Chapter 3: Matrix Determinants

San Jose State University

Prof. Guangliang Chen

Fall 2022

Outline

Sections 3.1-3.2 Matrix determinants

Sections 3.3 Applications

Introduction

Briefly speaking, determinant is a mathematical rule to evaluate a square matrix to a real number

$$
\operatorname{det}: \mathbf{A} \in \mathbb{R}^{n \times n} \longrightarrow \operatorname{det}(\mathbf{A}) \in \mathbb{R}
$$

in order to determine whether the matrix is invertible or not.

For example, we have seen the following formula for computing the inverse of a 2×2 matrix:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] \quad \text { (assuming } a d-b c \neq 0 \text {) }
$$

Matrix Determinants

The denominator $a d-b c$ is a number computed from the 2×2 matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, which can indicate whether the 2×2 matrix is invertible.

This would be called the determinant of the 2×2 matrix, and denoted as

$$
\operatorname{det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

For a 1×1 matrix $\mathbf{A}=[a]$, it is invertible if and only if a is nonzero, so we can just define the determinant of a 1×1 matrix as the number in it:

$$
\operatorname{det}[a]=a
$$

What about 3×3 or even larger matrices?

Matrix Determinants

Matrix minor and cofactor

We will define the notion of determinants for general square matrices using a recursive approach, and for that goal, we first need to define the matrix minors and cofactors.

Def 0.1 (Matrix minor and cofactor). Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a square matrix. For any pair of indices $1 \leq i, j \leq n$, let $\mathbf{A}_{i j}$ denote the submatrix formed by deleting the i th row and j th column of \mathbf{A}. We define

- the (i, j) minor of \mathbf{A} as $M_{i j}=\operatorname{det}\left(\mathbf{A}_{i j}\right)$, and
- the (i, j) cofactor of \mathbf{A} as $C_{i j}=(-1)^{i+j} \operatorname{det}\left(\mathbf{A}_{i j}\right)=(-1)^{i+j} M_{i j}$ (thus cofactor is just signed minor).

Matrix Determinants

Example $0.1(n=3)$. Let

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

Then

- the (1,1)-submatrix is $\mathbf{A}_{11}=\left[\begin{array}{ll}5 & 6 \\ 8 & 9\end{array}\right]=\left[\begin{array}{ll}5 & 6 \\ 8 & 9\end{array}\right]$
- the $(1,1)$-minor is $M_{11}=\operatorname{det}\left(\mathbf{A}_{11}\right)=5 \cdot 9-6 \cdot 8=-3$, and
- the $(1,1)$-co-factor is $C_{11}=(-1)^{1+1} M_{11}=-3$

Matrix Determinants

Similarly, the (1,2)-

- Submatrix: $\mathbf{A}_{12}=\left[\begin{array}{ll}4 & 6 \\ 7 & 9\end{array}\right]=\left[\begin{array}{ll}4 & 6 \\ 7 & 9\end{array}\right]$
- Minor: $M_{12}=\operatorname{det}\left(\mathbf{A}_{12}\right)=4 \cdot 9-6 \cdot 7=-6$, and
- Co-factor: $C_{12}=(-1)^{1+2} M_{12}=6$

What about the $(1,3)$-submatrix, minor, and cofactor?
And how many minors and cofactors are there in total?

Matrix Determinants

We can arrange all the minors and cofactors of a square matrix separately into two matrices of the same size:

In the previous example, we have obtained that

$$
\left[\begin{array}{ccc}
-3 & 6 & -3 \\
C_{21} & C_{22} & C_{23} \\
C_{31} & C_{32} & C_{33}
\end{array}\right]=\left[\begin{array}{lll}
+ & - & + \\
- & + & - \\
+ & - & +
\end{array}\right] \circ\left[\begin{array}{ccc}
-3 & -6 & -3 \\
M_{21} & M_{22} & M_{23} \\
M_{31} & M_{32} & M_{33}
\end{array}\right]
$$

Matrix Determinants

Determinants of square matrices

We define the determinants of all square $\mathbf{A} \in \mathbb{R}^{n \times n}$ recursively as follows:

- If $n=1$: Define $\operatorname{det}(\mathbf{A})=\operatorname{det}\left[a_{11}\right]=a_{11}$, which is the trivial case.
- For any larger n, define
$\operatorname{det}(\mathbf{A})=\left|\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right|=\underbrace{a_{11} \cdot C_{11}+a_{12} \cdot C_{12}+\cdots+a_{1 n} \cdot C_{1 n}}_{\text {cofactor expansion along first row }}$
where $C_{1 j}=(-1)^{1+j} \operatorname{det}\left(\mathbf{A}_{1 j}\right)$ are the cofactors along the first row, which are signed determinants of $(n-1) \times(n-1)$ matrices.

Matrix Determinants

The cofactor expansion formula, when applied recursively, reduces determinants calculation to smaller and smaller matrices toward the 1×1 case.

Matrix Determinants

Let's apply the recursive formula to the cases of $n=2,3$:

- $n=2$ (to verify the previous formula):

$$
\left|\begin{array}{cc}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|=a_{11} \cdot(-1)^{1+1} a_{22}+a_{12} \cdot(-1)^{1+2} a_{21}=a_{11} a_{22}-a_{12} a_{21}
$$

- $n=3$ (this leads to a new formula):

$$
\begin{aligned}
&\left|\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right| \\
&= a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{cc}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right| \\
&= a_{11}\left(a_{22} a_{33}-a_{23} a_{32}\right)-a_{12}\left(a_{21} a_{33}-a_{23} a_{31}\right)+a_{13}\left(a_{21} a_{32}-a_{22} a_{31}\right) \\
&= a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32} \\
& \quad-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}-a_{13} a_{22} a_{31}
\end{aligned}
$$

Matrix Determinants

Matrix Determinants

Example 0.2. Let

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

From previous calculations, we have

$$
C_{11}=-3, \quad C_{12}=6, \quad C_{13}=-3
$$

Thus, by the cofactor expansion formula,

$$
\operatorname{det}(\mathbf{A})=1(-3)+2(6)+3(-3)=0
$$

(We will see later that this implies that \mathbf{A} is not invertible)

Matrix Determinants

It turns out that the determinant of an $n \times n$ matrix \mathbf{A} can be computed by a cofactor expansion along any row or column.

Theorem 0.1. Let $\mathbf{A} \in \mathbb{R}^{n \times n}$. Then for any $1 \leq i \leq n$,

$$
\operatorname{det}(\mathbf{A})=a_{i 1} \cdot C_{i 1}+a_{i 2} \cdot C_{i 2}+\cdots+a_{i n} \cdot C_{i n} \longleftarrow \text { expansion along row } i
$$

and for any $1 \leq j \leq n$,
$\operatorname{det}(\mathbf{A})=a_{1 j} \cdot C_{1 j}+a_{2 j} \cdot C_{2 j}+\cdots+a_{n j} \cdot C_{n j} \longleftarrow$ expansion along column j

We omit the proof but verify this result using an example.

Matrix Determinants

Example 0.3. Let

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

Compute the determinant of this matrix by using a cofactor expansion along
(a) the 2nd row, or
(b) the 3rd column.

Matrix Determinants

Example 0.4. Compute the determinant of

$$
\mathbf{A}=\left[\begin{array}{cccc}
5 & -7 & 2 & 2 \\
0 & 3 & 0 & -4 \\
-5 & -8 & 0 & 3 \\
0 & 5 & 0 & -6
\end{array}\right]
$$

Remark. We should perform the co-factor expansion along a row or column that has the most zeros (for fast computing).

Matrix Determinants

The previous theorem also implies the following result.
Corollary 0.2. The determinant of a (square) diagonal, or lower/upper triangular matrix is equal to the product of its diagonal entries.

We use the following example to illustrate the corollary.
Example 0.5. Find the determinants of

$$
\mathbf{A}=\left[\begin{array}{llll}
5 & & & \\
& 2 & & \\
& & 1 & \\
& & & -6
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{lll}
1 & 0 & 0 \\
4 & 5 & 0 \\
7 & 8 & 9
\end{array}\right], \quad \mathbf{C}=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 5 & 6 \\
0 & 0 & 9
\end{array}\right]
$$

Matrix Determinants

In fact, for block diagonal and block lower/upper triangular matrices with square main blocks, similar results hold true:

$$
\begin{aligned}
& \operatorname{det}\left[\begin{array}{ll}
\mathbf{A} & \\
& \mathbf{B}
\end{array}\right]=\operatorname{det}(\mathbf{A}) \operatorname{det}(\mathbf{B}) \\
& \operatorname{det}\left[\begin{array}{ll}
\mathbf{A} & \mathbf{C} \\
& \mathbf{B}
\end{array}\right]=\operatorname{det}(\mathbf{A}) \operatorname{det}(\mathbf{B}) \\
& \operatorname{det}\left[\begin{array}{ll}
\mathbf{A} & \\
\mathbf{C} & \mathbf{B}
\end{array}\right]=\operatorname{det}(\mathbf{A}) \operatorname{det}(\mathbf{B})
\end{aligned}
$$

Matrix Determinants

Example 0.6. Show that the determinants of the three kinds of elementary matrices are

$$
\begin{aligned}
\operatorname{det}\left(\mathbf{M}_{i}(r)\right) & =r \\
\operatorname{det}\left(\mathbf{R}_{i \leftarrow j}(k)\right) & =1 \\
\operatorname{det}\left(\mathbf{P}_{i j}\right) & =-1 .
\end{aligned}
$$

Proof. We verify these three statements for the case of 3×3.

Matrix Determinants

Properties of matrix determinants

Theorem 0.3. Let \mathbf{A}, \mathbf{B} be square matrices of the same size. Then

- $\operatorname{det}\left(\mathbf{A}^{T}\right)=\operatorname{det}(\mathbf{A})$
- $\operatorname{det}(\mathbf{A B})=\operatorname{det}(\mathbf{A}) \operatorname{det}(\mathbf{B})$

Example 0.7. Verify the above results using the following matrices

$$
\mathbf{A}=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{ll}
1 & 0 \\
1 & 3
\end{array}\right]
$$

Matrix Determinants

The second statement on the preceding slide implies the following result.
Corollary 0.4. Let \mathbf{E} be an elementary matrix and \mathbf{A} a square matrix of the same size. Then

$$
\operatorname{det}(\mathbf{E A})=\operatorname{det}(\mathbf{E}) \operatorname{det}(\mathbf{A})= \begin{cases}r \cdot \operatorname{det}(\mathbf{A}) & \text { if } \mathbf{E}=\mathbf{M}_{i}(r) ; \\ \operatorname{det}(\mathbf{A}) & \text { if } \mathbf{E}=\mathbf{R}_{i \leftarrow j}(k) ; \\ -\operatorname{det}(\mathbf{A}) & \text { if } \mathbf{E}=\mathbf{P}_{i j} ;\end{cases}
$$

Remark. This shows that row replacements do not change matrix determinants while interchanging two rows would flip the sign of the determinant (but the absolute value is still the same).

Matrix Determinants

Example 0.8. Compute

$$
\left|\begin{array}{cccc}
1 & -3 & 1 & -2 \\
2 & -5 & -1 & -2 \\
0 & -4 & 5 & 1 \\
-3 & 10 & -6 & 8
\end{array}\right|
$$

by performing only row replacement operations.

Matrix Determinants

Remark. Because $\operatorname{det}\left(\mathbf{A}^{T}\right)=\operatorname{det}(\mathbf{A})$, performing elementary column operations on a square matrix have the same effects on the determinant as the elementary row operations.

Example 0.9. Compute

$$
\left|\begin{array}{cccc}
1 & -3 & 1 & -2 \\
2 & -5 & -1 & -2 \\
0 & -4 & 5 & 1 \\
-3 & 10 & -6 & 8
\end{array}\right|
$$

by performing only column replacement operations.

Remark. It is certainly fine to use both kinds of replacement operations together to generate as many zeros in the matrix as possible.

Matrix Determinants

Remark. Another consequence of the corollary is that a scalar multiple of a row (or column) corresponds to the same scalar multiple of the determinant.

$$
\begin{aligned}
\left|\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
r a_{31} & r a_{32} & r a_{33}
\end{array}\right| & =r \cdot\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right| \\
\left|\begin{array}{lll}
a_{11} & r a_{12} & a_{13} \\
a_{21} & r a_{22} & a_{23} \\
a_{31} & r a_{32} & a_{33}
\end{array}\right| & =r \cdot\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|
\end{aligned}
$$

Example 0.10. Compute $\left|\begin{array}{ccc}0 & 2 & 6 \\ 1 & -3 & -3 \\ -1 & 0 & 9\end{array}\right|$

Matrix Determinants

Remark. Be sure to distinguish from the case of scalar multiple of a matrix:

$$
\left[\begin{array}{lll}
r a_{11} & r a_{12} & r a_{13} \\
r a_{21} & r a_{22} & r a_{23} \\
r a_{31} & r a_{32} & r a_{33}
\end{array}\right]=r \cdot\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

Applying the formula on the previous slide three times (for a 3×3 matrix \mathbf{A}) yields that

$$
\operatorname{det}(r \mathbf{A})=r^{3} \operatorname{det}(\mathbf{A})
$$

This could also be obtained as follows

$$
\operatorname{det}(r \mathbf{A})=\operatorname{det}(r \mathbf{I} \cdot \mathbf{A})=\operatorname{det}(r \mathbf{I}) \operatorname{det}(\mathbf{A})=r^{3} \operatorname{det}(\mathbf{A})
$$

More generally, for $n \times n$ matrices \mathbf{A},

$$
\operatorname{det}(r \mathbf{A})=r^{n} \operatorname{det}(\mathbf{A})
$$

Matrix Determinants

Finally, we are ready to present the following important result.
Theorem 0.5 . A square matrix \mathbf{A} is invertible if and only if $\operatorname{det}(\mathbf{A}) \neq 0$.

Proof. For any square matrix \mathbf{A}, there exist a sequence of elementary matrices $\mathbf{E}_{1}, \mathbf{E}_{2}, \ldots, \mathbf{E}_{k}$ (which are either row permutation or row replacements) such that

$$
\mathbf{E}_{k} \cdots \mathbf{E}_{2} \cdot \mathbf{E}_{1} \cdot \mathbf{A}=\underbrace{\mathbf{U}}_{\mathrm{REF}} \longleftarrow \text { square matrix }
$$

Taking determinants of both sides give that

$$
(-1)^{r} \operatorname{det}(\mathbf{A})=\operatorname{det}(\mathbf{U})
$$

where r is the number of row permutations used. It follows that $\operatorname{det}(\mathbf{A}) \neq 0$ if and only if $\operatorname{det}(\mathbf{U}) \neq 0$, which is if and only if \mathbf{U} contains n nonzero pivots, which is if and only if \mathbf{A} is invertible.

Matrix Determinants

Corollary 0.6. Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a square matrix. Then the following statements are all equivalent to $" \operatorname{det}(\mathbf{A}) \neq 0$ ".

1. \mathbf{A} is invertible.
2. A has n pivot positions.
3. The equation $\mathbf{A x}=\mathbf{0}$ only has the trivial solution.
4. The equation $\mathbf{A x}=\mathbf{b}$ (for any \mathbf{b}) always has a unique solution.
5. The columns of A form a linearly independent set.
6. The columns of A span \mathbb{R}^{n}.
7. The linear transformation $f(\mathbf{x})=\mathbf{A} \mathbf{x}$ is one-to-one.
8. The linear transformation $f(\mathbf{x})=\mathbf{A x}\left(\right.$ from \mathbb{R}^{n} to $\left.\mathbb{R}^{n}\right)$ is onto.

Matrix Determinants

Example 0.11. Find the determinant of

$$
\mathbf{A}=\left[\begin{array}{ccc}
4 & -7 & -3 \\
6 & 0 & -5 \\
2 & 7 & -2
\end{array}\right]
$$

and use it to determine
(a) if the columns of \mathbf{A} are linearly independent;
(b) if the linear transformation $f(\mathbf{x})=\mathbf{A} \mathbf{x}$ is one-to-one, or onto, or both.

Matrix Determinants

Other applications of matrix determinants

- Solving systems of linear equations $\mathbf{A x}=\mathbf{b}$
- Finding matrix inverse (if $\operatorname{det}(\mathbf{A}) \neq 0)$
- Computing the area/volume of parallelogram/parallelepiped

We will teach these based on three examples.

Matrix Determinants

Theorem 0.7 (Cramer's Rule). Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be an invertible matrix. Then for any vector $\mathbf{b} \in \mathbb{R}^{n}$, the unique solution \mathbf{x} of $\mathbf{A x}=\mathbf{b}$ has the following entries:

$$
x_{i}=\frac{\operatorname{det}\left[\mathbf{a}_{1} \ldots \mathbf{b} \ldots \mathbf{a}_{n}\right]}{\operatorname{det} \underbrace{\left[\mathbf{a}_{1} \ldots \mathbf{a}_{i} \ldots \mathbf{a}_{n}\right]}_{\mathbf{A}}}, \text { for all } i=1, \ldots, n
$$

Remark. This formula is inefficient unless the matrix \mathbf{A} is 2×2 or perhaps also 3×3.

Example 0.12. Use Cramer's rule to solve the following equation

$$
\begin{aligned}
& 5 x_{1}+7 x_{2}=3 \\
& 2 x_{1}+4 x_{2}=1
\end{aligned}
$$

Matrix Determinants

Theorem 0.8 (Adjoint matrix). Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be an invertible matrix. Then

$$
\mathbf{A}^{-1}=\frac{1}{\operatorname{det}(\mathbf{A})}\left[\begin{array}{cccc}
C_{11} & C_{21} & \cdots & C_{n 1} \\
C_{12} & C_{22} & \cdots & C_{n 2} \\
\vdots & \vdots & \ddots & \vdots
\end{array} \quad=\frac{1}{\operatorname{det}(\mathbf{A})} \operatorname{adj} \mathbf{A} .\right.
$$

Remark. This formula is not efficient either.
Example 0.13. Find the inverse of the matrix

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 4 & 1
\end{array}\right]
$$

Matrix Determinants

Theorem 0.9. For n vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ in \mathbb{R}^{n}, the volume of the n-dimensional parallelpiped spanned by them is given by $\operatorname{det}\left[\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right]$.

Example 0.14. Find

(a) the area of the parallelogram spanned by $\mathbf{a}_{1}=(1,2)^{T}, \mathbf{a}_{2}=(3,4)^{T}$
(b) the volume of the parallelepiped spanned by $\mathbf{a}_{1}=(1,0,0)^{T}, \mathbf{a}_{2}=(0,1,0)$, and $\mathbf{a}_{3}=(1,1,1)$.

