Worksheet 13: Dot product and orthogonality

Example 0.97. Let $\mathbf{u}=[3,4]^{T}, \mathbf{v}=[-1,1]^{T}$. Compute the following:

- Dot product $\mathbf{u} \cdot \mathbf{v}$
- Norms of $\mathbf{u}, \frac{1}{5} \mathbf{u}, \mathbf{v},-2 \mathbf{v}$
- Distance between \mathbf{u}, \mathbf{v}
- Angle between \mathbf{u}, \mathbf{v}

Example 0.98. The following sets of vectors of \mathbb{R}^{3} are orthogonal sets:

- $\mathbf{e}_{1}=[1,0,0]^{T}, \mathbf{e}_{2}=[0,1,0]^{T}, \mathbf{e}_{3}=[0,0,1]^{T}$
- $\mathbf{v}_{1}=[1,1,1]^{T}, \mathbf{v}_{2}=[1,-1,0]^{T}, \mathbf{v}_{3}=[1,1,-2]^{T}$

Example 0.99. Each of the following two sets of vectors is an orthogonal basis for \mathbb{R}^{3} :

- $\mathbf{e}_{1}=[1,0,0]^{T}, \mathbf{e}_{2}=[0,1,0]^{T}, \mathbf{e}_{3}=[0,0,1]^{T}$
- $\mathbf{v}_{1}=[1,1,1]^{T}, \mathbf{v}_{2}=[1,-1,0]^{T}, \mathbf{v}_{3}=[1,1,-2]^{T}$
but the following sets are not:
- $\mathbf{v}_{1}=[1,1,0]^{T}, \mathbf{v}_{2}=[1,-1,0]^{T}$ (only an orthogonal set)
- $\mathbf{v}_{1}=[1,0,0]^{T}, \mathbf{v}_{2}=[1,1,0]^{T}, \mathbf{v}_{3}=[1,1,1]^{T}$ (only a basis)

Example 0.100. For the coordinate vector of $\mathbf{x}=[1,2,3]^{T}$ with respect to the orthogonal basis

$$
\mathbf{v}_{1}=[1,1,1]^{T}, \mathbf{v}_{2}=[1,-1,0]^{T}, \mathbf{v}_{3}=[1,1,-2]^{T}
$$

Example 0.101. Each of the following sets of vectors is an orthonormal basis for \mathbb{R}^{3} :

- $\mathbf{e}_{1}=[1,0,0]^{T}, \mathbf{e}_{2}=[0,1,0]^{T}, \mathbf{e}_{3}=[0,0,1]^{T}$
- $\mathbf{v}_{1}=\frac{1}{3}[1,1,1]^{T}, \mathbf{v}_{2}=\frac{1}{\sqrt{2}}[1,-1,0]^{T}, \mathbf{v}_{3}=\frac{1}{\sqrt{6}}[1,1,-2]^{T}$

Example 0.102. Find the coordinates of $\mathbf{x}=[1,2,3]^{T}$ with respect to the orthonormal basis $\mathbf{v}_{1}=\frac{1}{\sqrt{3}}[1,1,1]^{T}, \mathbf{v}_{2}=\frac{1}{\sqrt{2}}[1,-1,0]^{T}, \mathbf{v}_{3}=\frac{1}{\sqrt{6}}[1,1,-2]^{T}$

Example 0.103. In the picture below, U, V, W are all subspaces of \mathbb{R}^{3}.

- orthogonal subsapces: U and V, U and W
- orthogonal complements: only U and W. We thus write $U=W^{\perp}$ and $W=U^{\perp}$.

Example 0.104. Consider the following matrix and its RREF

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right] \longrightarrow\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 2
\end{array}\right]
$$

We have

- $\operatorname{Row}(\mathbf{A})=\operatorname{span}\left\{[1,0,-1]^{T},[0,1,2]^{T}\right\}, \operatorname{and} \operatorname{Nul}(\mathbf{A})=\operatorname{span}\left\{[1,-2,1]^{T}\right\}$.

The two subspaces are orthogonal complements of each other (inside \mathbb{R}^{3}).
On the other hand, $\operatorname{Col}(\mathbf{A})=\mathbb{R}^{2}$ and $\operatorname{Nul}\left(\mathbf{A}^{T}\right)=\{\mathbf{0}\}$. The two subspaces are also orthogonal complements of each other (in \mathbb{R}^{2}).

Example 0.105. Let $\mathbf{v}=[3,4]^{T}$. Find the projection of $\mathbf{x}=[1,0]^{T}$ onto the subspace spanned by \mathbf{v}.

Example 0.106. Let $\mathbf{v}_{1}=[1,1,0]^{T}, \mathbf{v}_{2}=[1,-1,0]^{T}$. Find the projection of $\mathbf{x}=[2,3,4]^{T}$ onto the subspace spanned by $\mathbf{v}_{1}, \mathbf{v}_{2}$.

Worksheet 13 (cont'd): Gram-Schmidt orthogonalization process, and least squares problems

Example 0.107. Given a basis for $\mathbb{R}^{2}: \mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}3 \\ 1\end{array}\right]$, construct an orthogonal basis from it.

Example 0.108. Find an orthogonal basis for the span of $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$.

Example 0.109. Find an orthogonal basis for the span of

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}
0 \\
1 \\
5
\end{array}\right] .
$$

How can we further obtain an orthonormal basis?

Example 0.110. Verify that the least squares solution of the linear system is $x=1.92, y=0.88$:

$$
\left\{\begin{array}{l}
x+y=3 \\
x-y=1 \\
2 x+3 y=6.4
\end{array}\right.
$$

