Worksheet 11: Eigenvalues and eigenvectors

Example 0.74. Let

$$
\mathbf{A}=\left[\begin{array}{cc}
\frac{5}{2} & -1 \\
1 & 0
\end{array}\right], \quad \mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
2 \\
1
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

Compute $\mathbf{A} \mathbf{v}_{i}$ for $i=1,2,3$. Are they multiples of \mathbf{v}_{i} ?

Example 0.75. Let

$$
\mathbf{A}=\left[\begin{array}{cc}
1 & -2 \\
-1 & 2
\end{array}\right], \mathbf{v}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Determine if \mathbf{v} is an eigenvector of \mathbf{A}. If yes, find the corresponding eigenvalue.

Example 0.76. Determine if -4 is an eigenvalue of the matrix $\mathbf{A}=\left[\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right]$. If yes, find all eigenvectors associated to it.

Example 0.77. It is known that the following matrix

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 1 \\
0 & 1 & 2
\end{array}\right]
$$

has two eigenvalues, 1 and 3 . Find a basis for each of the two eigenspaces corresponding to them. What are the geometric multiplicities of the eigenvalues?

Example 0.78. The matrix

$$
\mathbf{A}=\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]
$$

is not invertible because 0 is an eigenvalue

$$
\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]=0 \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Example 0.79. For each of the following matrices \mathbf{A}, first find an expression in λ for $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})$:
(a) $\mathbf{A}=\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$
(b) $\mathbf{A}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2\end{array}\right]$
and then use it to find the eigenvalues of \mathbf{A} and corresponding algebraic multiplicities.

Example 0.80. Find the eigenvalues of

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & 1 \\
0 & -1 & 2
\end{array}\right]
$$

This is an example of a matrix that has complex eigenvalues.

Example 0.81. Determine the eigenvalues of the following matrix

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & & \\
& 2 & \\
& & 3
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{lll}
1 & & \\
4 & 2 & \\
5 & 6 & 3
\end{array}\right], \quad \mathbf{C}=\left[\begin{array}{lll}
1 & 4 & 5 \\
& 2 & 6 \\
& & 3
\end{array}\right]
$$

