Chapter 2 Matrix Algebra

Math 39, San Jose State University

Prof. Guangliang Chen

Fall 2022

Sections 2.1-2.3 Matrix operations

- Matrix addition/subtraction
- Matrix multiplication
- Matrix powers
- Matrix transpose
- Matrix inverse
- The Invertible Matrix Theorem

Section 2.4 Partitioned matrices

Section 2.5 LU decomposition

Matrix Algebra

Introduction

Matrices are two dimensional arrays of real numbers that are arranged along rows (first dimension) and columns (second dimension):

$$
\mathbf{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]=\left[\begin{array}{lll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \ldots
\end{array} \mathbf{a}_{n}\right] .
$$

We denote matrices that have m rows and n columns by $\mathbf{A} \in \mathbb{R}^{m \times n}$, and say that the size of the matrix is $m \times n$.

Vectors can be regarded as matrices with size $n \times 1$ (column) or $1 \times n$ (row).
Sometimes, we also use notation like $\mathbf{A}=\left(a_{i j}\right)_{1 \leq i \leq m, 1 \leq j \leq n}$, or even $\mathbf{A}=\left(a_{i j}\right)$.

Matrix Algebra

Special matrices

We say that \mathbf{A} is a square matrix if $m=n$ (i.e., equally many rows and columns).
Diagonal matrices are square matrices whose only nonzero entries are in the main diagonal of the matrix

$$
\mathbf{A}=\left[\begin{array}{ccc}
a_{11} & & \\
& \ddots & \\
& & a_{n n}
\end{array}\right] \quad \longleftarrow \text { empty spaces indicate zero }
$$

An identity matrix is a diagonal matrix with constant value 1 along the diagonal:

$$
\mathbf{I}_{n}=\operatorname{diag}(1, \ldots, 1) \in \mathbb{R}^{n \times n}
$$

Lastly, a zero matrix is a matrix with all entries being 0 , and denoted as \mathbf{O}.

Matrix Algebra

Matrix operations

- Scalar multiple of a matrix
- Matrix-vector product
- Adding two matrices of the same size (also letting them subtract)
- Multiplying two matrices of "matching" sizes
- Transpose of a matrix
- Inverse of a square matrix

Matrix Algebra

Def 0.1 (Scalar multiple). Let r be a real number and $\mathbf{A} \in \mathbb{R}^{m \times n}$. Then $\mathbf{B}=r \mathbf{A}$ is defined as a matrix of the same size with entries $b_{i j}=r a_{i j}$.

In matrix form, this is

$$
r \mathbf{A}=\left[\begin{array}{cccc}
r a_{11} & r a_{12} & \cdots & r a_{1 n} \\
r a_{21} & r a_{22} & \cdots & r a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
r a_{m 1} & r a_{m 2} & \cdots & r a_{m n}
\end{array}\right] \in \mathbb{R}^{m \times n}
$$

Matrix Algebra

Def 0.2 (Matrix sum/difference). Let $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m \times n}$. Then the matrix sum $\mathbf{C}=\mathbf{A}+\mathbf{B}$ is defined as a matrix of the same size with the following entries

$$
\mathbf{C}=\left(c_{i j}\right), \quad c_{i j}=a_{i j}+b_{i j}
$$

In matrix form, the above definition becomes

$$
\mathbf{A}+\mathbf{B}=\left[\begin{array}{cccc}
a_{11}+b_{11} & a_{12}+b_{12} & \cdots & a_{1 n}+b_{1 n} \\
a_{21}+b_{21} & a_{22}+b_{22} & \cdots & a_{2 n}+b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1}+b_{m 1} & a_{m 2}+b_{m 2} & \cdots & a_{m n}+b_{m n}
\end{array}\right] \in \mathbb{R}^{m \times n}
$$

Remark. The difference of two matrices, $\mathbf{A}-\mathbf{B}$, is defined similarly (with every + sign being changed to - sign).

Matrix Algebra

Example 0.1. Let

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{ccc}
-1 & -1 & -1 \\
1 & 1 & 1
\end{array}\right]
$$

Find $\mathbf{A}+\mathbf{B}, \mathbf{A}-\mathbf{B}, 3 \mathbf{B}$ and $\mathbf{A}+3 \mathbf{B}$.

Matrix Algebra

The scalar multiple of a matrix and matrix sum satisfy the following commutative, associative and distributive laws.

Theorem 0.1. Let $\mathbf{A}, \mathbf{B}, \mathbf{C}$ be three matrices of the same size and r, s be scalars. Then

- $\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$
- $\mathbf{A}+\mathbf{O}=\mathbf{O}+\mathbf{A}=\mathbf{A}(\mathbf{O}$ is the zero matrix of same size $)$
- $(\mathbf{A}+\mathbf{B})+\mathbf{C}=\mathbf{A}+(\mathbf{B}+\mathbf{C})$
- $r(s \mathbf{A})=(r s) \mathbf{A}$
- $r(\mathbf{A}+\mathbf{B})=r \mathbf{A}+r \mathbf{B}$
- $(r+s) \mathbf{A}=r \mathbf{A}+s \mathbf{A}$

Matrix Algebra

Matrix-vector product

Def 0.3. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathrm{x} \in \mathbb{R}^{n}$. Their product is defined as a vector $\mathbf{y} \in \mathbb{R}^{m}$ of the following form
$\mathbf{y}=\mathbf{A} \mathbf{x}=\left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i 1} & a_{i 2} & \cdots & a_{i n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m 1} & a_{m 2} & \cdots & a_{m n}\end{array}\right]\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]=\left[\begin{array}{c}a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} \\ \vdots \\ a_{i 1} x_{1}+a_{i 2} x_{2}+\cdots+a_{i n} x_{n} \\ \vdots \\ a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}\end{array}\right]$
In compact notation,

$$
\mathbf{y}=\left(y_{i}\right) \in \mathbb{R}^{m}, \quad \text { with } \quad y_{i}=\sum_{j=1}^{n} a_{i j} x_{j}, 1 \leq i \leq m
$$

Matrix Algebra

Alternatively (as we have already seen previously), we can multiply a matrix and a vector in a columnwise fashion.

Theorem 0.2. Let $\mathbf{A}=\left[\mathbf{a}_{1} \ldots \mathbf{a}_{n}\right] \in \mathbb{R}^{m \times n}$ and $\mathbf{x} \in \mathbb{R}^{n}$. Then

$$
\mathbf{A} \mathbf{x}=\left[\mathbf{a}_{1} \ldots \mathbf{a}_{n}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=x_{1} \cdot \mathbf{a}_{1}+\cdots+x_{n} \cdot \mathbf{a}_{n}
$$

Proof. By definition,
$\mathbf{A} \mathbf{x}=\left[\begin{array}{c}a_{11} x_{1}+\cdots+a_{1 n} x_{n} \\ a_{21} x_{1}+\cdots+a_{2 n} x_{n} \\ \vdots \\ a_{m 1} x_{1}+\cdots+a_{m n} x_{n}\end{array}\right]=\left[\begin{array}{c}a_{11} x_{1} \\ a_{21} x_{1} \\ \vdots \\ a_{m 1} x_{1}\end{array}\right]+\cdots+\left[\begin{array}{c}a_{1 n} x_{n} \\ a_{2 n} x_{n} \\ \vdots \\ a_{m n} x_{n}\end{array}\right]=x_{1} \mathbf{a}_{1}+\cdots+x_{n} \mathbf{a}_{n}$.

Matrix Algebra

Two properties about matrix-vector multiplication

Theorem 0.3. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ and $r \in \mathbb{R}$. Then

- $\mathbf{A}(\mathbf{x}+\mathbf{y})=\mathbf{A x}+\mathbf{A y}$
- $\mathbf{A}(r \mathbf{x})=r(\mathbf{A x})$

Remark. They were needed for showing that transformations of the form $f(\mathbf{x})=$ Ax must be linear.

Matrix Algebra

Proof. By the columnwise way of multiplying a matrix and a vector,

$$
\begin{aligned}
\mathbf{A}(\mathbf{x}+\mathbf{y}) & =\left[\mathbf{a}_{1} \ldots \mathbf{a}_{n}\right]\left[\begin{array}{c}
x_{1}+y_{1} \\
\vdots \\
x_{n}+y_{n}
\end{array}\right] \\
& =\left(x_{1}+y_{1}\right) \mathbf{a}_{1}+\cdots+\left(x_{n}+y_{n}\right) \mathbf{a}_{n} \\
& =\left(x_{1} \mathbf{a}_{1}+\cdots+x_{n} \mathbf{a}_{n}\right)+\left(y_{1} \mathbf{a}_{1}+\cdots+y_{n} \mathbf{a}_{n}\right) \\
& =\mathbf{A} \mathbf{x}+\mathbf{A y} .
\end{aligned}
$$

Similarly,
$\mathbf{A}(r \mathbf{x})=\left[\mathbf{a}_{1} \ldots \mathbf{a}_{n}\right]\left[\begin{array}{c}r x_{1} \\ \vdots \\ r x_{n}\end{array}\right]=\left(r x_{1}\right) \mathbf{a}_{1}+\cdots+\left(r x_{n}\right) \mathbf{a}_{n}=r \underbrace{\left(x_{1} \mathbf{a}_{1}+\cdots+x_{n} \mathbf{a}_{n}\right)}_{\mathbf{A x}}$.

Matrix Algebra

A third property about matrix-vector multiplication

Theorem 0.4. Let $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m \times n}$ and $\mathbf{x} \in \mathbb{R}^{n}$. Then

$$
(\mathbf{A}+\mathbf{B}) \mathbf{x}=\mathbf{A x}+\mathbf{B x}
$$

Proof. Let $\mathbf{A}=\left[\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right]$ and $\mathbf{B}=\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right]$. Then

$$
\mathbf{A}+\mathbf{B}=\left[\mathbf{a}_{1}+\mathbf{b}_{1}, \ldots, \mathbf{a}_{n}+\mathbf{b}_{n}\right] .
$$

It follows that

$$
\begin{aligned}
(\mathbf{A}+\mathbf{B}) \mathbf{x} & =x_{1}\left(\mathbf{a}_{1}+\mathbf{b}_{1}\right)+\cdots+x_{n}\left(\mathbf{a}_{n}+\mathbf{b}_{n}\right) \\
& =\left(x_{1} \mathbf{a}_{1}+\cdots+x_{n} \mathbf{a}_{n}\right)+\left(x_{1} \mathbf{b}_{1}+\cdots+x_{n} \mathbf{b}_{n}\right) \\
& =\mathbf{A} \mathbf{x}+\mathbf{B} \mathbf{x}
\end{aligned}
$$

Matrix Algebra

Matrix-matrix multiplications

Def 0.4. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in$ $\mathbb{R}^{n \times p}$. Their product is defined as a matrix $\mathbf{C} \in \mathbb{R}^{m \times p}$ with entries

$$
\begin{aligned}
c_{i j} & =\left[a_{i 1} \ldots a_{i n}\right]\left[\begin{array}{c}
b_{1 j} \\
\vdots \\
b_{n j}
\end{array}\right] \\
& =a_{i 1} b_{1 j}+\cdots+a_{i n} b_{n j} \\
& =\sum_{k=1}^{n} a_{i k} b_{k j} .
\end{aligned}
$$

Remark. The matrix-vector product is just the special case of $p=1$.

Matrix Algebra

Example 0.2. Let

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{cc}
1 & 1 \\
1 & -1 \\
0 & 0
\end{array}\right]
$$

Find $\mathbf{A B}$ and $\mathbf{B A}$. Are they the same?
Example 0.3. Let

$$
\mathbf{A}=\left[\begin{array}{ll}
2 & 2 \\
3 & 3
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{ccc}
1 & -1 & 2 \\
-1 & 1 & -2
\end{array}\right]
$$

Find $\mathbf{A B}$. Is BA defined?

Matrix Algebra

Why does Morpheus keep asking people if they work from home?

It's dangerous to assume that they commute.
(Taken from https://mathwithbaddrawings.com/2018/03/07/matrix-jokes/)

Matrix Algebra

WARNINGS

- There is no commutative law between matrices: $\mathbf{A B} \neq \mathbf{B A}$. In fact, not both of them need to be defined at the same time.
- If $\mathbf{A B}=\mathbf{O}$, then we cannot conclude that $\mathbf{A}=\mathbf{O}$ or $\mathbf{B}=\mathbf{O}$.
- There is no cancellation law, i.e., $\mathbf{A B}=\mathbf{A C}$ does not necessarily imply $\mathbf{B}=\mathbf{C}$.

Can you give an example for the last statement?

A small, useful result on matrix-matrix-vector product

Theorem 0.5. Let $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{B} \in \mathbb{R}^{n \times p}$ and $\mathbf{x} \in \mathbb{R}^{p}$. Then

$$
(\mathbf{A B}) \mathbf{x}=\mathbf{A}(\mathbf{B x})
$$

Proof. We compare the entries of both sides. For any $1 \leq i \leq m$,

$$
\begin{aligned}
((\mathbf{A B}) \mathbf{x})_{i} & =\sum_{j}(\mathbf{A B})_{i j} x_{j}=\sum_{j} \sum_{k} a_{i k} b_{k j} x_{j} \\
& =\sum_{k} a_{i k} \sum_{j} b_{k j} x_{j}=\sum_{k} a_{i k}(\mathbf{B x})_{k}=(\mathbf{A}(\mathbf{B x}))_{i} .
\end{aligned}
$$

Remark. The right hand side is much more efficient to compute, especially when having large matrices \mathbf{A}, \mathbf{B}.

Matrix Algebra

Matrix computing in Matlab (optional)

See the following lecture:
https://www.sjsu.edu/faculty/guangliang.chen/Math250/lec2matrixcomp.pdf

Matlab scripts available on the Math 250 course page:
https://www.sjsu.edu/faculty/guangliang.chen/Math250.html

Matrix Algebra

The columnwise matrix multiplication (very important)

Theorem 0.6. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times p}$. Then

$$
\mathbf{C}=\mathbf{A B}=\mathbf{A}\left[\mathbf{b}_{1} \ldots \mathbf{b}_{p}\right]=\left[\mathbf{A} \mathbf{b}_{1} \ldots \mathbf{A} \mathbf{b}_{p}\right]
$$

This shows that for each $j=1, \ldots, p$, the j th column of $\mathbf{A B}$ is equal to \mathbf{A} times the j th column of \mathbf{B}.

Matrix Algebra

Properties of matrix multiplication

Theorem 0.7. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$. Then

- $\mathbf{A}(\mathbf{B C})=(\mathbf{A B}) \mathbf{C} \quad\left(\right.$ for $\left.\mathbf{B} \in \mathbb{R}^{n \times p}, \mathbf{C} \in \mathbb{R}^{p \times q}\right)$
- $\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad\left(\right.$ for $\left.\mathbf{B}, \mathbf{C} \in \mathbb{R}^{n \times p}\right)$
- $(\mathbf{B}+\mathbf{C}) \mathbf{A}=\mathbf{B A}+\mathbf{C A} \quad\left(\right.$ for $\left.\mathbf{B}, \mathbf{C} \in \mathbb{R}^{\ell \times m}\right)$
- $r(\mathbf{A B})=(r \mathbf{A}) \mathbf{B}=\mathbf{A}(r \mathbf{B}) \quad$ (for $\mathbf{B} \in \mathbb{R}^{n \times p}$)
- $\mathbf{I}_{m} \mathbf{A}=\mathbf{A I}_{n}=\mathbf{A}$.

Proof. Enough to compare columns.

Matrix Algebra

Example 0.4. Compute the following product

$$
\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

Matrix Algebra

Matrix powers

Def 0.5. Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a square matrix and k a positive integer. Then the k th power of \mathbf{A} is defined as

$$
\mathbf{A}^{k}=\underbrace{\mathbf{A} \cdot \mathbf{A} \cdots \mathbf{A}}_{k \text { copies }} .
$$

Example 0.5. Let

$$
\mathbf{A}=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Find \mathbf{A}^{3} and \mathbf{B}^{3}. What are \mathbf{A}^{k} and \mathbf{B}^{k} for $k>3$?

Matrix Algebra

Transpose of a matrix

Def 0.6. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ be any matrix. Its transpose, denoted as \mathbf{A}^{T} is defined to the $n \times m$ matrix \mathbf{B} with entries $b_{i j}=a_{j i}$.

Remark. During the transpose operation, rows (of \mathbf{A}) become columns (of \mathbf{B}), and columns become rows.

Matrix Algebra

Example 0.6. Find the transpose of the following matrices:

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{ll}
2 & 4 \\
4 & 1
\end{array}\right], \quad \mathbf{C}=\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]
$$

Properties of the matrix transpose

Theorem 0.8. Let A, B be matrices with appropriate sizes for each statement.

- $\left(\mathbf{A}^{T}\right)^{T}=\mathbf{A}$
- $(\mathbf{A}+\mathbf{B})^{T}=\mathbf{A}^{T}+\mathbf{B}^{T}$
- For any scalar $r,(r \mathbf{A})^{T}=r \mathbf{A}^{T}$
- $(\mathbf{A B})^{T}=\mathbf{B}^{T} \mathbf{A}^{T}$ (not the other product $\mathbf{A}^{T} \mathbf{B}^{T}$, which may not even be defined)

Proof. The first three are obvious. To prove the last one, check the $i j$-entry of each side. We show the work in class.

Matrix Algebra

Matrix inverse

Just like nonzero real numbers ($a \in \mathbb{R}$) have their reciprocals ($\frac{1}{a}$), certain (not all) square matrices have matrix inverses.

Def 0.7. A square matrix $\mathbf{A} \in \mathbb{R}^{n}$ is said to be invertible if there exists another matrix of the same size \mathbf{B} such that

$$
\mathbf{A B}=\mathbf{B A}=\mathbf{I}_{n} .
$$

In this case, \mathbf{B} is called the inverse of \mathbf{A} and we write $\mathbf{B}=\mathbf{A}^{-1}$ (\mathbf{A} is also called the inverse of \mathbf{B}).

Matrix Algebra

Example 0.7. Verify that $\mathbf{A}=\left[\begin{array}{cc}2 & 5 \\ -3 & -7\end{array}\right]$ and $\mathbf{B}=\left[\begin{array}{cc}-7 & -5 \\ 3 & 2\end{array}\right]$ are inverses of each other and then use this fact to solve the matrix equation $\mathbf{A x}=\mathbf{b}$ for $\mathbf{b}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$.

Matrix Algebra

From the previous example, we can formulate the following theorem.
Theorem 0.9. Consider a matrix equation $\mathbf{A x}=\mathbf{b}$ where $\mathbf{A} \in \mathbb{R}^{n \times n}$ is a square matrix. If \mathbf{A} is invertible, then for any vector $\mathbf{b} \in \mathbb{R}^{n}$, the system has a unique solution $\mathbf{x}=\mathbf{A}^{-1} \mathbf{b}$.

Proof. Since A is invertible, its inverse \mathbf{A}^{-1} exists and we can use it to multiply both sides of the equation

$$
\mathbf{A}^{-1}(\mathbf{A} \mathbf{x})=\mathbf{A}^{-1} \mathbf{b}
$$

By the associative law,

$$
\underbrace{\left(\mathbf{A}^{-1} \mathbf{A}\right)}_{\mathbf{I}} \mathbf{x}=\mathbf{A}^{-1} \mathbf{b}
$$

which yields that

$$
\mathbf{x}=\mathbf{A}^{-1} \mathbf{b}
$$

Matrix Algebra

Illustration of A^{-1} as a transformation

Matrix Algebra

Properties of matrix inverse

Theorem 0.10. Let \mathbf{A}, \mathbf{B} be two invertible matrices of the same size. Then

- $\left(\mathbf{A}^{-1}\right)^{-1}=\mathbf{A}$
- $\left(\mathbf{A}^{T}\right)^{-1}=\left(\mathbf{A}^{-1}\right)^{T}$
- For any nonzero scalar $r,(r \mathbf{A})^{-1}=\frac{1}{r} \mathbf{A}^{-1}$
- $(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}$ (not the other product $\mathbf{A}^{-1} \mathbf{B}^{-1}$)

Proof. We verify them in class.

Matrix Algebra

The Invertible Matrix Theorem (part 1)

"For a square matrix, lots of things are the same."

Theorem 0.11. Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a square matrix. Then the following statements are all equivalent:
(1) \mathbf{A} is invertible.
(2) There is an $n \times n$ matrix \mathbf{C} such that $\mathbf{C A}=\mathbf{I}$.
(3) The equation $\mathbf{A x}=\mathbf{0}$ only has the trivial solution.
(4) A has n pivot positions.
(5) \mathbf{A} is row equivalent to \mathbf{I}_{n}.

Matrix Algebra

The Invertible Matrix Theorem (part 2)

Theorem 0.12. Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a square matrix. Then the following statements are all equivalent:
(1) \mathbf{A} is invertible.
(6) There is an $n \times n$ matrix \mathbf{D} such that $\mathbf{A D}=\mathbf{I}$.
(7) The equation $\mathbf{A x}=\mathbf{b}$ (for any \mathbf{b}) is always consistent.
(8) The columns of \mathbf{A} span \mathbb{R}^{n}.
(9) The linear transformation $f(\mathbf{x})=\mathbf{A x}$ (from \mathbb{R}^{n} to \mathbb{R}^{n}) is onto.

Matrix Algebra

The Invertible Matrix Theorem (part 3)

Theorem 0.13. Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a square matrix. Then the following statements are all equivalent:
(1) \mathbf{A} is invertible.
(10) \mathbf{A}^{T} is invertible.
(3) The equation $\mathbf{A x}=\mathbf{0}$ only has the trivial solution.
(11) The columns of \mathbf{A} form a linearly independent set.
(12) The linear transformation $f(\mathbf{x})=\mathbf{A x}$ is one-to-one.

Matrix Algebra

Summary

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a square matrix.
If \mathbf{A} is invertible, then all of the following statements are true.
Conversely, if any of the following statement is true, then \mathbf{A} must be invertible.
(2) There is an $n \times n$ matrix \mathbf{C} such that $\mathbf{C A}=\mathbf{I}$.
(6) There is an $n \times n$ matrix \mathbf{D} such that $\mathbf{A D}=\mathbf{I}$.

Matrix Algebra

(3) The equation $\mathbf{A x}=\mathbf{0}$ only has the trivial solution.
(7) The equation $\mathbf{A x}=\mathbf{b}$ (for any \mathbf{b}) has at least one solution.
(8) The columns of \mathbf{A} span \mathbb{R}^{n}.
(11) The columns of \mathbf{A} form a linearly independent set.
(9) The linear transformation $f(\mathbf{x})=\mathbf{A x}\left(\right.$ from \mathbb{R}^{n} to $\left.\mathbb{R}^{n}\right)$ is onto.
(12) The linear transformation $f(\mathrm{x})=\mathbf{A} \mathrm{x}$ is one-to-one.

Matrix Algebra

Finding matrix inverse

First consider 2×2 matrices

$$
\mathbf{A}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

If $a d-b c \neq 0$, then \mathbf{A} is invertible and its inverse is given by the following empirical rule

$$
\mathbf{A}^{-1}=\frac{1}{a d-b c} \cdot\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Example 0.8. Use the above rule to find the inverse of

$$
\mathbf{A}=\left[\begin{array}{cc}
2 & 5 \\
-3 & -7
\end{array}\right]
$$

Matrix Algebra

In general, given an invertible matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ (for any n), finding its inverse is equivalent to solving the matrix equation

$$
\mathbf{A X}=\mathbf{I}_{n}, \quad \text { or equivalently } \quad \mathbf{A}\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right]=\left[\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right]
$$

This leads to n separate systems of linear equations:

$$
\mathbf{A} \mathbf{x}_{1}=\mathbf{e}_{1}\left(\text { i.e. }\left[\mathbf{A} \mid \mathbf{e}_{1}\right]\right), \quad \ldots, \quad \mathbf{A} \mathbf{x}_{n}=\mathbf{e}_{n}\left(\text { i.e. }\left[\mathbf{A} \mid \mathbf{e}_{n}\right]\right)
$$

which may be solved simultaneously:

$$
\left[\mathbf{A} \mid\left[\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right]\right]=\left[\mathbf{A} \mid \mathbf{I}_{n}\right] \longrightarrow\left[\mathbf{I}_{n} \mid \mathbf{A}^{-1}\right] .
$$

Matrix Algebra

Example 0.9. Find the inverse of the matrix

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & 0 & -2 \\
3 & 1 & -2 \\
-5 & -1 & 9
\end{array}\right]
$$

if its exists.

Matrix Algebra

Partitioned matrices

A partitioned matrix, also called a block matrix, is a matrix whose elements have been divided into blocks (called submatrices).

For example,

$$
\mathbf{A}=\left[\begin{array}{lll|ll}
1 & 2 & 3 & 0 & 0 \\
4 & 5 & 6 & 0 & 0 \\
\hline 0 & 0 & 0 & 7 & 8 \\
\hline 1 & 1 & 1 & 0 & 0 \\
2 & 2 & 2 & 0 & 0 \\
3 & 3 & 3 & 0 & 0
\end{array}\right]=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22} \\
A_{31} & A_{32}
\end{array}\right]
$$

Partitioned matrices are very useful because they reduce large matrices into a collection of smaller matrices (which are easier to deal with).

Matrix Algebra

Addition and scalar multiplication

If two matrices \mathbf{A}, \mathbf{B} have the same size and have been partitioned in exactly the same way, then we can just add the corresponding blocks to get their sum (with the same partition):

$$
\mathbf{A}+\mathbf{B}=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22} \\
A_{31} & A_{32}
\end{array}\right]+\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22} \\
B_{31} & B_{32}
\end{array}\right]=\left[\begin{array}{ll}
A_{11}+B_{11} & A_{12}+B_{12} \\
A_{21}+B_{21} & A_{22}+B_{22} \\
A_{31}+B_{31} & A_{32}+B_{32}
\end{array}\right]
$$

The scalar multiple of a partitioned matrix is

$$
r \mathbf{A}=\left[\begin{array}{ll}
r A_{11} & r A_{12} \\
r A_{21} & r A_{22} \\
r A_{31} & r A_{32}
\end{array}\right]
$$

Matrix Algebra

Multiplication of partitioned matrices: simple cases

Let $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{B} \in \mathbb{R}^{n \times p}$ be two matrices that may be multiplied together.
When the columns of \mathbf{A} and rows of B are divided in a conformable way, we can carry out block multiplication:
$\mathbf{A B}=A_{11} B_{11}+A_{12} B_{21}+A_{13} B_{31}$

Remark.

- All terms $\mathbf{A B}, A_{11} B_{11}, A_{12} B_{21}, A_{13} B_{31}$ are $m \times p$ matrices.
- Such partitions do not show up in the product matrix.

Matrix Algebra

Example 0.10. Let

$$
\mathbf{A}=\left[\begin{array}{lll|ll}
1 & 2 & 3 & 0 & 0 \\
4 & 5 & 6 & 0 & 0 \\
7 & 8 & 9 & 0 & 0
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{cc}
1 & -1 \\
1 & -1 \\
1 & -1 \\
\hline 1 & -1 \\
1 & -1
\end{array}\right]
$$

Find $\mathbf{A B}$ using two ways: (a) direct multiplication (b) block multiplication.
Answer.
$\mathbf{A B}=\underbrace{\left[\begin{array}{cc}6 & -6 \\ 15 & -15 \\ 24 & -24\end{array}\right]}_{3 \times 2}=\underbrace{\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]}_{3 \times 2} \cdot\left[\begin{array}{ll}1 & -1 \\ 1 & -1 \\ 1 & -1\end{array}\right]+\underbrace{\left[\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right] \cdot\left[\begin{array}{ll}1 & -1 \\ 1 & -1\end{array}\right]}_{3 \times 2}$

Matrix Algebra

A joke

How does a mathematician change three light bulbs at the same time?

He gives them to three engineers and ask them to do it in parallel.

Matrix Algebra

Multiplication of partitioned matrices: more general cases

Let $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{B} \in \mathbb{R}^{n \times p}$ be two matrices that are partitioned in a conformable way (i.e., column partition of A matches row partition of \mathbf{B}).

Regardless of the row partition of \mathbf{A} and column partition of \mathbf{B}, we can carry out block multiplications by treating the blocks as numbers.

Remark. Row partition of $\mathbf{A}+$ column partition of $\mathbf{B}=$ partition of $\mathbf{A B}$ (such two partitions do not need to match).

Matrix Algebra

In terms of math symbols, that is

$$
\begin{aligned}
\mathbf{A B} & =\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right] \cdot\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22} \\
B_{31} & B_{32}
\end{array}\right] \\
& =\left[\begin{array}{ll}
A_{11} B_{11}+A_{12} B_{21}+A_{13} B_{31} & A_{11} B_{12}+A_{12} B_{22}+A_{13} B_{32} \\
A_{21} B_{11}+A_{22} B_{21}+A_{23} B_{31} & A_{21} B_{12}+A_{22} B_{22}+A_{23} B_{32} \\
A_{31} B_{11}+A_{32} B_{21}+A_{33} B_{31} & A_{31} B_{12}+A_{32} B_{22}+A_{33} B_{32}
\end{array}\right]
\end{aligned}
$$

In the above, we can think of \mathbf{A} as a 3×3 partitioned matrix and \mathbf{B} as a 3×2 partitioned matrix, so that we must obtain a 3×2 partitioned matrix.

Matrix Algebra

Example 0.11. Verify that

$$
\left[\begin{array}{lll|ll}
1 & 2 & 3 & 0 & 0 \\
\hline 4 & 5 & 6 & 0 & 0 \\
7 & 8 & 9 & 0 & 0
\end{array}\right] \cdot\left[\begin{array}{cc}
1 & -1 \\
1 & -1 \\
1 & -1 \\
\hline 1 & -1 \\
1 & -1
\end{array}\right]=\left[\begin{array}{cc}
6 & -6 \\
\hline 15 & -15 \\
24 & -24
\end{array}\right]
$$

Matrix Algebra

Example 0.12. Show that

$$
\left[\begin{array}{ll}
U_{1} & U_{2}
\end{array}\right]\left[\begin{array}{ll}
\Sigma & O \\
O & O
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]=U_{1} \Sigma V_{1}
$$

(assuming all submatrices are compatible with each other)

Matrix Algebra

Matrix multiplication again

The columnwise multiplication of two compatible matrices $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{B} \in \mathbb{R}^{n \times p}$ actually has already used simple partitions of matrices:

$$
\mathbf{A B}=\mathbf{A}\left[\mathbf{b}_{1} \ldots \mathbf{b}_{p}\right]=\left[\mathbf{A} \mathbf{b}_{1} \ldots \mathbf{A} \mathbf{b}_{p}\right]
$$

Matrix Algebra

We present two new ways of performing matrix multiplication:

- Rowwise multiplication

$$
\mathbf{A B}=\left[\begin{array}{c}
A_{1} \\
\vdots \\
A_{m}
\end{array}\right] \mathbf{B}=\left[\begin{array}{c}
A_{1} \mathbf{B} \\
\vdots \\
A_{m} \mathbf{B}
\end{array}\right]
$$

where A_{1}, \ldots, A_{m} are the rows of \mathbf{A}.

Matrix Algebra

- Column-row expansion

$$
\mathbf{A B}=\left[\mathbf{a}_{1} \ldots \mathbf{a}_{n}\right]\left[\begin{array}{c}
B_{1} \\
\vdots \\
B_{n}
\end{array}\right]=\mathbf{a}_{1} B_{1}+\cdots+\mathbf{a}_{n} B_{n}
$$

Matrix Algebra

Example 0.13. Find the product of $\mathbf{A}=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$ and $\mathbf{B}=\left[\begin{array}{ll}1 & 0 \\ 1 & 0 \\ 1 & 0\end{array}\right]$ by using three different ways:
(a) Columnwise multiplication
(b) Rowwise multiplication and
(c) Column-row multiplication

Matrix Algebra

Block diagonal matrices

Def 0.8. A matrix is said to be block diagonal if it is of the form

$$
\mathbf{A}=\left[\begin{array}{ll}
A_{11} & \\
& A_{22}
\end{array}\right]
$$

Example 0.14.

$$
\left[\begin{array}{lll|ll}
1 & 2 & 3 & & \\
4 & 5 & 6 & & \\
7 & 8 & 9 & & \\
\hline & & 1 & 1 \\
& & & 2 & 2
\end{array}\right]
$$

Matrix Algebra

Theorem 0.14. Let A, B be two block diagonal matrices with conformable partitions:

$$
\mathbf{A}=\left[\begin{array}{ll}
A_{11} & \\
& A_{22}
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{ll}
B_{11} & \\
& B_{22}
\end{array}\right]
$$

Then we have

$$
\mathbf{A B}=\left[\begin{array}{ll}
A_{11} B_{11} & \\
& A_{22} B_{22}
\end{array}\right]
$$

Proof. By direct verification.

Remark. This formula also generalizes to three or more blocks.

Matrix Algebra

The previous result immediately implies the following.
Theorem 0.15. For a block diagonal matrix

$$
\mathbf{A}=\left[\begin{array}{ll}
A_{11} & \\
& A_{22}
\end{array}\right],
$$

if the two blocks are both square and invertible, then \mathbf{A} is also invertible. Moreover,

$$
\mathbf{A}^{-1}=\left[\begin{array}{ll}
A_{11}^{-1} & \\
& A_{22}^{-1}
\end{array}\right]
$$

Proof. By direct verification.

Matrix Algebra

Example 0.15. Find the inverse of

$$
\left[\begin{array}{ll|l}
1 & 2 & \\
1 & 3 & \\
\hline & & 4
\end{array}\right]
$$

Matrix Algebra

Block upper triangular matrices

Def 0.9. A matrix is said to be block upper triangular if it is of the form

$$
\mathbf{A}=\left[\begin{array}{ll}
A_{11} & A_{12} \\
& A_{22}
\end{array}\right]
$$

Example 0.16.

$$
\left[\begin{array}{lll|ll}
1 & 2 & 3 & 1 & 0 \\
4 & 5 & 6 & 0 & 1 \\
7 & 8 & 9 & 3 & 3 \\
\hline & & & 1 & 1 \\
& & & 2 & 2
\end{array}\right]
$$

Matrix Algebra

Theorem 0.16. For a block upper triangular matrix

$$
\mathbf{A}=\left[\begin{array}{ll}
A_{11} & A_{12} \\
& A_{22}
\end{array}\right]
$$

if the two main blocks are both square and invertible, then \mathbf{A} is also invertible, and

$$
\mathbf{A}^{-1}=\left[\begin{array}{cc}
A_{11}^{-1} & -A_{11}^{-1} A_{12} A_{22}^{-1} \\
& A_{22}^{-1}
\end{array}\right]
$$

Proof. By direct verification.

Matrix Algebra

Example 0.17. Find the inverse of

$$
\left[\begin{array}{ll|l}
1 & 2 & 1 \\
1 & 3 & 1 \\
\hline & & 4
\end{array}\right]
$$

Matrix Algebra

LU decomposition

In this part, we will derive a factorization scheme to express a given matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ as a product of two matrices of special forms

$$
\mathbf{A}=\mathbf{L} \cdot \mathbf{U}=\left[\begin{array}{cccc}
1 & & & \\
* & 1 & & \\
\vdots & \vdots & \ddots & \\
* & * & * & 1
\end{array}\right]\left[\begin{array}{lllll}
* & * & * & * & * \\
& * & * & * & * \\
& & & * & * \\
& & & & *
\end{array}\right]
$$

where $\mathbf{L} \in \mathbb{R}^{m \times m}$ is square, lower-triangular with 1 's on the diagonal (called unit lower triangular), and $\mathbf{U} \in \mathbb{R}^{m \times n}$ is the REF of \mathbf{A} (which is upper triangular).

Such a factorization is very useful for solving linear systems $\mathbf{A x}=\mathbf{b}$.

Matrix Algebra

For example, the following is an LU decomposition (verify this):

$$
\underbrace{\left[\begin{array}{ccc}
3 & -7 & -2 \\
-3 & 5 & 1 \\
6 & -4 & 0
\end{array}\right]}_{\mathbf{A}}=\underbrace{\left[\begin{array}{ccc}
1 & & \\
-1 & 1 & \\
2 & -5 & 1
\end{array}\right]}_{\mathbf{L}} \cdot \underbrace{\left[\begin{array}{ccc}
3 & -7 & -2 \\
& -2 & -1 \\
& & -1
\end{array}\right]}_{\mathbf{U}}
$$

To use it to solve the system of linear equations

$$
\mathbf{A} \mathbf{x}=\mathbf{b}, \quad \text { where } \quad \mathbf{b}=\left[\begin{array}{lll}
-7 & 5 & 2
\end{array}\right]^{T}
$$

we first rewrite the equation as

$$
\mathbf{A x}=(\mathbf{L U}) \mathbf{x}=\mathbf{L} \underbrace{(\mathbf{U x})}_{\mathbf{y}}=\mathbf{b}
$$

Matrix Algebra

and then solve two simper systems in the order

$$
\mathbf{L y}=\mathbf{b} \quad \xrightarrow{\mathrm{y}} \quad \mathrm{Ux}=\mathrm{y}
$$

That is, from the first equation, we obtain that $\mathbf{y}=\left[\begin{array}{lll}-7 & -2 & 6\end{array}\right]^{T}$ and then use it to solve the second equation for $\mathbf{x}=\left[\begin{array}{lll}3 & 4 & -6\end{array}\right]^{T}$ (work done in class).

Verify: $\left[\begin{array}{ccc}3 & -7 & -2 \\ -3 & 5 & 1 \\ 6 & -4 & 0\end{array}\right]\left[\begin{array}{c}3 \\ 4 \\ -6\end{array}\right]=\left[\begin{array}{c}-7 \\ 5 \\ 2\end{array}\right]$.
However, how to find such a decomposition in the first place will require the introduction of the so-called elementary matrices.

Matrix Algebra

Elementary matrices

Elementary matrices are (square) matrices that can be obtained from the identity matrix through a single elementary row operation.

Matrix Algebra

Performing an elementary row operation on a given matrix can now is equivalent to matrix multiplication (the elementary matrix left multiplies the given matrix).

- $\mathbf{M}_{i}(r)$ - Multiply row i by a nonzero scalar r

$$
\begin{aligned}
\mathbf{M}_{3}(r) \mathbf{A} & =\left[\begin{array}{lll}
1 & & \\
& 1 & \\
& & r
\end{array}\right]\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34}
\end{array}\right] \\
& =\left[\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
r a_{31} & r a_{32} & r a_{33} & r a_{34}
\end{array}\right]
\end{aligned}
$$

Matrix Algebra

- $\mathbf{R}_{i \leftarrow j}(k)$ - Add a scalar multiple (k) of one row (j) to another row (i) to replace that row (i):
- Downward replacement

$$
\begin{aligned}
\mathbf{R}_{3 \leftarrow 1}(k) \mathbf{A} & =\left[\begin{array}{lll}
1 & & \\
& 1 & \\
k & & 1
\end{array}\right]\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34}
\end{array}\right] \\
& =\left[\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
k a_{11}+a_{31} & k a_{12}+a_{32} & k a_{13}+a_{33} & k a_{14}+a_{34}
\end{array}\right]
\end{aligned}
$$

Matrix Algebra

- Upward replacement

$$
\begin{aligned}
\mathbf{R}_{1 \leftarrow 3}(k) \mathbf{A} & =\left[\begin{array}{ccc}
1 & & k \\
& 1 & \\
& & 1
\end{array}\right]\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34}
\end{array}\right] \\
& =\left[\begin{array}{cccc}
a_{11}+k a_{31} & a_{12}+k a_{32} & a_{13}+k a_{33} & a_{14}+k a_{34} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34}
\end{array}\right]
\end{aligned}
$$

Matrix Algebra

- Interchange two rows

$$
\begin{aligned}
& \mathbf{P}_{12} \mathbf{A}=\left[\begin{array}{lll}
& 1 & \\
1 & & \\
& & 1
\end{array}\right]\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34}
\end{array}\right]=\left[\begin{array}{llll}
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{31} & a_{32} & a_{33} & a_{34}
\end{array}\right] \\
& \mathbf{P}_{13} \mathbf{A}=\left[\begin{array}{lll}
& 1 & 1 \\
1 &
\end{array}\right]\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34}
\end{array}\right]=\left[\begin{array}{llll}
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{11} & a_{12} & a_{13} & a_{14}
\end{array}\right] \\
& \mathbf{P}_{23} \mathbf{A}=\left[\begin{array}{lll}
1 & & \\
& 1 & 1
\end{array}\right]\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34}
\end{array}\right]=\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{21} & a_{22} & a_{23} & a_{24}
\end{array}\right]
\end{aligned}
$$

Matrix Algebra

An important fact

Elementary matrices are all invertible (because elementary row operations are all reversible)

$$
\begin{aligned}
\mathbf{M}_{i}(1 / r) \cdot \mathbf{M}_{i}(r) & =\mathbf{I} \\
\mathbf{R}_{i \leftarrow j}(-k) \cdot \mathbf{R}_{i \leftarrow j}(k) & =\mathbf{I} \\
\mathbf{P}_{i j} \cdot \mathbf{P}_{i j} & =\mathbf{I}
\end{aligned}
$$

and their inverses are the same kind of elementary matrices!

$$
\begin{aligned}
\mathbf{M}_{i}(r)^{-1} & =\mathbf{M}_{i}(1 / r) \\
\mathbf{R}_{i \leftarrow j}(k)^{-1} & =\mathbf{R}_{i \leftarrow j}(-k) \\
\mathbf{P}_{i j}^{-1} & =\mathbf{P}_{i j}
\end{aligned}
$$

Matrix Algebra

Application of elementary matrices in finding matrix inverse

Previously we presented a procedure for finding the inverse of a square, invertible matrix

$$
\left[\mathbf{A} \mid \mathbf{I}_{n}\right] \xrightarrow{\text { elementary row operations }}\left[\mathbf{I}_{n} \mid \mathbf{A}^{-1}\right]
$$

This is equivalent to using a sequence of elementary matrices $\mathbf{E}_{1}, \mathbf{E}_{2}, \ldots, \mathbf{E}_{\ell}$ to left multiply the augmented matrix:

$$
\mathbf{E}_{\ell} \cdots \mathbf{E}_{2} \cdot \mathbf{E}_{1} \cdot\left[\mathbf{A} \mid \mathbf{I}_{n}\right]=\left[\mathbf{I}_{n} \mid \mathbf{A}^{-1}\right]
$$

Through matrix block multiplication, we obtain

$$
\left[\mathbf{E}_{\ell} \cdots \mathbf{E}_{2} \mathbf{E}_{1} \mathbf{A} \mid \mathbf{E}_{\ell} \cdots \mathbf{E}_{2} \mathbf{E}_{1}\right]=\left[\mathbf{I}_{n} \mid \mathbf{A}^{-1}\right]
$$

This shows that

$$
\mathbf{A}^{-1}=\mathbf{E}_{\ell} \cdots \mathbf{E}_{2} \mathbf{E}_{1}
$$

Matrix Algebra

Application of elementary matrices in finding matrix REF

Similarly, give any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, one can perform a sequence of elementary row operations through corresponding elementary matrices $\mathbf{E}_{1}, \mathbf{E}_{2}, \ldots, \mathbf{E}_{\ell}$ to transform the given matrix into its REF

$$
\mathbf{E}_{\ell} \cdots \mathbf{E}_{2} \mathbf{E}_{1} \mathbf{A}=\mathbf{U}
$$

This yields that

$$
\mathbf{A}=\left(\mathbf{E}_{\ell} \cdots \mathbf{E}_{2} \mathbf{E}_{1}\right)^{-1} \mathbf{U}=\underbrace{\mathbf{E}_{1}^{-1} \mathbf{E}_{2}^{-1} \cdots \mathbf{E}_{\ell}^{-1}}_{\text {elementary matrices }} \mathbf{U}
$$

Note that \mathbf{U} (as REF) must be upper triangular.

Matrix Algebra

Existence of the LU decomposition

In some cases, one only needs to use a sequence of downward replacement operations (i.e., $\mathbf{R}_{i \leftarrow j}(k)$ for $j<i$) to transform a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ into its REF $\mathbf{U} \in \mathbb{R}^{m \times n}$. That is,

$$
\underbrace{\mathbf{E}_{\ell} \cdots \mathbf{E}_{2} \mathbf{E}_{1}}_{\text {ownward replacements }} \quad \mathbf{A}=\mathbf{U}
$$

Then

$$
\mathbf{A}=\underbrace{\mathbf{E}_{1}^{-1} \mathbf{E}_{2}^{-1} \cdots \mathbf{E}_{\ell}^{-1}}_{\text {also downward replacements }} \mathbf{U}=\underbrace{\mathbf{L}}_{\text {lower triangular }} \underbrace{\mathbf{U}}_{\text {REF }}
$$

Remark. In other cases, one can always rearrange the rows of \mathbf{A} in a way such that an LU decomposition exists.

Matrix Algebra

Finding the L matrix

When a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ has an LU decomposition, we can find it as follows:

$$
\mathbf{E}_{\ell} \cdots \mathbf{E}_{2} \mathbf{E}_{1} \mathbf{A}=\underbrace{\mathbf{U}}_{\mathrm{REF}}
$$

$$
\mathbf{E}_{\ell} \cdots \mathbf{E}_{2} \mathbf{E}_{1} \mathbf{L}=\underbrace{\mathbf{I}}_{\text {identity matrix }} \longleftarrow \mathbf{L}=\mathbf{E}_{1}^{-1} \mathbf{E}_{2}^{-1} \cdots \mathbf{E}_{\ell}^{-1}
$$

That is, we will try to design a matrix \mathbf{L} (lower triangular with 1's on the diagonal) so that the same row operations performed on \mathbf{A} toward its REF will transform \mathbf{L} into the identity matrix.

Matrix Algebra

Example 0.18. Find the LU decomposition of

$$
\mathbf{A}=\left[\begin{array}{ccc}
3 & -7 & -2 \\
-3 & 5 & 1 \\
6 & -4 & 0
\end{array}\right]
$$

Matrix Algebra

Example 0.19. Find the LU decomposition of

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & -2 & -4 & -3 \\
2 & -7 & -7 & -6 \\
-1 & 2 & 6 & 4 \\
-4 & -1 & 9 & 8
\end{array}\right]
$$

