Worksheet 13: Dot product and orthogonality

Example 0.97. Let $\mathbf{u} = [3, 4]^T$, $\mathbf{v} = [-1, 1]^T$. Compute the following:

- $\bullet \ {\rm Dot} \ {\rm product} \ {\bf u} \cdot {\bf v}$
- Norms of $\mathbf{u}, \frac{1}{5}\mathbf{u}, \mathbf{v}, -2\mathbf{v}$
- Angle between \mathbf{u}, \mathbf{v}

Example 0.98. The following sets of vectors of \mathbb{R}^3 are orthogonal sets:

- $\mathbf{e}_1 = [1, 0, 0]^T, \mathbf{e}_2 = [0, 1, 0]^T, \mathbf{e}_3 = [0, 0, 1]^T$
- $\mathbf{v}_1 = [1, 1, 1]^T, \mathbf{v}_2 = [1, -1, 0]^T, \mathbf{v}_3 = [1, 1, -2]^T$

Example 0.99. Each of the following two sets of vectors is an orthogonal basis for \mathbb{R}^3 :

- $\mathbf{e}_1 = [1, 0, 0]^T, \mathbf{e}_2 = [0, 1, 0]^T, \mathbf{e}_3 = [0, 0, 1]^T$
- $\mathbf{v}_1 = [1, 1, 1]^T, \mathbf{v}_2 = [1, -1, 0]^T, \mathbf{v}_3 = [1, 1, -2]^T$

but the following sets are not:

- $\mathbf{v}_1 = [1, 1, 0]^T, \mathbf{v}_2 = [1, -1, 0]^T$ (only an orthogonal set)
- $\mathbf{v}_1 = [1, 0, 0]^T, \mathbf{v}_2 = [1, 1, 0]^T, \mathbf{v}_3 = [1, 1, 1]^T$ (only a basis)

Example 0.100. For the coordinate vector of $\mathbf{x} = [1, 2, 3]^T$ with respect to the orthogonal basis

$$\mathbf{v}_1 = [1, 1, 1]^T, \mathbf{v}_2 = [1, -1, 0]^T, \mathbf{v}_3 = [1, 1, -2]^T$$

Example 0.101. Each of the following sets of vectors is an orthonormal basis for \mathbb{R}^3 :

- $\mathbf{e}_1 = [1, 0, 0]^T, \mathbf{e}_2 = [0, 1, 0]^T, \mathbf{e}_3 = [0, 0, 1]^T$
- $\mathbf{v}_1 = \frac{1}{3}[1,1,1]^T, \mathbf{v}_2 = \frac{1}{\sqrt{2}}[1,-1,0]^T, \mathbf{v}_3 = \frac{1}{\sqrt{6}}[1,1,-2]^T$

Example 0.102. Find the coordinates of $\mathbf{x} = [1, 2, 3]^T$ with respect to the orthonormal basis $\mathbf{v}_1 = \frac{1}{\sqrt{3}}[1, 1, 1]^T$, $\mathbf{v}_2 = \frac{1}{\sqrt{2}}[1, -1, 0]^T$, $\mathbf{v}_3 = \frac{1}{\sqrt{6}}[1, 1, -2]^T$

Example 0.103. In the picture below, U, V, W are all subspaces of \mathbb{R}^3 .

- orthogonal subsapces: U and V, U and W
- orthogonal complements: only U and W. We thus write $U = W^{\perp}$ and $W = U^{\perp}$.

Example 0.104. Consider the following matrix and its RREF

$\mathbf{A} =$	[1	2	3]	\longrightarrow	1	0	-1]
	4	5	6		0	1	2

We have

• $\operatorname{Row}(\mathbf{A}) = \operatorname{span}\{[1, 0, -1]^T, [0, 1, 2]^T\}, \text{ and } \operatorname{Nul}(\mathbf{A}) = \operatorname{span}\{[1, -2, 1]^T\}.$

The two subspaces are orthogonal complements of each other (inside \mathbb{R}^3).

On the other hand, $\operatorname{Col}(\mathbf{A}) = \mathbb{R}^2$ and $\operatorname{Nul}(\mathbf{A}^T) = \{\mathbf{0}\}$. The two subspaces are also orthogonal complements of each other (in \mathbb{R}^2).

Example 0.105. Let $\mathbf{v} = [3, 4]^T$. Find the projection of $\mathbf{x} = [1, 0]^T$ onto the subspace spanned by \mathbf{v} .

Example 0.106. Let $\mathbf{v}_1 = [1, 1, 0]^T$, $\mathbf{v}_2 = [1, -1, 0]^T$. Find the projection of $\mathbf{x} = [2, 3, 4]^T$ onto the subspace spanned by $\mathbf{v}_1, \mathbf{v}_2$.

Worksheet 13 (cont'd): Gram-Schmidt orthogonalization process, and least squares problems

Example 0.107. Given a basis for \mathbb{R}^2 : $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$, construct an orthogonal basis from it.

Example 0.108. Find an orthogonal basis for the span of $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$.

Example 0.109. Find an orthogonal basis for the span of

$$\mathbf{v}_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 0\\1\\5 \end{bmatrix}.$$

How can we further obtain an orthonormal basis?

Example 0.110. Verify that the least squares solution of the linear system is x = 1.92, y = 0.88:

$$\begin{cases} x+y=3\\ x-y=1\\ 2x+3y=6.4 \end{cases}$$