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Matrix Determinants

Introduction

Briefly speaking, determinant is a mathematical rule to evaluate a square matrix
to a real number

det : A ∈ Rn×n −→ det(A) ∈ R

in order to determine whether the matrix is invertible or not.

For example, we have seen the following formula for computing the inverse of a
2× 2 matrix:[

a b

c d

]−1

= 1
ad− bc

[
d −b

−c a

]
(assuming ad− bc 6= 0)
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Matrix Determinants

The denominator ad− bc is a number computed from the 2× 2 matrix
[

a b

c d

]
,

which can indicate whether the 2× 2 matrix is invertible.

This would be called the determinant of the 2× 2 matrix, and denoted as

det
[

a b

c d

]
=

∣∣∣∣∣a b

c d

∣∣∣∣∣ = ad− bc.

For a 1× 1 matrix A = [a], it is invertible if and only if a is nonzero, so we can
just define the determinant of a 1× 1 matrix as the number in it:

det[a] = a

What about 3× 3 or even larger matrices?
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Matrix Determinants

Matrix minor and cofactor
We will define the notion of determinants for general square matrices using a
recursive approach, and for that goal, we first need to define the matrix minors
and cofactors.

Def 0.1 (Matrix minor and cofactor). Let A ∈ Rn×n be a square matrix. For
any pair of indices 1 ≤ i, j ≤ n, let Aij denote the submatrix formed by deleting
the ith row and jth column of A. We define

• the (i, j) minor of A as Mij = det(Aij), and

• the (i, j) cofactor of A as Cij = (−1)i+j det(Aij) = (−1)i+jMij (thus
cofactor is just signed minor).
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Matrix Determinants

Example 0.1 (n = 3). Let

A =

1 2 3
4 5 6
7 8 9


Then

• the (1, 1)-submatrix is A11 =

 5 6
8 9

 =
[

5 6
8 9

]

• the (1, 1)-minor is M11 = det(A11) = 5 · 9− 6 · 8 = −3, and

• the (1, 1)-co-factor is C11 = (−1)1+1M11 = −3
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Matrix Determinants

Similarly, the (1, 2)-

• Submatrix: A12 =

4 6
7 9

 =
[

4 6
7 9

]

• Minor: M12 = det(A12) = 4 · 9− 6 · 7 = −6, and

• Co-factor: C12 = (−1)1+2M12 = 6

What about the (1, 3)-submatrix, minor, and cofactor?

And how many minors and cofactors are there in total?
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Matrix Determinants

We can arrange all the minors and cofactors of a square matrix separately into
two matrices of the same size:C11 C12 C13

C21 C22 C23
C31 C32 C33


︸ ︷︷ ︸
cofactors matrix C

=

+ − +
− + −
+ − +


︸ ︷︷ ︸

signs matrix (−1)i+j

◦︸︷︷︸
entrywise

multiplication

M11 M12 M13
M21 M22 M23
M31 M32 M33


︸ ︷︷ ︸

minors matrix M

In the previous example, we have obtained that−3 6 −3
C21 C22 C23
C31 C32 C33

 =

+ − +
− + −
+ − +

 ◦
 −3 −6 −3

M21 M22 M23
M31 M32 M33
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Matrix Determinants

Determinants of square matrices
We define the determinants of all square A ∈ Rn×n recursively as follows:

• If n = 1: Define det(A) = det[a11] = a11, which is the trivial case.

• For any larger n, define

det(A) =

∣∣∣∣∣∣∣∣∣∣
a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣∣
= a11 · C11 + a12 · C12 + · · ·+ a1n · C1n︸ ︷︷ ︸

cofactor expansion along first row

where C1j = (−1)1+j det(A1j) are the cofactors along the first row, which
are signed determinants of (n− 1)× (n− 1) matrices.
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Matrix Determinants

The cofactor expansion formula, when applied recursively, reduces de-
terminants calculation to smaller and smaller matrices toward the 1 × 1
case.

Prof. Guangliang Chen | Mathematics & Statistics, San José State University 10/33



Matrix Determinants

Let’s apply the recursive formula to the cases of n = 2, 3:

• n = 2 (to verify the previous formula):∣∣∣∣∣a11 a12
a21 a22

∣∣∣∣∣ = a11 · (−1)1+1a22 + a12 · (−1)1+2a21 = a11a22 − a12a21
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Matrix Determinants

• n = 3 (this leads to a new formula):∣∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣∣
= a11

∣∣∣∣∣a22 a23
a32 a33

∣∣∣∣∣− a12

∣∣∣∣∣a21 a23
a31 a33

∣∣∣∣∣+ a13

∣∣∣∣∣a21 a22
a31 a32

∣∣∣∣∣
= a11(a22a33 − a23a32)− a12(a21a33 − a23a31) + a13(a21a32 − a22a31)
= a11a22a33 + a12a23a31 + a13a21a32

− a11a23a32 − a12a21a33 − a13a22a31
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Matrix Determinants
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Matrix Determinants

Example 0.2. Let

A =

1 2 3
4 5 6
7 8 9


From previous calculations, we have

C11 = −3, C12 = 6, C13 = −3

Thus, by the cofactor expansion formula,

det(A) = 1(−3) + 2(6) + 3(−3) = 0.

(We will see later that this implies that A is not invertible)

Prof. Guangliang Chen | Mathematics & Statistics, San José State University 14/33



Matrix Determinants

It turns out that the determinant of an n× n matrix A can be computed by a
cofactor expansion along any row or column.

Theorem 0.1. Let A ∈ Rn×n. Then for any 1 ≤ i ≤ n,

det(A) = ai1 · Ci1 + ai2 · Ci2 + · · ·+ ain · Cin ←− expansion along row i

and for any 1 ≤ j ≤ n,

det(A) = a1j ·C1j + a2j ·C2j + · · ·+ anj ·Cnj ←− expansion along column j

We omit the proof but verify this result using an example.
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Matrix Determinants

Example 0.3. Let

A =

1 2 3
4 5 6
7 8 9


Compute the determinant of this matrix by using a cofactor expansion along

(a) the 2nd row, or

(b) the 3rd column.
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Matrix Determinants

Example 0.4. Compute the determinant of

A =


5 −7 2 2
0 3 0 −4
−5 −8 0 3
0 5 0 −6



Remark. We should perform the co-factor expansion along a row or column that
has the most zeros (for fast computing).
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Matrix Determinants

The previous theorem also implies the following result.

Corollary 0.2. The determinant of a (square) diagonal, or lower/upper triangular
matrix is equal to the product of its diagonal entries.

We use the following example to illustrate the corollary.

Example 0.5. Find the determinants of

A =


5

2
1
−6

 , B =

1 0 0
4 5 0
7 8 9

 , C =

1 2 3
0 5 6
0 0 9
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Matrix Determinants

In fact, for block diagonal and block lower/upper triangular matrices with square
main blocks, similar results hold true:

det
[

A
B

]
= det(A) det(B)

det
[

A C
B

]
= det(A) det(B)

det

[
A
C B

]
= det(A) det(B)
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Matrix Determinants

Example 0.6. Show that the determinants of the three kinds of elementary
matrices are

det(Mi(r)) = r

det(Ri←j(k)) = 1
det(Pij) = −1.

Proof. We verify these three statements for the case of 3× 3.
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Matrix Determinants

Properties of matrix determinants
Theorem 0.3. Let A, B be square matrices of the same size. Then

• det(AT ) = det(A)

• det(AB) = det(A) det(B)

Example 0.7. Verify the above results using the following matrices

A =
[

1 2
3 4

]
, B =

[
1 0
1 3

]
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Matrix Determinants

The second statement on the preceding slide implies the following result.

Corollary 0.4. Let E be an elementary matrix and A a square matrix of the same
size. Then

det(EA) = det(E) det(A) =


r · det(A) if E = Mi(r);
det(A) if E = Ri←j(k);
−det(A) if E = Pij ;

Remark. This shows that row replacements do not change matrix determinants
while interchanging two rows would flip the sign of the determinant (but the
absolute value is still the same).
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Matrix Determinants

Example 0.8. Compute ∣∣∣∣∣∣∣∣∣
1 −3 1 −2
2 −5 −1 −2
0 −4 5 1
−3 10 −6 8

∣∣∣∣∣∣∣∣∣
by performing only row replacement operations.
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Matrix Determinants

Remark. Because det(AT ) = det(A), performing elementary column operations
on a square matrix have the same effects on the determinant as the elementary
row operations.

Example 0.9. Compute ∣∣∣∣∣∣∣∣∣
1 −3 1 −2
2 −5 −1 −2
0 −4 5 1
−3 10 −6 8

∣∣∣∣∣∣∣∣∣
by performing only column replacement operations.

Remark. It is certainly fine to use both kinds of replacement operations together
to generate as many zeros in the matrix as possible.
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Matrix Determinants

Remark. Another consequence of the corollary is that a scalar multiple of a row
(or column) corresponds to the same scalar multiple of the determinant.∣∣∣∣∣∣∣

a11 a12 a13
a21 a22 a23
ra31 ra32 ra33

∣∣∣∣∣∣∣ = r ·

∣∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
a11 ra12 a13
a21 ra22 a23
a31 ra32 a33

∣∣∣∣∣∣∣ = r ·

∣∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣∣
Example 0.10. Compute

∣∣∣∣∣∣∣
0 2 6
1 −3 −3
−1 0 9

∣∣∣∣∣∣∣
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Matrix Determinants

Remark. Be sure to distinguish from the case of scalar multiple of a matrix:ra11 ra12 ra13
ra21 ra22 ra23
ra31 ra32 ra33

 = r ·

a11 a12 a13
a21 a22 a23
a31 a32 a33


Applying the formula on the previous slide three times (for a 3 × 3 matrix A)
yields that

det(rA) = r3 det(A).
This could also be obtained as follows

det(rA) = det(rI ·A) = det(rI) det(A) = r3 det(A).

More generally, for n× n matrices A,

det(rA) = rn det(A).
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Matrix Determinants

Finally, we are ready to present the following important result.
Theorem 0.5. A square matrix A is invertible if and only if det(A) 6= 0.

Proof. For any square matrix A, there exist a sequence of elementary matrices
E1, E2, . . . , Ek (which are either row permutation or row replacements) such
that

Ek · · ·E2 ·E1 ·A = U︸︷︷︸
REF

←− square matrix

Taking determinants of both sides give that

(−1)r det(A) = det(U)

where r is the number of row permutations used. It follows that det(A) 6= 0
if and only if det(U) 6= 0, which is if and only if U contains n nonzero pivots,
which is if and only if A is invertible.
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Matrix Determinants

Corollary 0.6. Let A ∈ Rn×n be a square matrix. Then the following statements
are all equivalent to “det(A) 6= 0”.

1. A is invertible.

2. A has n pivot positions.

3. The equation Ax = 0 only has the trivial solution.

4. The equation Ax = b (for any b) always has a unique solution.

5. The columns of A form a linearly independent set.

6. The columns of A span Rn.

7. The linear transformation f(x) = Ax is one-to-one.

8. The linear transformation f(x) = Ax (from Rn to Rn) is onto.
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Matrix Determinants

Example 0.11. Find the determinant of

A =

4 −7 −3
6 0 −5
2 7 −2


and use it to determine

(a) if the columns of A are linearly independent;

(b) if the linear transformation f(x) = Ax is one-to-one, or onto, or both.
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Matrix Determinants

Other applications of matrix determinants

• Solving systems of linear equations Ax = b

• Finding matrix inverse (if det(A) 6= 0)

• Computing the area/volume of parallelogram/parallelepiped

We will teach these based on three examples.
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Matrix Determinants

Theorem 0.7 (Cramer’s Rule). Let A ∈ Rn×n be an invertible matrix. Then for
any vector b ∈ Rn, the unique solution x of Ax = b has the following entries:

xi = det[a1 . . . b . . . an]
det [a1 . . . ai . . . an]︸ ︷︷ ︸

A

, for all i = 1, . . . , n

Remark. This formula is inefficient unless the matrix A is 2× 2 or perhaps also
3× 3.

Example 0.12. Use Cramer’s rule to solve the following equation

5x1 + 7x2 = 3
2x1 + 4x2 = 1
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Matrix Determinants

Theorem 0.8 (Adjoint matrix). Let A ∈ Rn×n be an invertible matrix. Then

A−1 = 1
det(A)


C11 C21 · · · Cn1
C12 C22 · · · Cn2
...

...
. . .

...
C1n C2n · · · Cnn


︸ ︷︷ ︸

transposed cofactors matrix, called adjoint

= 1
det(A)adjA.

Remark. This formula is not efficient either.

Example 0.13. Find the inverse of the matrix

A =

1 0 0
2 1 0
3 4 1
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Matrix Determinants

Theorem 0.9. For n vectors a1, . . . , an in Rn, the volume of the n-dimensional
parallelpiped spanned by them is given by det[a1, . . . , an].

Example 0.14. Find

(a) the area of the parallelogram spanned by a1 = (1, 2)T , a2 = (3, 4)T

(b) the volume of the parallelepiped spanned by a1 = (1, 0, 0)T , a2 = (0, 1, 0),
and a3 = (1, 1, 1).
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