Worksheet 2: matrix algebra

Example 0.12. Let

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{ccc}
-1 & -1 & -1 \\
1 & 1 & 1
\end{array}\right]
$$

Find $\mathbf{A}+\mathbf{B}, \mathbf{A}-\mathbf{B}, 3 \mathbf{B}$ and $\mathbf{A}+3 \mathbf{B}$.

Example 0.13. Let

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{cc}
1 & 1 \\
1 & -1 \\
0 & 0
\end{array}\right]
$$

Find $\mathbf{A B}$ and BA. Are they the same?

Example 0.14. Let

$$
\mathbf{A}=\left[\begin{array}{ll}
2 & 2 \\
3 & 3
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{ccc}
1 & -1 & 2 \\
-1 & 1 & -2
\end{array}\right]
$$

Find $\mathbf{A B}$. Is $\mathbf{B A}$ defined?

Example 0.15. Let

$$
\mathbf{A}=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Find \mathbf{A}^{3} and \mathbf{B}^{3}. What are \mathbf{A}^{k} and \mathbf{B}^{k} for $k>3$?

Example 0.16. Find the transpose of the following matrices:

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{ll}
2 & 4 \\
4 & 1
\end{array}\right], \quad \mathbf{C}=\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]
$$

Example 0.17. Verify that $\mathbf{A}=\left[\begin{array}{cc}2 & 5 \\ -3 & -7\end{array}\right]$ and $\mathbf{B}=\left[\begin{array}{cc}-7 & -5 \\ 3 & 2\end{array}\right]$ are inverses of each other and then use this fact to solve the matrix equation $\mathbf{A x}=\mathbf{b}$ for $\mathbf{b}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$.

Example 0.18. Use the emprical rule to find the inverse of

$$
\mathbf{A}=\left[\begin{array}{cc}
2 & 5 \\
-3 & -7
\end{array}\right]
$$

Example 0.19. Find the inverse of the matrix

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & 0 & -2 \\
3 & 1 & -2 \\
-5 & -1 & 9
\end{array}\right]
$$

if its exists.

