Worksheet 10: Dimension and rank

Example 0.66. Let $\mathbf{v}_{1}=[1,1,0]^{T}, \mathbf{v}_{2}=[1,0,1]^{T}$. Then $\mathcal{B}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a basis for $H=$ $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\} \subset \mathbb{R}^{3}$. It follows that the dimension of H is 2, i.e., $\operatorname{dim}(H)=2$.

Example 0.67. For the following matrix, $\operatorname{dim}(\operatorname{Col}(\mathbf{A}))=3$ (pivot columns), and $\operatorname{dim}(\operatorname{Nul}(\mathbf{A}))$ $=2$ (free variables).

$$
\mathbf{A}=\left[\begin{array}{ccccc}
0 & 3 & -6 & 6 & 4 \\
3 & -7 & 8 & -5 & 8 \\
3 & -9 & 12 & -9 & 6
\end{array}\right] \longrightarrow\left[\begin{array}{ccccc}
1 & 0 & -2 & 3 & 0 \\
0 & 1 & -2 & 2 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Example 0.68. For the matrix \mathbf{A} defined above, its rank is 3 . Thus, the maximal number of linearly independent columns is also 3 .

Example 0.69. Consider the above matrix again: Because its rank is 3, we must have

$$
\operatorname{dim}(\operatorname{Nul}(\mathbf{A}))=n-\operatorname{rank}(\mathbf{A})=5-3=2 .
$$

You may want to verify this by finding a basis for the null space:

Example 0.70. Let $\mathbf{A}=\left[\begin{array}{ll}1 & 1 \\ 1 & 0 \\ 0 & 1\end{array}\right]$. The column space is the span of $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right] \in \mathbb{R}^{3}$, while the row space is the span of $\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right] \in \mathbb{R}^{2}$.

Example 0.71. The following two matrices have the same row space, but not the same column space:

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2
\end{array}\right] \quad \longrightarrow \quad \mathbf{B}=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

The reason is that linear combinations of rows of \mathbf{B}, which are linear combinations of rows of \mathbf{A}, are always linear combinations of rows of \mathbf{A} (and vice versa).

Example 0.72. Find a basis for the row space of \mathbf{A} :

$$
\mathbf{A}=\left[\begin{array}{cccc}
0 & 3 & -6 & 6 \\
3 & -7 & 8 & -5 \\
3 & -9 & 12 & -9
\end{array}\right] \longrightarrow\left[\begin{array}{cccc}
1 & 0 & -2 & 3 \\
0 & 1 & -2 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Example 0.73 (p233). Find a basis for each of the row/column/null spaces of the following matrix

$$
\mathbf{A}=\left[\begin{array}{ccccc}
-2 & -5 & 8 & 0 & -17 \\
1 & 3 & -5 & 1 & 5 \\
3 & 11 & -19 & 7 & 1 \\
1 & 7 & -13 & 5 & -3
\end{array}\right] \quad \longrightarrow \quad \mathbf{B}=\left[\begin{array}{ccccc}
1 & 3 & -5 & 1 & 5 \\
0 & 1 & -2 & 2 & -7 \\
0 & 0 & 0 & -4 & 20 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

