Worksheet 12: Similar matrices and diagonalization

Example 0.82. Verify that

$$
\underbrace{\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]}_{\mathbf{B}}=\underbrace{\left[\begin{array}{ll}
3 & 1 \\
1 & 1
\end{array}\right]^{-1}}_{\mathbf{P}^{-1}} \underbrace{\left[\begin{array}{ll}
2 & -3 \\
1 & -2
\end{array}\right]}_{\mathbf{A}} \underbrace{\left[\begin{array}{ll}
3 & 1 \\
1 & 1
\end{array}\right]}_{\mathbf{P}}
$$

This shows that \mathbf{A}, \mathbf{B} are similar to each other.

Example 0.83. Let

$$
\mathbf{A}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]
$$

Show that they have the same characteristic polynomial and thus the same eigenvalues, but they are not similar.

Example 0.84. The matrix

$$
\mathbf{A}=\left(\begin{array}{ll}
0 & 1 \\
3 & 2
\end{array}\right)
$$

is diagonalizable because

$$
\underbrace{\left(\begin{array}{ll}
0 & 1 \\
3 & 2
\end{array}\right)}_{\mathbf{A}}=\underbrace{\left(\begin{array}{cc}
1 & 1 \\
3 & -1
\end{array}\right)}_{\mathbf{P}} \underbrace{\left(\begin{array}{ll}
3 & -1
\end{array}\right)}_{\mathbf{D}} \underbrace{\left(\begin{array}{ll}
1 & 1 \\
3 & -1
\end{array}\right)^{-1}}_{\mathbf{P}^{-1}} \longleftarrow \text { eigendecomposition }
$$

but the matrix

$$
\mathbf{B}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 2
\end{array}\right)
$$

is not (we will see why later).
Example 0.85. For the diagonalizable matrix \mathbf{A} in the preceding example, find its 10 th power, i.e., \mathbf{A}^{10}.

Example 0.86. The matrix $\mathbf{B}=\left(\begin{array}{cc}0 & 1 \\ -1 & 2\end{array}\right)$ is not diagonalizable because it has one distinct eigenvalue $\lambda_{1}=1$ with $a_{1}=2$ and $g_{1}=1$ (only one linearly independent eigenvector).

Example 0.87. Is the following matrix diagonalizable? If yes, find the eigendecomposition.

$$
\mathbf{A}=\left[\begin{array}{ccc}
3 & 0 & 0 \\
2 & 1 & -1 \\
-2 & 2 & 4
\end{array}\right]
$$

Example 0.88. Is the following matrix diagonalizable? If yes, find the eigendecomposition.

$$
\mathbf{A}=\left[\begin{array}{ccc}
3 & 0 & 0 \\
2 & 1 & 1 \\
-2 & 2 & 4
\end{array}\right]
$$

