Worksheet 7: Vector spaces

Example 0.46. The following are all vector spaces:

- The set of all functions $f: \mathbb{R} \mapsto \mathbb{R}$;
- The set of all infinite sequences $\left(a_{1}, a_{2}, \ldots, a_{n}, \ldots\right)$;
- The set of all matrices of a fixed size $\mathbf{A} \in \mathbb{R}^{m \times n}$.

Example 0.47. Consider the vector space $V=\mathbb{R}^{2}$.

- Any line going through the origin in \mathbb{R}^{2} is a subspace of \mathbb{R}^{2}. In contrast, any line not passing through the origin is NOT a subspace.
- In fact, the single-element subset containing only the origin $\{\mathbf{0}\}$ is also a subspace of \mathbb{R}^{2}. It is called the zero subspace.
- The full vector space \mathbb{R}^{2} is also a subspace of itself (though also a trivial one).

Example 0.48. For the vector space $V=\mathbb{R}^{3}$,

- Lines and planes passing through the origin are proper subspaces.
- $\{\mathbf{o}\}$ and \mathbb{R}^{3} are trivial subspaces.

Example 0.49. Is \mathbb{R}^{2} a subspace of \mathbb{R}^{3} ?
Example 0.50. Let V be the vector space of all functions $f: \mathbb{R} \mapsto \mathbb{R}$. Then $H=\{$ All polynomial functions $\}$ is a subspace.

Example 0.51. Let

$$
\mathbf{A}=\left[\begin{array}{llll}
1 & 4 & 7 & 10 \\
2 & 5 & 8 & 10 \\
3 & 6 & 9 & 10
\end{array}\right]
$$

Do the following:

- Determine if $\mathbf{b}=\left[\begin{array}{lll}1 & -1 & 1\end{array}\right]^{T}$ lies in the column space of \mathbf{A}
- Find $\operatorname{Col}(\mathbf{A})$. Is $f(\mathbf{x})=\mathbf{A x}$ onto?

Example 0.52. Consider the same matrix \mathbf{A} above.

- Determine if $\mathbf{x}=\left[\begin{array}{lll}1 & -2 & 1\end{array}\right]^{T}$ and $\mathbf{y}=\left[\begin{array}{llll}-5 & 0 & 5 & -3\end{array}\right]^{T}$ lie in the column space of \mathbf{A}
- Find $\operatorname{Nul}(\mathbf{A})$. Is $T(\mathbf{x})=\mathbf{A x}$ one to one?

Example 0.53. Let

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & 2 & -1 \\
-2 & -5 & 7 \\
3 & 7 & -8
\end{array}\right]
$$

Find its null and column spaces. Of which Euclidean spaces are they each a subspace?

