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Matrix Algebra

Introduction
Matrices are two dimensional arrays of real numbers that are arranged along
rows (first dimension) and columns (second dimension):

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

 = [a1 a2 . . . an].

We denote matrices that have m rows and n columns by A ∈ Rm×n, and say
that the size of the matrix is m× n.

Vectors can be regarded as matrices with size n× 1 (column) or 1× n (row).

Sometimes, we also use notation like A = (aij)1≤i≤m,1≤j≤n, or even A = (aij).
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Matrix Algebra

Special matrices

We say that A is a square matrix if m = n (i.e., equally many rows and columns).

Diagonal matrices are square matrices whose only nonzero entries are in the
main diagonal of the matrix

A =

a11
. . .

ann

 ←− empty spaces indicate zero

An identity matrix is a diagonal matrix with constant value 1 along the diagonal:

In = diag(1, . . . , 1) ∈ Rn×n.

Lastly, a zero matrix is a matrix with all entries being 0, and denoted as O.
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Matrix Algebra

Matrix operations

• Scalar multiple of a matrix

• Matrix-vector product

• Adding two matrices of the same size (also letting them subtract)

• Multiplying two matrices of “matching” sizes

• Transpose of a matrix

• Inverse of a square matrix
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Matrix Algebra

Def 0.1 (Scalar multiple). Let r be a real number and A ∈ Rm×n. Then
B = rA is defined as a matrix of the same size with entries bij = raij .

In matrix form, this is

rA =


ra11 ra12 · · · ra1n

ra21 ra22 · · · ra2n

...
...

. . .
...

ram1 ram2 · · · ramn

 ∈ Rm×n
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Matrix Algebra

Def 0.2 (Matrix sum/difference). Let A, B ∈ Rm×n. Then the matrix sum
C = A + B is defined as a matrix of the same size with the following entries

C = (cij), cij = aij + bij

In matrix form, the above definition becomes

A + B =


a11 + b11 a12 + b12 · · · a1n + b1n

a21 + b21 a22 + b22 · · · a2n + b2n

...
...

. . .
...

am1 + bm1 am2 + bm2 · · · amn + bmn

 ∈ Rm×n

Remark. The difference of two matrices, A−B, is defined similarly (with every
+ sign being changed to - sign).
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Matrix Algebra

Example 0.1. Let

A =
[

1 2 3
4 5 6

]
, B =

[
−1 −1 −1
1 1 1

]
.

Find A + B, A−B, 3B and A + 3B.
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Matrix Algebra

The scalar multiple of a matrix and matrix sum satisfy the following commutative,
associative and distributive laws.

Theorem 0.1. Let A, B, C be three matrices of the same size and r, s be scalars.
Then

• A + B = B + A

• A + O = O + A = A (O is the zero matrix of same size)

• (A + B) + C = A + (B + C)

• r(sA) = (rs)A

• r(A + B) = rA + rB

• (r + s)A = rA + sA
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Matrix Algebra

Matrix-vector product

Def 0.3. Let A ∈ Rm×n and x ∈ Rn. Their product is defined as a vector
y ∈ Rm of the following form

y = Ax =



a11 a12 · · · a1n

...
...

. . .
...

ai1 ai2 · · · ain

...
...

. . .
...

am1 am2 · · · amn




x1
x2
...

xn

 =



a11x1 + a12x2 + · · ·+ a1nxn

...
ai1x1 + ai2x2 + · · ·+ ainxn

...
am1x1 + am2x2 + · · ·+ amnxn


In compact notation,

y = (yi) ∈ Rm, with yi =
n∑

j=1
aijxj , 1 ≤ i ≤ m
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Matrix Algebra

Alternatively (as we have already seen previously), we can multiply a matrix and
a vector in a columnwise fashion.
Theorem 0.2. Let A = [a1 . . . an] ∈ Rm×n and x ∈ Rn. Then

Ax = [a1 . . . an]

x1
...

xn

 = x1 · a1 + · · ·+ xn · an.

Proof. By definition,

Ax =


a11x1 + · · ·+ a1nxn

a21x1 + · · ·+ a2nxn

...
am1x1 + · · ·+ amnxn

 =


a11x1
a21x1

...
am1x1

+· · ·+


a1nxn

a2nxn

...
amnxn

 = x1a1+· · ·+xnan.
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Matrix Algebra

Two properties about matrix-vector multiplication

Theorem 0.3. Let A ∈ Rm×n and x, y ∈ Rn and r ∈ R. Then

• A(x + y) = Ax + Ay

• A(rx) = r(Ax)

Remark. They were needed for showing that transformations of the form f(x) =
Ax must be linear.
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Matrix Algebra

Proof. By the columnwise way of multiplying a matrix and a vector,

A(x + y) = [a1 . . . an]

x1 + y1
...

xn + yn


= (x1 + y1)a1 + · · ·+ (xn + yn)an

= (x1a1 + · · ·+ xnan) + (y1a1 + · · ·+ ynan)
= Ax + Ay.

Similarly,

A(rx) = [a1 . . . an]

rx1
...

rxn

 = (rx1)a1 + · · ·+ (rxn)an = r (x1a1 + · · ·+ xnan)︸ ︷︷ ︸
Ax

.
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Matrix Algebra

A third property about matrix-vector multiplication

Theorem 0.4. Let A, B ∈ Rm×n and x ∈ Rn. Then

(A + B)x = Ax + Bx.

Proof. Let A = [a1, . . . , an] and B = [b1, . . . , bn]. Then

A + B = [a1 + b1, . . . , an + bn].

It follows that

(A + B)x = x1(a1 + b1) + · · ·+ xn(an + bn)
= (x1a1 + · · ·+ xnan) + (x1b1 + · · ·+ xnbn)
= Ax + Bx.
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Matrix Algebra

Matrix-matrix multiplications

Def 0.4. Let A ∈ Rm×n and B ∈
Rn×p. Their product is defined as a
matrix C ∈ Rm×p with entries

cij = [ai1 . . . ain]

b1j

...
bnj


= ai1b1j + · · ·+ ainbnj

=
n∑

k=1
aikbkj .

=C A B
b

i

j

i

j

m× p m× n n× p

Remark. The matrix-vector product is
just the special case of p = 1.
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Matrix Algebra

Example 0.2. Let

A =
[

1 2 3
4 5 6

]
, B =

1 1
1 −1
0 0

 .

Find AB and BA. Are they the same?

Example 0.3. Let

A =
[

2 2
3 3

]
, B =

[
1 −1 2
−1 1 −2

]
.

Find AB. Is BA defined?
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Matrix Algebra

(Taken from https://mathwithbaddrawings.com/2018/03/07/matrix-jokes/)
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Matrix Algebra

WARNINGS

• There is no commutative law between matrices: AB 6= BA. In fact, not
both of them need to be defined at the same time.

• If AB = O, then we cannot conclude that A = O or B = O.

• There is no cancellation law, i.e., AB = AC does not necessarily imply
B = C.

Can you give an example for the last statement?
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A small, useful result on matrix-matrix-vector product

Theorem 0.5. Let A ∈ Rm×n, B ∈ Rn×p and x ∈ Rp. Then

(AB)x = A(Bx).

Proof. We compare the entries of both sides. For any 1 ≤ i ≤ m,

((AB)x)i =
∑

j

(AB)ijxj =
∑

j

∑
k

aikbkjxj

=
∑

k

aik

∑
j

bkjxj =
∑

k

aik(Bx)k = (A(Bx))i .

Remark. The right hand side is much more efficient to compute, especially when
having large matrices A, B.
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Matrix Algebra

Matrix computing in Matlab (optional)

See the following lecture:
https://www.sjsu.edu/faculty/guangliang.chen/Math250/lec2matrixcomp.pdf

Matlab scripts available on the Math 250 course page:
https://www.sjsu.edu/faculty/guangliang.chen/Math250.html
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Matrix Algebra

The columnwise matrix multiplication (very important)

Theorem 0.6. Let A ∈ Rm×n and B ∈ Rn×p. Then

C = AB = A[b1 . . . bp] = [Ab1 . . . Abp]

This shows that for each j = 1, . . . , p, the jth column of AB is equal to A times
the jth column of B.

=C A B

b
b
b
b
b
b
b
b
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Matrix Algebra

Properties of matrix multiplication

Theorem 0.7. Let A ∈ Rm×n. Then

• A(BC) = (AB)C (for B ∈ Rn×p, C ∈ Rp×q)

• A(B + C) = AB + AC (for B, C ∈ Rn×p)

• (B + C)A = BA + CA (for B, C ∈ R`×m)

• r(AB) = (rA)B = A(rB) (for B ∈ Rn×p)

• ImA = AIn = A.

Proof. Enough to compare columns.
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Matrix Algebra

Example 0.4. Compute the following product

[
1
−1

] [
1 1 1

] 1
2
3
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Matrix Algebra

Matrix powers

Def 0.5. Let A ∈ Rn×n be a square matrix and k a positive integer. Then the
kth power of A is defined as

Ak = A ·A · · ·A︸ ︷︷ ︸
k copies

.

Example 0.5. Let

A =
[

1 1
1 1

]
, B =

0 1 0
0 0 1
0 0 0

 .

Find A3 and B3. What are Ak and Bk for k > 3?
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Transpose of a matrix

Def 0.6. Let A ∈ Rm×n be any matrix. Its transpose, denoted as AT is defined
to the n×m matrix B with entries bij = aji.

Remark. During the transpose operation, rows (of A) become columns (of B),
and columns become rows.

transpose

Prof. Guangliang Chen | Mathematics & Statistics, San José State University 25/75



Matrix Algebra

Example 0.6. Find the transpose of the following matrices:

A =
[

1 2 3
4 5 6

]
, B =

[
2 4
4 1

]
, C =

1
2
0
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Matrix Algebra

Properties of the matrix transpose

Theorem 0.8. Let A, B be matrices with appropriate sizes for each statement.

• (AT )T = A

• (A + B)T = AT + BT

• For any scalar r, (rA)T = rAT

• (AB)T = BT AT (not the other product AT BT , which may not even be
defined)

Proof. The first three are obvious. To prove the last one, check the ij-entry of
each side. We show the work in class.
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Matrix inverse

Just like nonzero real numbers (a ∈ R) have their reciprocals ( 1
a ), certain (not

all) square matrices have matrix inverses.

Def 0.7. A square matrix A ∈ Rn is said to be invertible if there exists another
matrix of the same size B such that

AB = BA = In.

In this case, B is called the inverse of A and we write B = A−1 (A is also called
the inverse of B).
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Matrix Algebra

Example 0.7. Verify that A =
[

2 5
−3 −7

]
and B =

[
−7 −5
3 2

]
are inverses

of each other and then use this fact to solve the matrix equation Ax = b for

b =
[

1
2

]
.
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Matrix Algebra

From the previous example, we can formulate the following theorem.
Theorem 0.9. Consider a matrix equation Ax = b where A ∈ Rn×n is a square
matrix. If A is invertible, then for any vector b ∈ Rn, the system has a unique
solution x = A−1b.

Proof. Since A is invertible, its inverse A−1 exists and we can use it to multiply
both sides of the equation

A−1(Ax) = A−1b

By the associative law,
(A−1A)︸ ︷︷ ︸

I

x = A−1b

which yields that
x = A−1b.
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Illustration of A−1 as a transformation

b
b
b

x
A

A−1
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Matrix Algebra

Properties of matrix inverse

Theorem 0.10. Let A, B be two invertible matrices of the same size. Then

• (A−1)−1 = A

• (AT )−1 = (A−1)T

• For any nonzero scalar r, (rA)−1 = 1
r A−1

• (AB)−1 = B−1A−1 (not the other product A−1B−1)

Proof. We verify them in class.
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The Invertible Matrix Theorem (part 1)

“For a square matrix, lots of things are the same.”

Theorem 0.11. Let A ∈ Rn×n be a square matrix. Then the following statements
are all equivalent:

(1) A is invertible.

(2) There is an n× n matrix C such that CA = I.

(3) The equation Ax = 0 only has the trivial solution.

(4) A has n pivot positions.

(5) A is row equivalent to In.
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Matrix Algebra

The Invertible Matrix Theorem (part 2)

Theorem 0.12. Let A ∈ Rn×n be a square matrix. Then the following statements
are all equivalent:

(1) A is invertible.

(6) There is an n× n matrix D such that AD = I.

(7) The equation Ax = b (for any b) is always consistent.

(8) The columns of A span Rn.

(9) The linear transformation f(x) = Ax (from Rn to Rn) is onto.
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Matrix Algebra

The Invertible Matrix Theorem (part 3)

Theorem 0.13. Let A ∈ Rn×n be a square matrix. Then the following statements
are all equivalent:

(1) A is invertible.

(10) AT is invertible.

(3) The equation Ax = 0 only has the trivial solution.

(11) The columns of A form a linearly independent set.

(12) The linear transformation f(x) = Ax is one-to-one.
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Matrix Algebra

Summary

Let A ∈ Rn×n be a square matrix.

If A is invertible, then all of the following statements are true.

Conversely, if any of the following statement is true, then A must be invertible.

(2) There is an n× n matrix C such that CA = I.

(6) There is an n× n matrix D such that AD = I.

Prof. Guangliang Chen | Mathematics & Statistics, San José State University 36/75



Matrix Algebra

(3) The equation Ax = 0 only has the trivial solution.

(7) The equation Ax = b (for any b) has at least one solution.

(8) The columns of A span Rn.

(11) The columns of A form a linearly independent set.

(9) The linear transformation f(x) = Ax (from Rn to Rn) is onto.

(12) The linear transformation f(x) = Ax is one-to-one.
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Matrix Algebra

Finding matrix inverse

First consider 2× 2 matrices

A =
[

a b

c d

]
.

If ad − bc 6= 0, then A is invertible and its inverse is given by the following
empirical rule

A−1 = 1
ad− bc

·

[
d −b

−c a

]
.

Example 0.8. Use the above rule to find the inverse of

A =
[

2 5
−3 −7

]
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Matrix Algebra

In general, given an invertible matrix A ∈ Rn×n (for any n), finding its inverse is
equivalent to solving the matrix equation

AX = In, or equivalently A[x1, . . . , xn] = [e1, . . . , en]

This leads to n separate systems of linear equations:

Ax1 = e1 (i.e. [A | e1]), . . . , Axn = en (i.e. [A | en]).

which may be solved simultaneously:

[A | [e1, . . . , en]] = [A | In] −→ [In | A−1].
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Matrix Algebra

Example 0.9. Find the inverse of the matrix

A =

 1 0 −2
3 1 −2
−5 −1 9

 ,

if its exists.
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Partitioned matrices
A partitioned matrix, also called a block matrix, is a matrix whose elements
have been divided into blocks (called submatrices).

For example,

A =



1 2 3 0 0
4 5 6 0 0
0 0 0 7 8
1 1 1 0 0
2 2 2 0 0
3 3 3 0 0


=

 A11 A12
A21 A22
A31 A32



Partitioned matrices are very useful because they reduce large matrices into a
collection of smaller matrices (which are easier to deal with).
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Matrix Algebra

Addition and scalar multiplication

If two matrices A, B have the same size and have been partitioned in exactly the
same way, then we can just add the corresponding blocks to get their sum (with
the same partition):

A + B =

 A11 A12
A21 A22
A31 A32

 +

 B11 B12
B21 B22
B31 B32

 =

 A11 + B11 A12 + B12
A21 + B21 A22 + B22
A31 + B31 A32 + B32


The scalar multiple of a partitioned matrix is

rA =

 rA11 rA12
rA21 rA22
rA31 rA32
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Matrix Algebra

Multiplication of partitioned matrices: simple cases

Let A ∈ Rm×n, B ∈ Rn×p be two matrices that may be multiplied together.

When the columns of A and rows of
B are divided in a conformable way, we
can carry out block multiplication:

AB = A11B11 + A12B21 + A13B31

=A11 A12 A13

B11

B21

B31

Remark.

• All terms AB, A11B11, A12B21, A13B31 are m× p matrices.

• Such partitions do not show up in the product matrix.

Prof. Guangliang Chen | Mathematics & Statistics, San José State University 43/75



Matrix Algebra

Example 0.10. Let

A =

 1 2 3 0 0
4 5 6 0 0
7 8 9 0 0

 , B =


1 −1
1 −1
1 −1
1 −1
1 −1


Find AB using two ways: (a) direct multiplication (b) block multiplication.

Answer.

AB =

 6 −6
15 −15
24 −24


︸ ︷︷ ︸

3×2

=

 1 2 3
4 5 6
7 8 9

 ·
 1 −1

1 −1
1 −1


︸ ︷︷ ︸

3×2

+

 0 0
0 0
0 0

 · [ 1 −1
1 −1

]
︸ ︷︷ ︸

3×2
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A joke
How does a mathematician change three light bulbs at the same time?

He gives them to three engineers and ask them to do it in parallel.
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Matrix Algebra

Multiplication of partitioned matrices: more general cases

Let A ∈ Rm×n, B ∈ Rn×p be two
matrices that are partitioned in a con-
formable way (i.e., column partition of
A matches row partition of B).

Regardless of the row partition of A
and column partition of B, we can carry
out block multiplications by treating the
blocks as numbers.

=

Remark. Row partition of A + column
partition of B = partition of AB (such
two partitions do not need to match).
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In terms of math symbols, that is

AB =

 A11 A12 A13
A21 A22 A23
A31 A32 A33

 ·
 B11 B12

B21 B22
B31 B32


=

 A11B11 + A12B21 + A13B31 A11B12 + A12B22 + A13B32
A21B11 + A22B21 + A23B31 A21B12 + A22B22 + A23B32
A31B11 + A32B21 + A33B31 A31B12 + A32B22 + A33B32



In the above, we can think of A as a 3× 3 partitioned matrix and B as a 3× 2
partitioned matrix, so that we must obtain a 3× 2 partitioned matrix.
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Matrix Algebra

Example 0.11. Verify that

 1 2 3 0 0
4 5 6 0 0
7 8 9 0 0

 ·


1 −1
1 −1
1 −1
1 −1
1 −1

 =

 6 −6
15 −15
24 −24
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Matrix Algebra

Example 0.12. Show that

[
U1 U2

] [
Σ O

O O

] [
V1
V2

]
= U1 Σ V1

(assuming all submatrices are compatible with each other)
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Matrix multiplication again

The columnwise multiplication of two compatible matrices A ∈ Rm×n, B ∈ Rn×p

actually has already used simple partitions of matrices:

AB = A[b1 . . . bp] = [Ab1 . . . Abp]

=A B
b b bb b b
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Matrix Algebra

We present two new ways of performing matrix multiplication:

• Rowwise multiplication

AB =

 A1
...

Am

 B =

 A1B
...

AmB


where A1, . . . , Am are the rows of A.

=BA b
b
b

b
b
b
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Matrix Algebra

• Column-row expansion

AB = [a1 . . . an]

B1
...

Bn

 = a1B1 + · · ·+ anBn

=C BA
b b b b

b

b

= + + · · ·+
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Matrix Algebra

Example 0.13. Find the product of A =
[

1 2 3
4 5 6

]
and B =

1 0
1 0
1 0

 by using

three different ways:

(a) Columnwise multiplication

(b) Rowwise multiplication and

(c) Column-row multiplication
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Block diagonal matrices

Def 0.8. A matrix is said to be block diagonal if it is of the form

A =
[

A11
A22

]

Example 0.14. 
1 2 3
4 5 6
7 8 9

1 1
2 2
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Matrix Algebra

Theorem 0.14. Let A, B be two block diagonal matrices with conformable
partitions:

A =
[

A11
A22

]
, B =

[
B11

B22

]
Then we have

AB =
[

A11B11
A22B22

]
.

Proof. By direct verification.

Remark. This formula also generalizes to three or more blocks.

Prof. Guangliang Chen | Mathematics & Statistics, San José State University 55/75



Matrix Algebra

The previous result immediately implies the following.

Theorem 0.15. For a block diagonal matrix

A =
[

A11
A22

]
,

if the two blocks are both square and invertible, then A is also invertible. Moreover,

A−1 =
[

A−1
11

A−1
22

]

Proof. By direct verification.
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Matrix Algebra

Example 0.15. Find the inverse of 1 2
1 3

4
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Block upper triangular matrices

Def 0.9. A matrix is said to be block upper triangular if it is of the form

A =
[

A11 A12
A22

]

Example 0.16. 
1 2 3 1 0
4 5 6 0 1
7 8 9 3 3

1 1
2 2



Prof. Guangliang Chen | Mathematics & Statistics, San José State University 58/75
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Theorem 0.16. For a block upper triangular matrix

A =
[

A11 A12
A22

]
,

if the two main blocks are both square and invertible, then A is also invertible,
and

A−1 =
[

A−1
11 −A−1

11 A12A−1
22

A−1
22

]

Proof. By direct verification.
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Matrix Algebra

Example 0.17. Find the inverse of 1 2 1
1 3 1

4
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LU decomposition
In this part, we will derive a factorization scheme to express a given matrix
A ∈ Rm×n as a product of two matrices of special forms

A = L ·U =


1
∗ 1
...

...
. . .

∗ ∗ ∗ 1



∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗


where L ∈ Rm×m is square, lower-triangular with 1’s on the diagonal (called unit
lower triangular), and U ∈ Rm×n is the REF of A (which is upper triangular).

Such a factorization is very useful for solving linear systems Ax = b.
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Matrix Algebra

For example, the following is an LU decomposition (verify this): 3 −7 −2
−3 5 1
6 −4 0


︸ ︷︷ ︸

A

=

 1
−1 1
2 −5 1


︸ ︷︷ ︸

L

·

3 −7 −2
−2 −1

−1


︸ ︷︷ ︸

U

To use it to solve the system of linear equations

Ax = b, where b =
[
−7 5 2

]T

we first rewrite the equation as

Ax = (LU)x = L (Ux)︸ ︷︷ ︸
y

= b
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Matrix Algebra

and then solve two simper systems in the order

Ly = b y−→ Ux = y

That is, from the first equation, we obtain that y =
[
−7 −2 6

]T

and then

use it to solve the second equation for x =
[
3 4 −6

]T

(work done in class).

Verify:

 3 −7 −2
−3 5 1
6 −4 0


 3

4
−6

 =

−7
5
2

.
However, how to find such a decomposition in the first place will require the
introduction of the so-called elementary matrices.
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Matrix Algebra

Elementary matrices

Elementary matrices are (square) matrices that can be obtained from the identity
matrix through a single elementary row operation.

1
1

r
1

1
1

1
1

1

1

1
1

1
1

1
k

0

0i

i

i

j

i

j

Mi(r) Ri←j(k) Pij

j
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Matrix Algebra

Performing an elementary row operation on a given matrix can now is equivalent
to matrix multiplication (the elementary matrix left multiplies the given matrix).

• Mi(r) - Multiply row i by a nonzero scalar r

M3(r)A =

1
1

r


a11 a12 a13 a14

a21 a22 a23 a24
a31 a32 a33 a34


=

 a11 a12 a13 a14
a21 a22 a23 a24
ra31 ra32 ra33 ra34
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• Ri←j(k) - Add a scalar multiple (k) of one row (j) to another row (i) to
replace that row (i):

– Downward replacement

R3←1(k)A =

1
1

k 1


a11 a12 a13 a14

a21 a22 a23 a24
a31 a32 a33 a34


=

 a11 a12 a13 a14
a21 a22 a23 a24

ka11 + a31 ka12 + a32 ka13 + a33 ka14 + a34



Prof. Guangliang Chen | Mathematics & Statistics, San José State University 66/75
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– Upward replacement

R1←3(k)A =

1 k

1
1


a11 a12 a13 a14

a21 a22 a23 a24
a31 a32 a33 a34


=

a11 + ka31 a12 + ka32 a13 + ka33 a14 + ka34
a21 a22 a23 a24
a31 a32 a33 a34
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• Interchange two rows

P12A =

 1
1

1


a11 a12 a13 a14

a21 a22 a23 a24
a31 a32 a33 a34

 =

a21 a22 a23 a24
a11 a12 a13 a14
a31 a32 a33 a34



P13A =

 1
1

1


a11 a12 a13 a14

a21 a22 a23 a24
a31 a32 a33 a34

 =

a31 a32 a33 a34
a21 a22 a23 a24
a11 a12 a13 a14



P23A =

1
1

1


a11 a12 a13 a14

a21 a22 a23 a24
a31 a32 a33 a34

 =

a11 a12 a13 a14
a31 a32 a33 a34
a21 a22 a23 a24
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An important fact

Elementary matrices are all invertible (because elementary row operations are all
reversible)

Mi(1/r) ·Mi(r) = I
Ri←j(−k) ·Ri←j(k) = I

Pij ·Pij = I

and their inverses are the same kind of elementary matrices!

Mi(r)−1 = Mi(1/r)
Ri←j(k)−1 = Ri←j(−k)

P−1
ij = Pij
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Matrix Algebra

Application of elementary matrices in finding matrix inverse

Previously we presented a procedure for finding the inverse of a square, invertible
matrix

[A | In] elementary row operations−−−−−−−−−−−−−−−−→ [In | A−1]

This is equivalent to using a sequence of elementary matrices E1, E2, . . . , E` to
left multiply the augmented matrix:

E` · · ·E2 ·E1 · [A | In] = [In | A−1]

Through matrix block multiplication, we obtain

[E` · · ·E2E1A | E` · · ·E2E1] = [In | A−1]

This shows that
A−1 = E` · · ·E2E1
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Application of elementary matrices in finding matrix REF

Similarly, give any matrix A ∈ Rm×n, one can perform a sequence of elementary
row operations through corresponding elementary matrices E1, E2, . . . , E` to
transform the given matrix into its REF

E` · · ·E2E1A = U

This yields that

A = (E` · · ·E2E1)−1U = E−1
1 E−1

2 · · ·E
−1
`︸ ︷︷ ︸

elementary matrices

U

Note that U (as REF) must be upper triangular.
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Matrix Algebra

Existence of the LU decomposition

In some cases, one only needs to use a sequence of downward replacement
operations (i.e., Ri←j(k) for j < i) to transform a matrix A ∈ Rm×n into its
REF U ∈ Rm×n. That is,

E` · · ·E2E1︸ ︷︷ ︸
all downward replacements

A = U

Then
A = E−1

1 E−1
2 · · ·E

−1
`︸ ︷︷ ︸

also downward replacements

U = L︸︷︷︸
lower triangular

U︸︷︷︸
REF

Remark. In other cases, one can always rearrange the rows of A in a way such
that an LU decomposition exists.
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Finding the L matrix

When a matrix A ∈ Rm×n has an LU decomposition, we can find it as follows:

E` · · ·E2E1A = U︸︷︷︸
REF

E` · · ·E2E1L = I︸︷︷︸
identity matrix

←− L = E−1
1 E−1

2 · · ·E
−1
`

That is, we will try to design a matrix L (lower triangular with 1’s on the diagonal)
so that the same row operations performed on A toward its REF will transform
L into the identity matrix.
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Example 0.18. Find the LU decomposition of

A =

 3 −7 −2
−3 5 1
6 −4 0
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Example 0.19. Find the LU decomposition of

A =


1 −2 −4 −3
2 −7 −7 −6
−1 2 6 4
−4 −1 9 8
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