Bipartite
Dataset Accuracy Time Accuracy Time Accuracy Time
USPS 67.5 (1.1) 74.7 (11.8) 69.5 (9.4)
Pendigits 73.6 (3.4) 81.6 (3.6) 74.7 (6.2)
MNIST 52.6 (36.2) 69.4 (584.1) 73.3 (316.4)
TDT2 51.2 (25.3) 64.3 (11.7) 70.8 (38.1)
Reuters 24.6 (5.9) 27.5 (6.6) 38.3 (36.6)

8.1 More Evaluation Metrics

Overall accuracy is simple to compute and easy to interpret, but it may be a mis-
leading metric with imbalanced data. This is because the accuracy computation will
be biased towards majority class instances [6]. This type of data is very common
in real world applications and many of our test datasets are imbalanced. There are
other evaluation metrics for multiclass problems that are worth considering such as
the F-score or adjusted Rand index.

8.2 Recursive Partitioning

Communities are naturally composed of groups and subgroups. In the 20Newsgroup
dataset, some groups can be combined into six main clusters, since some groups
are more closely related than others. Recursive partitioning can find this natural
structure. This idea involves finding k clusters. Then each cluster can be examined
to see if it is reasonable to further subdivide the cluster.

This idea can also help determine how many clusters to form since groups can
be divided until no further division makes sense. This criteria could be difficult to
determine.



8 CONCLUSION AND FUTURE WORK 69

8.3 Demographic Data

Most clustering algorithms only work on numeric and continuous tabular data. How-
ever, data in the real world are mixed with categorical and continuous variables or
have variables of different scales and units. For example, any browsing data can also
contain information about the user such as gender, location, and income bracket.
This information could be valuable to improve clustering insights but requires com-
plex preprocessing steps or multiple models to cluster.



References

[1] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality
reduction and data representation. Neural computation, 15(6):1373–1396, 2003.

[2] D. Cai and X. Chen. Large scale spectral clustering via landmark-based sparse
representation. IEEE Transactions on Cybernetics, 45(8):1669–1680, Aug 2015.

[3] Kamalika Chaudhuri, Fan Chung, and Alexander Tsiatas. Spectral clustering
of graphs with general degrees in the extended planted partition model. In
Conference on Learning Theory, pages 35–1, 2012.

[4] Ronald R. Coifman and Stéphane Lafon. Diffusion maps. Applied and Compu-
tational Harmonic Analysis, 21:5 – 30, 2006.

[5] Inderjit S. Dhillon. Co-clustering documents and words using bipartite spectral
graph partitioning. In Proceedings of the Seventh ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’01, pages 269–
274, New York, NY, USA, 2001. ACM.

[6] Sulaiman Hossin. A review on evaluation metrics for data classification evalua-
tions. International journal of data mining and knowledge management process,
5(2), 2015.

[7] Brian Karrer and Mark EJ Newman. Stochastic blockmodels and community
structure in networks. Physical review E, 83(1):016107, 2011.

[8] Ulrike Luxburg. A tutorial on spectral clustering. Statistics and Computing,
17(4):395–416, December 2007.

[9] Elchanan Mossel, Joe Neeman, and Allan Sly. Stochastic block models and
reconstruction. arXiv preprint arXiv:1202.1499, 2012.

[10] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering:
Analysis and an algorithm. In Proceedings of the 14th International Conference
on Neural Information Processing Systems: Natural and Synthetic, NIPS’01,
pages 849–856, Cambridge, MA, USA, 2001. MIT Press.

[11] Emanuel Parzen. On estimation of a probability density function and mode.
The annals of mathematical statistics, 33(3):1065–1076, 1962.

[12] Khiem Pham and Guangliang Chen. Large-scale spectral clustering using dif-
fusion coordinates on landmark-based bipartite graphs. In Proceedings of the
Twelfth Workshop on Graph-Based Methods for Natural Language Processing
(TextGraphs-12), pages 28–37, 2018.



REFERENCES 71

[13] Tai Qin and Karl Rohe. Regularized spectral clustering under the degree-
corrected stochastic blockmodel. In Advances in Neural Information Processing
Systems, pages 3120–3128, 2013.

[14] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Trans.
Pattern Anal. Mach. Intell., 22(8):888–905, 2000.

[15] Liang Wang, Christopher Leckie, Kotagiri Ramamohanarao, and James Bezdek.
Approximate Spectral Clustering, pages 134–146. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2009.

[16] Donghui Yan, Ling Huang, and Michael I. Jordan. Fast approximate spectral
clustering. In Proceedings of the 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’09, pages 907–916, New York,
NY, USA, 2009. ACM.



A PACKAGES AND CODES 72

A Packages and Codes

A.1 R Packages

• Matrix
• RSpectra
• pdist
• clue
• R.matlab
• wordspace
• Matrix.utils

A.2 R Accuracy Computation

1 accuracy <- function(truelabels, clusters) {

2 # Hungarian algorithm

3

4 # Remove zeros from labels

5 if (any(clusters == 0)) {

6 print("Zero labels will be removed from accuracy computation")

7 zeroindex <- clusters == 0

8 truelabels <- truelabels[!zeroindex]

9 clusters <- clusters[!zeroindex]

10 }

11

12 # Labels from cluster A will be matched on the labels from cluster

B↪→

13 minWeightBipartiteMatching <- function(clusteringA, clusteringB) {

14 require(clue)

15 idsA <- unique(clusteringA) # distinct cluster ids in a

16 idsB <- unique(clusteringB) # distinct cluster ids in b

17 nA <- length(clusteringA) # number of instances in a

18 nB <- length(clusteringB) # number of instances in b

19 if (length(idsA) != length(idsB) || nA != nB) {

20 stop("The number of clusters or lengths do not match")

21 }

22 nC <- length(idsA)

23 tupel <- c(1:nA)

24 # Computing the assignment matrix

25 assignmentMatrix <- matrix(rep(-1, nC * nC), nrow = nC)



A PACKAGES AND CODES 73

26 for (i in 1:nC) {

27 tupelClusterI <- tupel[clusteringA == i]

28 solRowI <- sapply(1:nC, function(i, clusterIDsB, tupelA_I) {

29 nA_I <- length(tupelA_I) # number of elements in cluster I

30 tupelB_I <- tupel[clusterIDsB == i]

31 nB_I <- length(tupelB_I)

32 nTupelIntersect <- length(intersect(tupelA_I, tupelB_I))

33 return((nA_I - nTupelIntersect) + (nB_I - nTupelIntersect))

34 }, clusteringB, tupelClusterI)

35 assignmentMatrix[i,] <- solRowI

36 }

37 # Optimization

38 result <- solve_LSAP(assignmentMatrix, maximum = FALSE)

39 attr(result, "assignmentMatrix") <- assignmentMatrix

40 return(result)

41 }

42 test <- minWeightBipartiteMatching(clusters, truelabels)

43 predicted = NULL

44 predicted <- rep(NA, length(clusters))

45 for (i in 1:length(test)) {

46 predicted[which(clusters == i)] <- test[i]

47 }

48 table <- table(predicted, truelabels)

49 accuracy <- (sum(diag(table)) / length(truelabels))

50 classaccuracy <- vector()

51 colsums <- colSums(table)

52 for (i in 1:length(test)) {

53 classaccuracy[i] <- table[i, i] / colsums[i]

54 }

55 return(

56 list(

57 "accuracy" = accuracy,

58 "classaccuracy" = classaccuracy,

59 "table" = table,

60 "mapping" = test,

61 "mappedlabels" = predicted

62 )

63 )

64 }



A PACKAGES AND CODES 74

A.3 Team 1 Code

A.3.1 Scalable Spectral Clustering

1 #Scalable spectral clustering with cosine similarity########

2 #Cluster data using cosine similarity and matrix computations.

3 #Scalable Ng Jordan Weiss algorithm.

4 #

5 ######################################################################

6

7 ##function name

8 #scalable.cosine.spectral.clustering

9

10 ##arguments

11 #the.data - the data in sparse matrix form. Each row is an

observation.↪→

12 #the.k - the number of clusters to be formed.

13 #the.algorithm - the spectral clustering algorithm to be performed.

14 #-1 is NJW, 0 is Ncut, and positive integers are Diffusion Maps

with↪→

15 #the corresponding time steps. Default is -1.

16 #cut.D.percent - the percent cutoff for data to be classified as

outliers.↪→

17 #For example, a value of 0.05 results in 5% of the data to be

classified as↪→

18 #outliers. Default is 0.01.

19 #tempSeed - the seed set for the k-means clustering. Default is 1000.

20 #kmeans.iter.max - See "iter.max" in the kmeans function. Default is

100.↪→

21 #kmeans.nstart - See "nstart" in the kmeans function. Default is 10.

22

23 ##output

24 #The cluster labels

25

26

27 ##packages

28 #RSpectra. For the SVD step - take advantage of sparsity during large

matrix SVD.↪→

29 #Matrix. For handling sparse matrices.

30 #wordspace. For normalizing matrices efficiently with

"normalize.rows"↪→



A PACKAGES AND CODES 75

31

32 ##function

33 scalable.cosine.spectral.clustering <- function(

34 the.data,

35 the.k,

36 the.algorithm = -1,

37 cut.D.percent = 0.01,

38 tempSeed = 1000,

39 kmeans.iter.max = 100,

40 kmeans.nstart = 10

41 ){

42 #######################################

43 ###########PACKAGES#####

44 #

45 library(RSpectra)

46 library(Matrix)

47 library(wordspace)

48 #######################################

49 #

50

51 #######################################

52 #BEGIN NJW FUNCTION

53 #######################################

54 #

55

56 #Step 0. L2 Normalize each row of data.

57 tempData <- normalize.rows(M=the.data, method = "euclidean")

58 originalData.indexlabel <- cbind( id = (1:nrow(the.data)), cluster =

rep.int(0,nrow(the.data)) , the.data)↪→

59 normalized.Data <- tempData

60

61 #Step 0.2 the.k is the number of clusters we want.

62 tempK <- the.k

63

64

65 #Step 1. Calculate D.

66 temp.row <- dim(tempData)[1]

67 temp.col <- dim(tempData)[2]

68 tempD.vector <- as.numeric(



A PACKAGES AND CODES 76

69 tempData %*% ( t(tempData) %*% rep.int(1, temp.row) ) -

rep.int(1,temp.row)↪→

70 )

71

72 #Step 1.2. In D, remove the rows that contain the SMALLEST specified

percent of D values.↪→

73 # Also remove the corresponding rows (data observations)

from the data matrix.↪→

74 # These become the new D and new A.

75 # STORE THE REMOVED RESULTS.

76

77 kept.index <- (1:length(tempD.vector))

78 removed.index <- NULL

79 if(cut.D.percent > 0){

80 temp.n.smallest <- floor(cut.D.percent * length(tempD.vector) )

81

82 smallest.Ds <- order(tempD.vector, decreasing =

FALSE)[1:temp.n.smallest]↪→

83

84 removed.index <- smallest.Ds

85 kept.index <- (1:length(tempD.vector))[-smallest.Ds]

86

87 tempD.vector <- tempD.vector[-smallest.Ds]

88 tempData <- tempData[-smallest.Ds, ]

89 }

90

91

92 #Step 2. Use new D and new A to calculate A tilda.

93 tempD.vector <- 1/sqrt(tempD.vector)

94 tempA.tilda <- Diagonal(x = tempD.vector) %*% tempData

95

96

97 #Step 3. SVD on A tilda. Then normalize the U to get V.

98 svd.W <- svds(A = tempA.tilda,k = tempK, nu = tempK, nv = 0)

99 tempU <- svd.W$u

100

101 #Specifying NJW/NCut/Diffusion Map

102 current.algorithm <- NULL

103 if(the.algorithm == -1){

104 current.algorithm <- "NJW"



A PACKAGES AND CODES 77

105 }else if(the.algorithm == 0){

106 current.algorithm <- "Normalized Cut"

107 tempU <- Diagonal(x = tempD.vector) %*% tempU

108 }else if(the.algorithm > 0){

109 current.algorithm <- paste("Diffusion Maps", "t =", the.algorithm,

sep = " ")↪→

110 tempU <- Diagonal(x = tempD.vector) %*% tempU %*% Diagonal(x=

(svd.W$d)^the.algorithm )↪→

111 }

112

113 tempV <- normalize.rows(M=tempU, method = "euclidean")

114

115

116 #Step 4. Run the K means on the V.

117 set.seed(tempSeed)

118 tempKmeans <- kmeans(x = tempV, centers = tempK, nstart =

kmeans.nstart, iter.max = kmeans.iter.max)↪→

119 tempCluster <- tempKmeans$cluster

120

121 originalData.indexlabel[kept.index,2] <- tempCluster

122

123 return(originalData.indexlabel[ ,2])

124

125 }

A.3.2 Plain Spectral Clustering

1 #Plain Spectral Clustering Function###################

2 #Cluster data.

3 #Ng Jordan Weiss algorithm.

4 #

5 ######################################################################

6

7 ##function name

8 #njw.spectral.clustering

9

10 ##arguments

11 #the.data - the data in sparse matrix form. Each row is an

observation.↪→

12 #the.k - the number of clusters to be formed.



A PACKAGES AND CODES 78

13 #cut.D.percent - the percent cutoff for data to be classified as

outliers.↪→

14 #For example, a value of 0.05 results in 5% of the data to be

classified as↪→

15 #outliers. Default is 0.01.

16 #seed - the seed set for the k-means clustering. Default is 1000.

17 #kmeans.iter.max - See "iter.max" in the kmeans function. Default is

100.↪→

18 #kmeans.nstart - See "nstart" in the kmeans function. Default is 10.

19

20

21 ##output

22 #The cluster labels

23

24

25 ##packages

26 #RSpectra - For the Eigendecomposition step - take advantage of

sparsity.↪→

27 #Matrix - For handling sparse matrices.

28 #wordspace - For normalizing matrices efficiently with

"normalize.rows"↪→

29

30 ##function

31 njw.spectral.clustering <- function(

32 the.data,

33 the.k,

34 cut.D.percent=0.01,

35 seed=1000,

36 kmeans.iter.max = 100,

37 kmeans.nstart = 10

38 ){

39 #load packages

40 library(RSpectra)

41 library(Matrix)

42 library(wordspace)

43

44

45 tempData <- the.data

46 #keep track of outliers



A PACKAGES AND CODES 79

47 originalData.indexlabel <- cbind( id = (1:nrow(the.data)), cluster =

rep.int(0,nrow(the.data)) , the.data)↪→

48

49 #Step 0. Normalize Data.

50 tempData <- normalize.rows(tempData, method = "euclidean")

51

52 #Step 1. Compute W = A %*% t(A). Use sparsity (Matrix package).

53 tempW <- tcrossprod(tempData)

54 #Set diagonal to 0

55 diag(tempW) <- 0

56

57 #Step 2.1. Compute D. Row sums of W with Matrix package.

58 tempD.vector <- rowSums( tempW )

59 #Step 2.2. Outlier removal.

60 kept.index <- 1:length(tempD.vector)

61 removed.index <- NULL

62

63 if(cut.D.percent > 0){

64 temp.n.smallest <- floor(cut.D.percent * length(tempD.vector) )

65 smallest.Ds <- order(tempD.vector, decreasing =

FALSE)[1:temp.n.smallest]↪→

66 removed.index <- smallest.Ds

67 kept.index <- (1:length(tempD.vector))[-smallest.Ds]

68 tempD.vector <- tempD.vector[-smallest.Ds]

69 tempData <- tempData[-smallest.Ds, ]

70 ###SUBSET THE W#####

71 #one other option is to subset the original data, and then

recalculate W#↪→

72 tempW <- tempW[-removed.index, -removed.index]

73 }

74

75 #Step 3. Compute W tilda. Sparse Matrix multiplication.

76 tempD.vector <- 1/sqrt(tempD.vector)

77 tempW.tilda <- Diagonal(x = tempD.vector)%*% tempW %*% Diagonal(x =

tempD.vector)↪→

78

79 #Step 4. Obtain U with eigendecomposition of W tilda. Use eigs() in

RSpectra package.↪→

80 tempU <- eigs(A = tempW.tilda, k = the.k)$vectors

81



A PACKAGES AND CODES 80

82 #Step 5. Normalize U with wordspace package.

83 tempV <- normalize.rows(tempU, method = "euclidean")

84

85 #Step 6. Kmeans on V.

86 set.seed(seed)

87 tempKmeans <- kmeans(x = tempV, centers = the.k, nstart =

kmeans.nstart, iter.max = kmeans.iter.max)↪→

88 ## nstart option that attempts multiple initial configurations and

reports on the best one.↪→

89 tempCluster <- tempKmeans$cluster

90

91

92 #cluster including label 0 for outliers#

93 originalData.indexlabel[kept.index,2] <- tempCluster

94

95

96 return(cluster = originalData.indexlabel[ ,2])

97

98 }

A.3.3 Cluster Interpretation with Rank 1 SVD

1 #Rank 1 SVD on data.###################

2 #Look at clusters to interpret important variables.

3 #

4 #

5 ######################################################################

6

7 ##function name

8 #interpret.cluster

9

10 ##arguments

11 #the.data - the observation data. Each row is an observation.

12 #the.label - the label of the group that an observation is in.

13 #the.variables - labels for the variables/columns. Default is NULL.

14 #top.var - the specified number of the most highly correlated

variables in the rank 1 SVD. Default number is 10.↪→

15

16 ##outputs

17 #A data frame where each column is a group with its most highly

correlated variables.↪→



A PACKAGES AND CODES 81

18

19 ##packages

20 #RSpectra - for the SVD step - take advantage of sparsity during

large matrix SVD↪→

21 #Matrix - for sparse matrices

22

23 ##function

24 interpret.cluster <- function(

25 the.data,

26 the.label,

27 the.variables = NULL,

28 top.var = 10

29 ){

30 #load packages

31 library(RSpectra)

32 library(Matrix)

33

34

35 the.label <- as.vector(the.label)

36 if(is.null(the.variables)){the.variables <- 1:ncol(the.data) }

37

38

39 top.var.list <- list()

40

41 for(i in min(the.label):max(the.label)){

42 subset.data <- the.data[ the.label == i,]

43 subset.pca <- abs(svds(A=subset.data,k=1, nu =0, nv = 1)$v)

44 variable.importance <- data.frame(the.variables, subset.pca)

45 the.order <- order(subset.pca, decreasing = TRUE)

46 the.order <- the.order[1:top.var]

47

48 if(min(the.label) == 0){

49 top.var.list[[i+1]] <- variable.importance[the.order,]

50 } else {

51 top.var.list[[i]] <- variable.importance[the.order,]

52 }

53 }

54

55 cluster.interpret <- data.frame(top.var.list)

56



A PACKAGES AND CODES 82

57 return(top.var.list)

58 }

A.3.4 Classification of Outliers

1 #Nearest Centroid Outlier Classification########

2 #Takes the Scalable Spectral Clustering result labels and

3 #classify the outliers (0's) as one of the clusters by

4 #using the nearest centroid classifier.

5 ######################################################################

6

7 ##function name

8 #outlier.classify

9

10 ##arguments

11 #the.data - the original data matrix

12 #the.cluster - output from scalable spectral clustering (including

the 0's for outliers)↪→

13

14 ##outputs

15 #The cluster label, where the outliers have been classified into the

clusters.↪→

16

17 ##packages

18 #Matrix - for sparse matrices

19 #Matrix.utils - for sparse matrices

20 #wordspace - for fast row normalization with "normalize.rows"

21

22 ##function

23 outlier.classify <- function(the.data, the.cluster){

24 ##############################################

25 library(Matrix) #for sparse matrices

26 library(Matrix.utils) #for sparse matrices

27 library(wordspace) #for fast row normalization with "normalize.rows"

28 ##############################################

29

30

31 #sparse matrix

32 norm.data <- as(the.data, "sparseMatrix" )

33

34 #normalize the data



A PACKAGES AND CODES 83

35 norm.data <- normalize.rows(norm.data)

36

37 #create training set with the non-outliers

38 #subset with outlier index

39

40 outlier.index <- which(the.cluster == 0)

41 if(length(outlier.index)==0) return(the.cluster)

42

43 trimmed.data <- norm.data[-outlier.index, ]

44 trimmed.cluster <- the.cluster[-outlier.index]

45

46 outlier.data <- norm.data[outlier.index, ]

47

48 #average each of the k clusters

49 the.k <- length(unique(trimmed.cluster))

50

51 #sum each cluster

52 cluster.col.sum <-aggregate.Matrix(

53 x=trimmed.data,

54 groupings = trimmed.cluster,

55 fun = "sum"

56 )

57 #divide by cluster sizes

58 cluster.counts <-as.numeric(table(trimmed.cluster))

59 training.set <- cluster.col.sum/cluster.counts

60

61

62 #K nearest neighbor with the centroids

63 training.label <- 1:length(unique(trimmed.cluster))

64 test.set <- Matrix(outlier.data, sparse = TRUE)

65

66 similarities <- test.set %*% t(training.set)

67

68 knn.cluster <-max.col(similarities)

69

70

71

72 #replace the 0 labels with nearest centroid labels

73 new.cluster.labels <- cbind(outlier.id = outlier.index, knn.label =

knn.cluster)↪→



A PACKAGES AND CODES 84

74 entire.cluster <- the.cluster

75 entire.cluster[new.cluster.labels[,1]]<- new.cluster.labels[,2]

76

77

78 return(entire.cluster)

79 }

A.4 Team 2 Code

A.4.1 LSC Code

1 LSC <- function(data, # input feature matrix

2 k, # number of clusters

3 p = NULL, # number of landmarks

4 r = NULL, # number of nearest landmarks

5 t = 0, # time-step parameter

6 method = "random", # landmark selection method

7 similarity = "cosine", # similarity measure

8 clustering = "traditional", # clustering method

9 seed = 0, # initial seed

10 iter.max = 100, # max iterations for k-means

11 nstart = 10, # sets of initializations for

k-means↪→

12 reclassify = TRUE, # reclassify outliers or give zero

label↪→

13 alpha1 = 0, # data outlier removal

14 alpha2 = 0, # landmark outlier removal

15 beta = 0.6, # variance tuning parameter

16 knn = 1) { # nearest neighbors used for knn

17

18 # Set seed

19 set.seed(seed)

20

21 # Make sure sparse storage is used if applicable

22 data <- Matrix(data)

23

24 # Convert alpha1 and alpha2 from percentage to proportion

25 alpha1 <- alpha1/100

26 alpha2 <- alpha2/100

27

28



A PACKAGES AND CODES 85

29 # Some rules of thumb to pick p and r

30 if (is.null(p)) {

31 p <- floor(sqrt(nrow(data) * k))

32 }

33

34 if (is.null(r)) {

35 r <- floor(p / 10)

36 }

37

38 if (method == "random") {

39 # Sampling p landmarks randomly

40 pindex <- sample(nrow(data), p)

41 pmatrix <- data[pindex, ]

42 # Cosine similarity by default. Gaussian otherwise.

43 if (similarity == "cosine") {

44 # Compute affinity matrix with cosine similarity

45 A <- (data / sqrt(rowSums(data ^ 2))) %*% t(pmatrix /

sqrt(rowSums(pmatrix ^ 2)))↪→

46 } else {

47 # Compute distance matrix for p landmarks for estimating sigma

48 p_dist <- as.matrix(dist(pmatrix, method = "euclidean"))

49 keepr.small <- function(x, m) {

50 return(sort(x)[1:m + 1])

51 }

52 m <- 2

53 p_dist <- t(apply(p_dist, 1, keepr.small, m = m)) / 2

54 # Estimate sigma using mean distance between two closest

landmarks↪→

55 g_sigma <- beta * mean(p_dist)

56 # Calculate euclidean distance between points and landmarks

57 A <- as.matrix(pdist(data, pmatrix))

58 A <- 1 / exp((A ^ 2) / (2 * (g_sigma ^ 2)))

59 }

60

61 } else {

62 # Sampling p landmarks with kmeans

63 if (similarity == "cosine") {

64 # Suppress warnings because failure to converge is irrelevant

65 suppressWarnings(pmatrix <- kmeans(data / sqrt(rowSums(data ^

2)), centers = p)$centers)↪→



A PACKAGES AND CODES 86

66 } else {

67 suppressWarnings(pmatrix <- kmeans(data, centers = p)$centers)

68 }

69 if (similarity == "cosine") {

70 # Compute affinity matrix with cosine similarity

71 A <- (data / sqrt(rowSums(data ^ 2))) %*% t(pmatrix /

sqrt(rowSums(pmatrix ^ 2)))↪→

72 } else {

73 # Compute affinity matrix with gaussian similarity

74 pfit <- kmeans(data, centers = p)

75 pmatrix <- pfit$centers

76 # Use total within sum of squares to estimate sigma

77 g_sigma <- beta * sqrt(pfit$tot.withinss / (nrow(data) - p))

78 A <- as.matrix(pdist(data, pmatrix))

79 A <- 1 / exp((A ^ 2) / (2 * (g_sigma ^ 2)))

80 }

81 }

82

83 # Landmark outlier removal. Outliers defined as having small column

sums.↪→

84 if ((alpha2 * p) >= 1) {

85 colsums <- colSums(A)

86 landmark_quantile <- quantile(colsums, alpha2)

87 A <- A[, colsums >= landmark_quantile]

88 if (method == "random") {

89 pindex <- pindex[colsums >= landmark_quantile]

90 }

91 }

92

93 # Check for rowSums == 0. Give 0 label if there are any.

94 zerooutliers <- FALSE

95 if (any(rowSums(A) == 0)) {

96 zerooutliers <- TRUE

97 zoutliers <- rowSums(A) == 0

98 znum <- sum(zoutliers)

99 warning(znum, " row(s) of zeros in affinity matrix. Will give

zero label.")↪→

100 A <- A[!zoutliers,]

101 }

102



A PACKAGES AND CODES 87

103 # Data outlier removal. Outliers defined as having small row sums.

104 outliers <- FALSE

105 if ((alpha1 * nrow(A)) >= 1) {

106 outliers <- TRUE

107 rowsums <- rowSums(A)

108 obs_quantile <- quantile(rowsums, alpha1)

109 outlier_index <- rowsums < obs_quantile

110

111 if (method == "random" & clustering != "traditional") {

112 # If random sampling and landmark clustering, outliers can't be

landmarks↪→

113 outlier_index[which(outlier_index)[which(outlier_index) %in%

pindex]] <- FALSE↪→

114 # Shift pindex for splitting into test and training sets later

115 porder <- order(order(pindex))

116 pindex <- which((1:length(outlier_index) %in%

pindex)[!outlier_index])↪→

117 pindex <- pindex[porder]

118 }

119

120 outlier_similarity <- A[outlier_index, ]

121 A <- A[!outlier_index,]

122

123 # Can give outliers zero label or reclassify with knn

124 if (reclassify == TRUE) {

125 knnindex <- function(x, length, knn) {

126 if (knn == 1) {

127 return(which.max(x))

128 } else {

129 return(order(x, decreasing = TRUE)[1:knn])

130 }

131 }

132 # Construct nearest neighbor matrix for classification of

outliers↪→

133 oknnmatrix <- Matrix(t(apply(outlier_similarity, 1, knnindex,

length = ncol(A), knn = knn)))↪→

134 }

135 }

136

137 if (clustering == "traditional") {



A PACKAGES AND CODES 88

138 keepr <- function(x, length, r) {

139 # Keep r largest entries in each row

140 x[order(x)[1:(length - r)]] <- 0L

141 return(x)

142 }

143 # Keep r nearest landmark distances

144 A <- Matrix(t(apply(A, 1, keepr, length = ncol(A), r = r)))

145 } else {

146 keeprknn <- function(x, length, r, knn) {

147 # Keep r largest entries in each row

148 sorted <- order(x)

149 x[sorted[1:(length - r)]] <- 0L

150 return(c(sorted[length - ((knn - 1):0)], x))

151 }

152 A <- Matrix(t(apply(A, 1, keeprknn, length = ncol(A), r = r, knn

= knn)))↪→

153 knnmatrix <- A[, 1:knn]

154 A <- A[, -(1:knn)]

155 }

156

157 # Remove columns with colSums == 0

158 if (any(colSums(A) == 0)) {

159 colzeroindex <- colSums(A) != 0

160 A <- A[, colzeroindex]

161 if (method == "random") {

162 pindex <- pindex[colzeroindex]

163 }

164 }

165

166 if (clustering == "traditional") {

167 if (t > 0) {

168 A1 <- A / rowSums(A) # Calculate A1

169 A2 <- t(t(A1) / sqrt(rowSums(t(A1)))) # Calculate A2

170 svdresult <- svds(A2, k = k, nu = k, nv = 0)

171 sigma <- svdresult$d

172 U <- svdresult$u

173 U <- t(t(U) * sigma^t)

174 U <- U / sqrt(rowSums(U ^ 2))

175 labelsout <- kmeans(U, centers = k, iter.max = iter.max, nstart

= nstart)$cluster↪→



A PACKAGES AND CODES 89

176 } else {

177 A1 <- A / rowSums(A) # Calculate A1

178 A2 <- t(t(A1) / sqrt(rowSums(t(A1)))) # Calculate A2

179 # Take top k left singular vectors of A2

180 U <- svds(A2, k = k, nu = k, nv = 0)$u

181 # L2 normalize rows of U

182 U <- U / sqrt(rowSums(U ^ 2))

183 # Kmeans on U

184 labelsout <- kmeans(U, centers = k, iter.max = iter.max, nstart

= nstart)$cluster↪→

185 }

186 } else {

187 A1 <- t(t(A) / (rowSums(t(A)))) # Calculate A1

188 A2 <- A1 / sqrt(rowSums(A1)) # Calculate A2

189 # Take top k right singular vectors of A2

190 V <- svds(A2, k = k, nu = 0, nv = k)$v

191 # L2 normalize rows of V

192 V <- V / sqrt(rowSums(V ^ 2))

193 # Kmeans on V

194 landmarkfit <- kmeans(V, centers = k, iter.max = iter.max, nstart

= nstart)$cluster↪→

195

196 if (method == "random") {

197 #Split test and train sets

198 fullindex <- 1:nrow(A2)

199 trainindex <- pindex

200 testindex <- fullindex[-trainindex]

201 if (knn == 1) {

202 knnmatrix <- knnmatrix[-trainindex]

203 } else {

204 knnmatrix <- knnmatrix[-trainindex, ]

205 }

206 votematrix <- matrix(landmarkfit[as.vector(knnmatrix)], nrow =

length(testindex), ncol = knn)↪→

207 #Do knn on data

208 if (knn == 1) {

209 knnresults <- votematrix

210 } else {

211 getmode <- function(x) {

212 tab <- table(x)



A PACKAGES AND CODES 90

213 max <- names(which(tab == max(tab)))

214 if (length(max) > 1) {

215 max <- sample(max, 1)

216 }

217 return(as.integer(max))

218 }

219 knnresults <- apply(votematrix, 1, getmode)

220 }

221 # Recombine labels

222 predictedlabels <- rep(NA, length.out = nrow(A2))

223 predictedlabels[testindex] <- knnresults

224 predictedlabels[trainindex] <- landmarkfit

225 labelsout <- predictedlabels

226 } else {

227 votematrix <- matrix(landmarkfit[as.vector(knnmatrix)], nrow =

nrow(A), ncol = knn)↪→

228 if (knn == 1) {

229 labelsout <- votematrix

230 } else {

231 getmode <- function(x) {

232 tab <- table(x)

233 max <- names(which(tab == max(tab)))

234 if (length(max) > 1) {

235 max <- sample(max, 1)

236 }

237 return(as.integer(max))

238 }

239 labelsout <- apply(votematrix, 1, getmode)

240 }

241 }

242 }

243

244 # Reclassify outliers or give zero label

245 if (outliers == TRUE) {

246 if (reclassify == TRUE) {

247 ovotematrix <- matrix(labelsout[as.vector(oknnmatrix)], nrow =

nrow(oknnmatrix), ncol = knn)↪→

248 if (knn == 1) {

249 predicted.o.label <- ovotematrix

250 } else {



A PACKAGES AND CODES 91

251 getmode <- function(x) {

252 tab <- table(x)

253 max <- names(which(tab == max(tab)))

254 if (length(max) > 1) {

255 max <- sample(max, 1)

256 }

257 return(as.integer(max))

258 }

259 predicted.o.label <- apply(ovotematrix, 1, getmode)

260 }

261 finallabels <- rep(NA, length.out = length(rowsums))

262 finallabels[outlier_index] <- predicted.o.label

263 finallabels[!outlier_index] <- labelsout

264 labelsout <- finallabels

265 } else {

266 finallabels <- rep(NA, length.out = length(rowsums))

267 finallabels[outlier_index] <- 0

268 finallabels[!outlier_index] <- labelsout

269 labelsout <- finallabels

270 }

271 }

272

273 if (zerooutliers == TRUE) {

274 finallabels <- rep(NA, length.out = nrow(data))

275 finallabels[zoutliers] <- 0

276 finallabels[!zoutliers] <- labelsout

277 labelsout <- finallabels

278 }

279

280 # Check for missing clusters. Can only occur with kmeans landmark

selection and↪→

281 # landmark clustering.

282 if (length(unique(labelsout[labelsout != 0])) != k) {

283 warning("The final number of clusters is not equal to k")

284 }

285

286 return(as.vector(labelsout))

287 }



A PACKAGES AND CODES 92

A.5 Team 3 Code

A.5.1 LBDM Code

1 function [label, kept_idx, U, reps] = LBDM(fea, k, r, s, t, affinity,

varargin)↪→

2 %LARGE SCALE SPECTRAL CLUSTERING USING DIFFUSION COORDINATE ON

3 %LANDMARK-BASED BIPARTITE GRAPH

4

5 %REQUIRED:

6 %fea: the data in row-major order (i.e each datapoint is a row)

7 %k: desired number of clusters

8 %affinity: currently supports cosine and radial basis function

(gaussian)↪→

9 %r: number of representatives (d. 100)

10 %s: number of nearest landmarks to keep

11 %t: diffusion time step

12 %affinity:

13 %'gaussian':

14 %'cosine': will normalize features first

15

16 %PARAMETER:

17 %remove_outlier: remove a subset of outliers based on point's total

18 %distances to other points

19 %select_method:

20 %'random': pick landmarks uniformly random

21 %'++': pick landmarks using kmeans++ weighting

22 %'kmeans': pick landmarks as centers of a kmeans run

23 %embed_method:

24 %'landmark': use right singular vector

25 %'direct': use left singular vector

26 %'coclustering': use both

27 %cluster_method: algorithms to partition embeddings

28 %'kmeans':

29 %'discretize:

30 % initRes/finalRes: number of restarts for initial/final Kmeans (d.

1/10)↪→

31 % initIter/finalIter: number of maximum iterations for initial/final

32

33 %OPTS

34 %sigma: scaling factor for gaussian kernel. Default is computed as



A PACKAGES AND CODES 93

35 %mean(mean(distance_matrix))

36

37 [n,m] = size(fea);

38

39 if (~exist('opts','var'))

40 opts = [];

41 end

42

43 %% input parser

44 p = inputParser;

45 addParameter(p,'initIter',10);

46 addParameter(p,'initRes',1);

47 addParameter(p,'finalIter',100);

48 addParameter(p,'finalRes',10);

49 addParameter(p,'select_method','kmeans');

50 addParameter(p,'embed_method','landmark');

51 addParameter(p,'cluster_method','kmeans');

52 addParameter(p,'remove_outlier',[1,1]);

53 addParameter(p,'fileid',1);

54 parse(p,varargin{:});

55

56 initIter = p.Results.initIter;

57 initRes = p.Results.initRes;

58 finalIter = p.Results.finalIter;

59 finalRes = p.Results.finalRes;

60 select_method = p.Results.select_method;

61 embed_method = p.Results.embed_method;

62 cluster_method = p.Results.cluster_method;

63 remove_outlier = p.Results.remove_outlier;

64 fileid = p.Results.fileid;

65

66

67 %% affinity

68

69 %1 cosine

70

71 if strcmp(affinity, 'cosine')

72 fprintf(fileid,'using cosine affinity\n');

73 fprintf(fileid,'normalizing features...\n');

74 fea = fea ./ sqrt(sum(fea.^2, 2));



A PACKAGES AND CODES 94

75

76 %remove outlier

77 if ((0 < remove_outlier(1)) && (remove_outlier(1) < 1)) || ((0 <

remove_outlier(2)) && (remove_outlier(2) < 1))↪→

78 tic;

79 fprintf(fileid,'removing outliers by finding row-sums...\n');

80 d = fea * (fea' * ones(n,1));

81 [val, amax] = sort(d, 'descend');

82 remove_high = remove_outlier(1);

83 remove_low = remove_outlier(2);

84 if (0 < remove_high) && (remove_high < 1)

85 high = floor(n * remove_high);

86 else

87 high = 1;

88 end

89 if (0 < remove_low) && (remove_low < 1)

90 low = n - ceil(n * remove_low);

91 else

92 low = n;

93 end

94 kept_idx = amax(high:low);

95 no_kept = size(kept_idx,1);

96 plot(1:n,val);

97 fprintf(fileid,'remove %.0f%% of dataset...\n',(1 - no_kept /

n) *100);↪→

98 fprintf(fileid,'removing outliers done in %.2f seconds\n',

toc);↪→

99 else

100 no_kept = n;

101 kept_idx = 1:n;

102

103 end

104

105 %select landmarks

106 fprintf(fileid,'selecting landmarks using ');

107 tic;

108 if strcmp(select_method, 'kmeans')

109 fprintf(fileid,'kmeans...\n');

110 [lb, reps] = litekmeans(fea(kept_idx,:), r, 'Distance',

'cosine', 'MaxIter', initIter, 'Replicates', initRes,...↪→



A PACKAGES AND CODES 95

111 'Start', 'cluster', 'clustermaxrestart', 10,

'clustermaxiter', 100, 'clustersample', 0.1);↪→

112 lbcount = hist(lb, 1:r); %#ok<NASGU>

113 elseif strcmp(select_method, 'uniform')

114 fprintf(fileid,'random sampling...\n');

115 reps = fea(kept_idx(randsample(no_kept, r, false)), :);

116 else

117 error('unsupported mode');

118 end

119

120 W = fea * reps';

121 fprintf(fileid,'done in %.2f seconds\n', toc);

122

123 %construct A

124 fprintf(fileid,'constructing sparse A...\n');

125 tic;

126 if s > 0

127 dump = zeros(n,s);

128 idx = dump;

129 for i = 1:s

130 [dump(:,i),idx(:,i)] = max(W,[],2);

131 temp = (idx(:,i)-1)*n+(1:n)';

132 W(temp) = 1e-100;

133 end

134 Gidx = repmat((1:n)',1,s);

135 Gjdx = idx;

136 W = sparse(Gidx(:),Gjdx(:),dump(:),n,r);

137 %remove outliers

138 W = W(kept_idx,:);

139 fprintf(fileid,'done in %.2f seconds\n',toc);

140 elseif s <= 0 % default to dense matrix

141 fprintf(fileid,'Default to dense martix\n');

142 if strcmp(embed_method, 'landmark')

143 [~,idx] = min(W,[],2);

144 %remove outliers

145 W = W(kept_idx,:);

146 end

147 end

148

149 %2 gaussian



A PACKAGES AND CODES 96

150 elseif strcmp(affinity, 'gaussian')

151 fprintf(fileid,'using gaussian affinity\n');

152 %remove outlier

153 if ((0 < remove_outlier(1)) && (remove_outlier(1) < 1)) || ((0 <

remove_outlier(2)) && (remove_outlier(2) < 1))↪→

154 tic;

155 fprintf(fileid,'removing outliers by finding row-sums...\n');

156 An = sum(fea.^2, 2);

157 Aminus = An - mean(An); %to avoid overflow

158 AA = Aminus * n;

159 AB = fea * (fea' * ones(n,1));

160 d = AA - 2 * AB;

161 [val, amax] = sort(d, 'descend');

162 remove_high = remove_outlier(1);

163 remove_low = remove_outlier(2);

164 if (0 < remove_high) && (remove_high < 1)

165 high = floor(n * remove_high);

166 else

167 high = 1;

168 end

169 if (0 < remove_low) && (remove_low < 1)

170 low = n - ceil(n * remove_low);

171 else

172 low = n;

173 end

174 kept_idx = amax(high:low);

175 no_kept = size(kept_idx,1);

176 plot(1:n,val);

177 fprintf(fileid,'remove %.0f%% of dataset...\n',(no_kept / n)

*100);↪→

178 fprintf(fileid,'removing outliers done in %.2f seconds\n',

toc);↪→

179 else

180 no_kept = n;

181 kept_idx = 1:n;

182 end

183

184 %select landmarks

185 fprintf(fileid,'selecting landmarks using ');

186 tic;



A PACKAGES AND CODES 97

187 if strcmp(select_method, 'kmeans')

188 fprintf(fileid,'kmeans...\n');

189 % warning('off', 'stats:kmeans:FailedToConverge')

190 [lb, reps, ~, VAR] = litekmeans(fea(kept_idx,:), r,

'MaxIter', initIter, 'Replicates', initRes,...↪→

191 'Start', 'cluster', 'clustermaxrestart', 10,

'clustermaxiter', 100, 'clustersample', 0.1);↪→

192 lbcount = hist(lb, 1:r);

193

194 elseif strcmp(select_method, 'uniform')

195 fprintf(fileid,'random sampling\n');

196 reps = fea(kept_idx(randsample(no_kept, r, false)), :);

197

198 elseif strcmp(select_method, '++')

199 fprintf(fileid,'D2 weight sampling\n');

200 [~, reps] = kmeans(fea_kept, r, 'MaxIter',0,'Replicates',1);

201 else

202 error('unsupported mode');

203 end

204 fprintf(fileid,'done in %.2f seconds\n',toc);

205 W = EuDist2(fea, reps, 0);

206

207 %determine sigma

208 if isfield(opts, 'sigma')

209 sigma = opts.sigma;

210 elseif strcmp(select_method, 'kmeans')

211 sigma = mean(sqrt(VAR ./ lbcount));

212

213 elseif strcmp(select_method, 'random') || strcmp(select_method,

'++')↪→

214 error('method random and ++ require sigma')

215 end

216

217 fprintf(fileid,'using sigma = %.2f\n',sigma);

218

219 %sparse representation

220 fprintf(fileid,'constructing sparse A...\n');

221 tic;

222 if s > 0

223 dump = zeros(n,s);



A PACKAGES AND CODES 98

224 idx = dump;

225 for i = 1:s

226 [dump(:,i),idx(:,i)] = min(W,[],2);

227 temp = (idx(:,i)-1)*n+(1:n)';

228 W(temp) = 1e100;

229 end

230

231 Gidx = repmat((1:n)',1,s);

232 Gjdx = idx;

233 W = sparse(Gidx(:),Gjdx(:),dump(:),n,r);

234 %remove outlier

235 W = W(kept_idx,:);

236

237 elseif s <= 0 % default to dense matrix

238 fprintf(fileid,'default to dense matrix\n');

239 if strcmp(embed_method, 'landmark')

240 [~,idx] = min(W,[],2);

241 end

242 W = exp(-W/(2.0*sigma^2));

243 %remove outlier

244 W = W(kept_idx,:);

245 end

246 fprintf(fileid,'done in %.2f seconds\n',toc);

247 end

248

249 %% compute laplacian

250

251 fprintf(fileid,'Computing Laplacian and diffusion map...\n');

252 tic;

253

254 d1 = sum(W, 2);

255 d2 = sum(W, 1);

256 d1 = max(d1, 1e-15);

257 d2 = max(d2, 1e-15);

258 D1 = sparse(1:no_kept,1:no_kept,d1.^(-0.5));

259 D2 = sparse(1:r,1:r,d2.^(-0.5));

260 L = D1*W*D2;

261 [U,S,V] = svds(L, k);

262

263 if t > 0



A PACKAGES AND CODES 99

264 U = D1 * U * S.^t;

265 V = D2 * V * S.^t;

266 elseif t == 0

267 U = D1 * U;

268 V = D2 * V;

269 end

270 fprintf(fileid,'Done in %.2f seconds\n',toc);

271

272 %% cluster embeddings

273

274 fprintf(fileid,'Clustering result embeddings...\n');

275 tic;

276 if strcmp(embed_method, 'landmark')

277 if strcmp(cluster_method, 'kmeans')

278 V(:,1) = [];

279 V = V ./ sqrt(sum(V .^2, 2));

280 reps_labels = litekmeans(V, k, 'Distance', 'cosine',

'MaxIter', finalIter, 'Replicates',finalRes);↪→

281 elseif strcmp(cluster_method, 'discretize')

282 reps_labels = discretize(V);

283 end

284 label = zeros(n, 1);

285 for i = 1:n

286 label(i) = reps_labels(idx(i));

287 end

288

289 elseif strcmp(embed_method, 'direct')

290 if strcmp(cluster_method, 'kmeans')

291 U(:,1) = [];

292 U = U ./ sqrt(sum(U .^2, 2));

293 label = litekmeans(U, k, 'Distance', 'cosine', 'MaxIter',

finalIter, 'Replicates',finalRes);↪→

294 elseif strcmp(cluster_method, 'discretize')

295 label = discretize(U);

296 end

297

298 elseif strcmp(embed_method, 'coclustering')

299 W = [U;V];

300 if strcmp(cluster_method, 'kmeans')

301 W(:,1) = [];



A PACKAGES AND CODES 100

302 W = W ./ sqrt(sum(W .^2, 2));

303 all_label = litekmeans(W, k, 'Distance', 'cosine', 'MaxIter',

finalIter, 'Replicates',finalRes);↪→

304 elseif strcmp(cluster_method, 'discretize')

305 all_label = discretize(W);

306 end

307 label = all_label(1:n);

308 end

309 fprintf(fileid,'Done in %.2f seconds\n', toc);

310

311 end


