Chapter 5: Eigenvalues and eigenvectors San Jose State University

Prof. Guangliang Chen

Fall 2022

Outline

Section 5.1 Eigenvalues and eigenvectors

Section 5.2 The characteristic polynomial

Section 5.3 Diagonalization

Introduction

In this chapter we focus on square matrices $\mathbf{A} \in \mathbb{R}^{n \times n}$.

We regard them as linear transformations from \mathbb{R}^n to \mathbb{R}^n :

 $\mathbf{x} \in \mathbb{R}^n \quad \longmapsto \quad \mathbf{A}\mathbf{x} \in \mathbb{R}^n$

We will find special vectors $\mathbf{v} \in \mathbb{R}^n$ which are "stretched" by the matrix \mathbf{A} :

and say that

- the scalar λ is an **eigenvalue** of **A**, and
- the vector \mathbf{v} is an **eigenvector** of \mathbf{A} corresponding to the eigenvalue λ .

In the picture below, $\lambda_1 > 0$ and $\lambda_2 < 0$ are eigenvalues of A with associated eigenvectors $\mathbf{v}_1, \mathbf{v}_2$, respectively.

Prof. Guangliang Chen | Mathematics & Statistics, San José State University 4/40

Example 0.1. Let

$$\mathbf{A} = \begin{bmatrix} \frac{5}{2} & -1\\ 1 & 0 \end{bmatrix}, \ \mathbf{v}_1 = \begin{bmatrix} 1\\ 1 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} 2\\ 1 \end{bmatrix}, \ \mathbf{v}_3 = \begin{bmatrix} 1\\ 2 \end{bmatrix}$$

Compute Av_i for i = 1, 2, 3. Are they multiples of v_i ?

Application to orthogonal least squares fitting

Given a data set $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^d$, find the best-fit line that minimizes the total squared (orthogonal) fitting error

$$\sum_{i=1}^{n} e_i^2.$$

It turns out the optimal line is given by an eigenvector of some matrix.

We will introduce an algorithm later for finding such a line.

Defintion of eigenvalues and eigenvectors

Def 0.1. Let A be a square matrix. For any pair of scalar λ and nonzero vector v that satisfy the equation

$$\mathbf{A} \cdot \mathbf{v} = \lambda \cdot \mathbf{v}$$

we say that

- λ is an eigenvalue of **A**, and
- ${\bf v}$ is an eigenvector of ${\bf A}$ associated/corresponding to the eigenvalue λ

Remark. In the above definition, λ is allowed to be zero, so we may have zero eigenvalues (for which we have Av = 0). \leftarrow We will revisit this later

Example 0.2. In the previous example where

$$\mathbf{A} = \begin{bmatrix} \frac{5}{2} & -1\\ 1 & 0 \end{bmatrix}, \ \mathbf{v}_1 = \begin{bmatrix} 1\\ 1 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} 2\\ 1 \end{bmatrix}, \ \mathbf{v}_3 = \begin{bmatrix} 1\\ 2 \end{bmatrix}.$$

we have shown that

$$\mathbf{A}\mathbf{v}_2 = 2\mathbf{v}_2, \quad \mathbf{A}\mathbf{v}_3 = \frac{1}{2}\mathbf{v}_3$$

Therefore,

- 2 is an eigenvalue of ${\bf A}$ and ${\bf v}_2$ is an eigenvector corresponding to it;
- $\frac{1}{2}$ is an eigenvalue of A and \mathbf{v}_3 is an eigenvector corresponding to it;
- \mathbf{v}_1 is not an eigenvector of \mathbf{A} (since $\mathbf{A}\mathbf{v}_1$ is not a multiple of \mathbf{v}_1)

Example 0.3. Let

$$\mathbf{A} = \begin{bmatrix} 1 & -2 \\ -1 & 2 \end{bmatrix}, \ \mathbf{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}.$$

Determine if \mathbf{v} is an eigenvector of \mathbf{A} . If yes, find the corresponding eigenvalue.

Example 0.4. Determine if -4 is an eigenvalue of the matrix $\mathbf{A} = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$. If yes, find all eigenvectors associated to it.

The previous example shows that for a fixed eigenvalue λ of a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, there are infinitely many eigenvectors associated to it. In fact, they form a subspace of \mathbb{R}^n .

Proof: We verify the three conditions directly:

Let A be an $n \times n$ matrix with an eigenvalue λ_0 . Its associated eigenvectors all satisfy

$$\mathbf{A}\mathbf{v} = \lambda_0 \mathbf{v}$$
 i.e. $(\mathbf{A} - \lambda_0 \mathbf{I})\mathbf{v} = \mathbf{0}$

This indicates that they comprise the null space of the $n \times n$ matrix $\mathbf{A} - \lambda_0 \mathbf{I}$, which is a subspace of \mathbb{R}^n .

Def 0.2. We call the subspace of all eigenvectors of A associated to the fixed eigenvalue λ_0 , the **eigenspace** of A corresponding to λ_0 , and denote it by

$$\mathbf{E}(\lambda_0) = \mathrm{Nul}(\mathbf{A} - \lambda_0 \mathbf{I})$$

Its dimension is called the **geometric multiplicity** of the eigenvalue λ_0 :

$$g_0 = \dim \operatorname{Nul}(\mathbf{A} - \lambda_0 \mathbf{I})$$

Example 0.5. It is known that the following matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix}$$

has two eigenvalues, $\lambda_1 = 1$ and $\lambda_2 = 3$. Find a basis for each of the two corresponding eigenspaces. What are the geometric multiplicities of the eigenvalues?

Existence of a zero eigenvalue \iff matrix is not invertible

Theorem 0.1. Let A be any square matrix. If A has a zero eigenvalue, then it is not invertible.

Proof. Suppose A has a zero eigenvalue with eigenvector $\mathbf{v} \neq \mathbf{0}$. That is,

$$\mathbf{A} \cdot \mathbf{v} = 0 \cdot \mathbf{v} = \mathbf{0}$$

This shows that the homogeneous equation Ax = 0 has a nontrivial solution (i.e., the eigenvector v). According to the Invertible Matrix Theorem, A is not invertible.

Remark. The converse is also true, i.e., if A is not invertible, then 0 is an eigenvalue of A.

Prof. Guangliang Chen | Mathematics & Statistics, San José State University 14/40

Example 0.6. The matrix

$$\mathbf{A} = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

is not invertible because $\boldsymbol{0}$ is an eigenvalue

$$\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = 0 \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Prof. Guangliang Chen | Mathematics & Statistics, San José State University 15/40

How to find all the eigenvalues of A

Theorem 0.2. Let A be any square matrix. λ is an eigenvalue of A if and only if $A - \lambda I$ is not invertible.

Proof. Suppose A has an eigenvalue λ with eigenvector $\mathbf{v} \neq \mathbf{0}$. That is,

$$\mathbf{A} \cdot \mathbf{v} = \lambda \cdot \mathbf{v}, \quad \text{or equivalently, } (\mathbf{A} - \lambda \mathbf{I})\mathbf{v} = \mathbf{0}.$$

This shows that the homogeneous equation $(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0}$ has a nontrivial solution (i.e., the eigenvector v). According to the Invertible Matrix Theorem, $\mathbf{A} - \lambda \mathbf{I}$ is not invertible.

The converse is also true by reversing the above process.

The theorem implies that the eigenvalues λ of **A** all satisfy $det(\mathbf{A} - \lambda \mathbf{I}) = 0$.

Example 0.7. For each of the following matrices A, find an expression in λ for $det(A - \lambda I)$:

•
$$\mathbf{A} = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

• $\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix}$

Remark. In general, if A is an $n \times n$ matrix, then $det(A - \lambda I)$ is an *n*th order polynomial in λ .

Prof. Guangliang Chen | Mathematics & Statistics, San José State University 17/40

The characteristic polynomial of $\boldsymbol{\mathrm{A}}$

Def 0.3. For any square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$,

 $p(\lambda) = \det(\mathbf{A} - \lambda \mathbf{I}) \longleftarrow n$ th order polynomial

is called the **characteristic polynomial** of A. Clearly, its roots are all and the only eigenvalues of A (and there are at most n of them).

If λ_0 is an eigenvalue of **A**, then $\lambda - \lambda_0$ is a factor of $p(\lambda)$. Its exponent in $p(\lambda)$ is called the **algebraic multiplicity** of the eigenvalue λ_0 .

Remark. It can be shown that for any eigenvalue λ_0 , its geometric multiplicity never exceeds the algebraic multiplicity, i.e.,

$$1 \le g_0 \le a_0$$

Example 0.8. For each of the following matrices **A**, find all of its eigenvalues, as well as the algebraic multiplicities. What are the geometric multiplicities?

•
$$\mathbf{A} = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

• $\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix}$

Remark. Roots of a characteristic polynomial can be complex numbers sometimes, so a real, square matrix could have several complex eigenvalues.

Example 0.9. Find the eigenvalues of

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & -1 & 2 \end{bmatrix}$$

Remark. The eigenvalues of a diagonal or lower/upper triangular matrix are the entries on its main diagonal.

Example 0.10. Determine the eigenvalues of the following matrix

$$\mathbf{A} = \begin{bmatrix} 1 & & \\ & 2 & \\ & & 3 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 1 & & \\ 4 & 2 & \\ 5 & 6 & 3 \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} 1 & 4 & 5 \\ & 2 & 6 \\ & & 3 \end{bmatrix}.$$

Prof. Guangliang Chen | Mathematics & Statistics, San José State University 21/40

Example 0.11 (Practice question). Given the matrix $\mathbf{A} = \begin{bmatrix} 3 & 0 & 0 \\ 5 & 1 & -1 \\ -2 & 2 & 4 \end{bmatrix}$, find its eigenvalues and associated eigenvectors. What are the algebraic and geometric

multiplicities of the eigenvalues?

Eigenvectors corresponding to distinct eigenvalues must be linearly independent

Theorem 0.3. If $\mathbf{v}_1, \ldots, \mathbf{v}_k$ are eigenvectors that correspond to distinct eigenvalues $\lambda_1, \ldots, \lambda_k$ of a square matrix \mathbf{A} , i.e.,

 $\mathbf{A}\mathbf{v}_1 = \lambda_1 \mathbf{v}_1, \ \dots, \ \mathbf{A}\mathbf{v}_k = \lambda_k \mathbf{v}_k$ (the λ_i 's are all different)

then the set $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ must be linearly independent.

Proof. We prove this result by using the so called Vandermonde matrix

$$\mathbf{M} = \begin{bmatrix} 1 & a_1 & a_1^2 & \dots & a_1^{n-1} \\ 1 & a_2 & a_2^2 & \dots & a_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & a_n & a_n^2 & \dots & a_n^{n-1} \end{bmatrix}$$

which is invertible when all a_i 's are dinstinct:

$$\det(\mathbf{M}) = \prod_{1 \le i < j \le n} (a_j - a_i).$$

Detailed steps are shown in class.

Similar matrices

Def 0.4. We say that two square matrices ${\bf A}, {\bf B}$ of the same size are similar if there exists an invertible matrix ${\bf P}$ such that

$$\mathbf{B} = \mathbf{P}^{-1} \mathbf{A} \mathbf{P}$$

Remark. An alternative, yet equivalent definition for \mathbf{A}, \mathbf{B} to be similar is

$$\mathbf{B} = \mathbf{Q}\mathbf{A}\mathbf{Q}^{-1},$$

for an invertible matrix \mathbf{Q} .

Example 0.12. Verify that

$$\underbrace{\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}}_{\mathbf{B}} = \underbrace{\begin{bmatrix} 3 & 1 \\ 1 & 1 \end{bmatrix}^{-1}}_{\mathbf{P}^{-1}} \underbrace{\begin{bmatrix} 2 & -3 \\ 1 & -2 \end{bmatrix}}_{\mathbf{A}} \underbrace{\begin{bmatrix} 3 & 1 \\ 1 & 1 \end{bmatrix}}_{\mathbf{P}}$$

This shows that A, B are similar to each other.

Remark. Similar matrices must have the same determinant. To see this, write

$$det(\mathbf{B}) = det(\mathbf{P}^{-1}\mathbf{A}\mathbf{P}) = det(\mathbf{P}^{-1}) det(\mathbf{A}) det(\mathbf{P}) = det(\mathbf{A}).$$

They are thus both invertible or non-invertible at the same time (in fact, they must have the same rank).

Similar matrices also have the same eigenvalues

Theorem 0.4. Let A, B be two square matrices of the same size. If they are similar, then they have the same characteristic polynomial and thus the same eigenvalues (with the same algebraic multiplicities).

Proof: Suppose $B = P^{-1}AP$ for some invertible matrix P (of the same size). Then

$$p_{\mathbf{B}}(\lambda) = \det(\mathbf{B} - \lambda \mathbf{I})$$

= det($\mathbf{P}^{-1}\mathbf{A}\mathbf{P} - \lambda \mathbf{I}$)
= det [$\mathbf{P}^{-1}(\mathbf{A} - \lambda \mathbf{I})\mathbf{P}$]
= det($\mathbf{A} - \lambda \mathbf{I}$)
= $p_{\mathbf{A}}(\lambda)$

Prof. Guangliang Chen | Mathematics & Statistics, San José State University 28/40

Remark. The converse of the theorem is not true, i.e., if A, B have the same eigenvalues, then they are not necessarily similar to each other.

A counterexample is

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$

They have the same characteristic polynomial and thus the same eigenvalues, but they are not similar. \leftarrow Why?

Diagonalizability of square matrices

Def 0.5. A square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is **diagonalizable** if it is similar to a diagonal matrix, i.e., there exist an invertible matrix $\mathbf{P} \in \mathbb{R}^{n \times n}$ and a diagonal matrix $\mathbf{D} \in \mathbb{R}^{n \times n}$ such that

 $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1},$ or equivalently, $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{D}.$

Remark. If we write $\mathbf{P} = [\mathbf{p}_1, \dots, \mathbf{p}_n]$ and $\mathbf{D} = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$, then the above equation can be rewritten as

$$AP = PD$$
,

Prof. Guangliang Chen | Mathematics & Statistics, San José State University 30/40

Eigenvalues and eigenvectors

or in columns

$$\mathbf{A}[\mathbf{p}_1 \dots \mathbf{p}_n] = [\mathbf{p}_1 \dots \mathbf{p}_n] \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}$$

From this we get that

$$\mathbf{A}\mathbf{p}_i = \lambda_i \mathbf{p}_i, \ 1 \le i \le n.$$

This shows that A has n eigenvalues $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ (not necessarily distinct) with corresponding eigenvectors $\mathbf{p}_1, \ldots, \mathbf{p}_n \in \mathbb{R}^n$ which are linearly independent.

Thus, the above factorization of a diagonalizable matrix \mathbf{A} , i.e.,

$$\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$$

is called the eigenvalue decomposition, or simply eigendecomposition, of A.

Prof. Guangliang Chen | Mathematics & Statistics, San José State University 31/40

Example 0.13. The matrix

$$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 3 & 2 \end{pmatrix}$$

is diagonalizable because

$$\begin{pmatrix} 0 & 1 \\ 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 3 & -1 \end{pmatrix} \begin{pmatrix} 3 & \\ & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 3 & -1 \end{pmatrix}^{-1} \longleftarrow \text{ eigendecomposition}$$

but the matrix

$$\mathbf{B} = \begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix}$$

is not (we will see why later).

Why are diagonalizable matrices important?

Every diagonalizable matrix is similar to a diagonal matrix (that consists of its eigenvalues), and is easy to deal with in a lot of ways.

For example, it can help compute **matrix powers** (\mathbf{A}^k) . To see this, suppose $\mathbf{A} \in \mathbb{R}^{n \times n}$ is diagonalizable, that is, $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$ for some invertible matrix \mathbf{P} and a diagonal matrix \mathbf{D} . Then

$$\mathbf{A}^{2} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1} \cdot \mathbf{P}\mathbf{D}\mathbf{P}^{-1} = \mathbf{P}\mathbf{D}^{2}\mathbf{P}^{-1}$$
$$\mathbf{A}^{3} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1} \cdot \mathbf{P}\mathbf{D}\mathbf{P}^{-1} \cdot \mathbf{P}\mathbf{D}\mathbf{P}^{-1} = \mathbf{P}\mathbf{D}^{3}\mathbf{P}^{-1}$$
$$\mathbf{A}^{k} = \mathbf{P}\mathbf{D}^{k}\mathbf{P}^{-1} \quad \text{(for any positive integer } k\text{)}$$

where $\mathbf{D}^k = \operatorname{diag}(\lambda_1^k, \ldots, \lambda_n^k)$.

Example 0.14. For the diagonalizable matrix in the preceding example,

$$\underbrace{\begin{pmatrix} 0 & 1 \\ 3 & 2 \end{pmatrix}}_{\mathbf{A}} = \underbrace{\begin{pmatrix} 1 & 1 \\ 3 & -1 \end{pmatrix}}_{\mathbf{P}} \underbrace{\begin{pmatrix} 3 & \\ & -1 \end{pmatrix}}_{\mathbf{D}} \underbrace{\begin{pmatrix} 1 & 1 \\ 3 & -1 \end{pmatrix}}_{\mathbf{P}^{-1}}^{-1}$$

the 10th power of \mathbf{A} is

$$\mathbf{A}^{10} = \mathbf{P}\mathbf{D}^{10}\mathbf{P}^{-1} = \begin{pmatrix} 1 & 1 \\ 3 & -1 \end{pmatrix} \begin{pmatrix} 3^{10} & \\ & (-1)^{10} \end{pmatrix} \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{3}{4} & -\frac{1}{4} \end{pmatrix} = \begin{pmatrix} 14763 & 14762 \\ 44286 & 44287 \end{pmatrix}$$

Prof. Guangliang Chen | Mathematics & Statistics, San José State University 34/40

Checking diagonalizability of a square matrix

Theorem 0.5. A matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is diagonalizable if and only if it has n linearly independent eigenvectors (i.e., $\sum g_i = n$).

Proof. We have already proved this result earlier:

$$\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1} \iff \mathbf{A}\mathbf{P} = \mathbf{P}\mathbf{D} \iff \mathbf{A}\mathbf{p}_i = \lambda_i\mathbf{p}_i, 1 \le i \le n$$

The p_i 's are linearly independent if and only if P is invertible.

Example 0.15. The matrix $\mathbf{B} = \begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix}$ is not diagonalizable because it has one distinct eigenvalue $\lambda_1 = 1$ with $a_1 = 2$ and $g_1 = 1$ (only one linearly independent eigenvector).

Example 0.16. Is the following matrix diagonalizable? If yes, find the eigendecomposition.

$$\mathbf{A} = \begin{bmatrix} 3 & 0 & 0 \\ 2 & 1 & -1 \\ -2 & 2 & 4 \end{bmatrix}.$$

The previous theorem immediately implies the following results.

Corollary 0.6. Any matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ with n distinct eigenvalues, i.e.,

 $a_i = 1, \quad 1 \le i \le n,$

is diagonalizable.

,

Example 0.17. Is the following matrix diagonalizable? If yes, find the eigendecomposition.

$$\mathbf{A} = \begin{bmatrix} 3 & 0 & 0 \\ 2 & 1 & 1 \\ -2 & 2 & 4 \end{bmatrix}$$

Prof. Guangliang Chen | Mathematics & Statistics, San José State University 39/40

To be introduced later

Another important result is that symmetric matrices, i.e., $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{A}^T = \mathbf{A}$, are always diagonalizable.

We will learn this in Chapter 7.