Worksheet 8: Bases

Example 0.54. Show that the columns of $\mathbf{A}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ form a basis for \mathbb{R}^{2}.

Example 0.55. Determine if the columns of the matrix

$$
\mathbf{A}=\left[\begin{array}{ccc}
3 & -4 & -2 \\
0 & 1 & 1 \\
-6 & 7 & 5
\end{array}\right]
$$

form a basis for \mathbb{R}^{3}.

Example 0.56. Find a basis for the column space of

$$
\mathbf{A}=\left[\begin{array}{ccccc}
1 & 4 & 0 & 2 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Example 0.57. Find a basis for the column space of

$$
\mathbf{B}=\left[\begin{array}{ccccc}
1 & 4 & 0 & 2 & -1 \\
3 & 12 & 1 & 5 & 5 \\
2 & 8 & 1 & 3 & 2 \\
5 & 20 & 2 & 8 & 8
\end{array}\right]
$$

Example 0.58. Find a basis for the null space of

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & 2 & -1 & 0 \\
-2 & -5 & 7 & 5 \\
3 & 7 & -8 & -5
\end{array}\right]
$$

Example 0.59. Consider the Euclidean space \mathbb{R}^{n}. Every vector $\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right)^{T}$ in it has a unique representation under the standard basis:

$$
\mathbf{b}=b_{1} \mathbf{e}_{1}+\cdots+b_{n} \mathbf{e}_{n}
$$

Example 0.60. We have previously showed that the columns of the matrix form a basis for \mathbb{R}^{3} :

$$
\mathbf{A}=\left[\begin{array}{ccc}
3 & -4 & -2 \\
0 & 1 & 1 \\
-6 & 7 & 5
\end{array}\right]
$$

Let $\mathbf{b}=\left[\begin{array}{lll}1 & 0 & 2\end{array}\right]^{T}$. Find the unique set of scalars c_{1}, c_{2}, c_{3} such that

$$
\mathbf{b}=c_{1} \mathbf{a}_{1}+c_{2} \mathbf{a}_{2}+c_{3} \mathbf{a}_{3}
$$

