Chapter 5: Eigenvalues and eigenvectors

San Jose State University

Prof. Guangliang Chen

Fall 2022

Outline

Section 5.1 Eigenvalues and eigenvectors

Section 5.2 The characteristic polynomial

Section 5.3 Diagonalization

Eigenvalues and eigenvectors

Introduction

In this chapter we focus on square matrices $\mathbf{A} \in \mathbb{R}^{n \times n}$.
We regard them as linear transformations from \mathbb{R}^{n} to \mathbb{R}^{n} :

$$
\mathrm{x} \in \mathbb{R}^{n} \quad \longmapsto \quad \mathbf{A x} \in \mathbb{R}^{n}
$$

We will find special vectors $\mathbf{v} \in \mathbb{R}^{n}$ which are "stretched" by the matrix \mathbf{A} :

and say that

- the scalar λ is an eigenvalue of \mathbf{A}, and
- the vector \mathbf{v} is an eigenvector of \mathbf{A} corresponding to the eigenvalue λ.

Eigenvalues and eigenvectors

In the picture below, $\lambda_{1}>0$ and $\lambda_{2}<0$ are eigenvalues of \mathbf{A} with associated eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}$, respectively.

Eigenvalues and eigenvectors

Example 0.1. Let

$$
\mathbf{A}=\left[\begin{array}{cc}
\frac{5}{2} & -1 \\
1 & 0
\end{array}\right], \quad \mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
2 \\
1
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

Compute $\mathbf{A v}_{i}$ for $i=1,2,3$. Are they multiples of \mathbf{v}_{i} ?

Application to orthogonal least squares fitting

Given a data set $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathbb{R}^{d}$, find the best-fit line that minimizes the total squared (orthogonal) fitting error

$$
\sum_{i=1}^{n} e_{i}^{2}
$$

It turns out the optimal line is given by an eigenvector of some matrix.

We will introduce an algorithm later for finding such a line.

Defintion of eigenvalues and eigenvectors

Def 0.1. Let \mathbf{A} be a square matrix. For any pair of scalar λ and nonzero vector v that satisfy the equation

$$
\mathbf{A} \cdot \mathbf{v}=\lambda \cdot \mathbf{v}
$$

we say that

- λ is an eigenvalue of \mathbf{A}, and
- v is an eigenvector of A associated/corresponding to the eigenvalue λ

Remark. In the above definition, λ is allowed to be zero, so we may have zero eigenvalues (for which we have $\mathbf{A v}=\mathbf{0}$). \longleftarrow We will revisit this later

Eigenvalues and eigenvectors

Example 0.2. In the previous example where

$$
\mathbf{A}=\left[\begin{array}{cc}
\frac{5}{2} & -1 \\
1 & 0
\end{array}\right], \mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}
2 \\
1
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] .
$$

we have shown that

$$
\mathbf{A v}_{2}=2 \mathbf{v}_{2}, \quad \mathbf{A} \mathbf{v}_{3}=\frac{1}{2} \mathbf{v}_{3}
$$

Therefore,

- 2 is an eigenvalue of \mathbf{A} and \mathbf{v}_{2} is an eigenvector corresponding to it;
- $\frac{1}{2}$ is an eigenvalue of \mathbf{A} and \mathbf{v}_{3} is an eigenvector corresponding to it;
- \mathbf{v}_{1} is not an eigenvector of \mathbf{A} (since $\mathbf{A v}_{1}$ is not a multiple of \mathbf{v}_{1})

Eigenvalues and eigenvectors

Example 0.3. Let

$$
\mathbf{A}=\left[\begin{array}{cc}
1 & -2 \\
-1 & 2
\end{array}\right], \mathbf{v}=\left[\begin{array}{l}
2 \\
1
\end{array}\right] .
$$

Determine if \mathbf{v} is an eigenvector of \mathbf{A}. If yes, find the corresponding eigenvalue.

Eigenvalues and eigenvectors

Example 0.4. Determine if -4 is an eigenvalue of the matrix $\mathbf{A}=\left[\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right]$. If yes, find all eigenvectors associated to it.

Eigenvalues and eigenvectors

The previous example shows that for a fixed eigenvalue λ of a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, there are infinitely many eigenvectors associated to it. In fact, they form a subspace of \mathbb{R}^{n}.

Proof: We verify the three conditions directly:

Eigenvalues and eigenvectors

Let \mathbf{A} be an $n \times n$ matrix with an eigenvalue λ_{0}. Its associated eigenvectors all satisfy

$$
\mathbf{A v}=\lambda_{0} \mathbf{v} \quad \text { i.e. } \quad\left(\mathbf{A}-\lambda_{0} \mathbf{I}\right) \mathbf{v}=\mathbf{0}
$$

This indicates that they comprise the null space of the $n \times n$ matrix $\mathbf{A}-\lambda_{0} \mathbf{I}$, which is a subspace of \mathbb{R}^{n}.

Def 0.2. We call the subspace of all eigenvectors of \mathbf{A} associated to the fixed eigenvalue λ_{0}, the eigenspace of \mathbf{A} corresponding to λ_{0}, and denote it by

$$
\mathrm{E}\left(\lambda_{0}\right)=\operatorname{Nul}\left(\mathbf{A}-\lambda_{0} \mathbf{I}\right)
$$

Its dimension is called the geometric multiplicity of the eigenvalue λ_{0} :

$$
g_{0}=\operatorname{dim} \operatorname{Nul}\left(\mathbf{A}-\lambda_{0} \mathbf{I}\right)
$$

Eigenvalues and eigenvectors

Example 0.5. It is known that the following matrix

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 1 \\
0 & 1 & 2
\end{array}\right]
$$

has two eigenvalues, $\lambda_{1}=1$ and $\lambda_{2}=3$. Find a basis for each of the two corresponding eigenspaces. What are the geometric multiplicities of the eigenvalues?

Eigenvalues and eigenvectors

Existence of a zero eigenvalue \Longleftrightarrow matrix is not invertible

Theorem 0.1. Let \mathbf{A} be any square matrix. If \mathbf{A} has a zero eigenvalue, then it is not invertible.

Proof. Suppose \mathbf{A} has a zero eigenvalue with eigenvector $\mathbf{v} \neq \mathbf{0}$. That is,

$$
\mathbf{A} \cdot \mathbf{v}=0 \cdot \mathbf{v}=\mathbf{0}
$$

This shows that the homogeneous equation $\mathbf{A x}=\mathbf{0}$ has a nontrivial solution (i.e., the eigenvector v). According to the Invertible Matrix Theorem, A is not invertible.

Remark. The converse is also true, i.e., if \mathbf{A} is not invertible, then 0 is an eigenvalue of \mathbf{A}.

Eigenvalues and eigenvectors

Example 0.6. The matrix

$$
\mathbf{A}=\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]
$$

is not invertible because 0 is an eigenvalue

$$
\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]=0 \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Eigenvalues and eigenvectors

How to find all the eigenvalues of A

Theorem 0.2. Let \mathbf{A} be any square matrix. λ is an eigenvalue of \mathbf{A} if and only if $\mathbf{A}-\lambda \mathbf{I}$ is not invertible.

Proof. Suppose \mathbf{A} has an eigenvalue λ with eigenvector $\mathbf{v} \neq \mathbf{0}$. That is,

$$
\mathbf{A} \cdot \mathbf{v}=\lambda \cdot \mathbf{v}, \quad \text { or equivalently }, \quad(\mathbf{A}-\lambda \mathbf{I}) \mathbf{v}=\mathbf{0} .
$$

This shows that the homogeneous equation $(\mathbf{A}-\lambda \mathbf{I}) \mathbf{x}=\mathbf{0}$ has a nontrivial solution (i.e., the eigenvector v). According to the Invertible Matrix Theorem, $\mathbf{A}-\lambda \mathbf{I}$ is not invertible.

The converse is also true by reversing the above process.

Eigenvalues and eigenvectors

The theorem implies that the eigenvalues λ of \mathbf{A} all satisfy $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0$.
Example 0.7. For each of the following matrices \mathbf{A}, find an expression in λ for $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})$:

- $\mathbf{A}=\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$
- $\mathbf{A}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2\end{array}\right]$

Remark. In general, if \mathbf{A} is an $n \times n$ matrix, then $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})$ is an nth order polynomial in λ.

The characteristic polynomial of \mathbf{A}

Def 0.3. For any square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$,

$$
p(\lambda)=\operatorname{det}(\mathbf{A}-\lambda \mathbf{I}) \longleftarrow n \text {th order polynomial }
$$

is called the characteristic polynomial of \mathbf{A}. Clearly, its roots are all and the only eigenvalues of \mathbf{A} (and there are at most n of them).

If λ_{0} is an eigenvalue of \mathbf{A}, then $\lambda-\lambda_{0}$ is a factor of $p(\lambda)$. Its exponent in $p(\lambda)$ is called the algebraic multiplicity of the eigenvalue λ_{0}.

Remark. It can be shown that for any eigenvalue λ_{0}, its geometric multiplicity never exceeds the algebraic multiplicity, i.e.,

$$
1 \leq g_{0} \leq a_{0}
$$

Eigenvalues and eigenvectors

Example 0.8. For each of the following matrices \mathbf{A}, find all of its eigenvalues, as well as the algebraic multiplicities. What are the geometric multiplicities?

- $\mathbf{A}=\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$
- $\mathbf{A}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2\end{array}\right]$

Eigenvalues and eigenvectors

Remark. Roots of a characteristic polynomial can be complex numbers sometimes, so a real, square matrix could have several complex eigenvalues.

Example 0.9. Find the eigenvalues of

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & 1 \\
0 & -1 & 2
\end{array}\right]
$$

Eigenvalues and eigenvectors

Remark. The eigenvalues of a diagonal or lower/upper triangular matrix are the entries on its main diagonal.

Example 0.10. Determine the eigenvalues of the following matrix

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & & \\
& 2 & \\
& & 3
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{lll}
1 & & \\
4 & 2 & \\
5 & 6 & 3
\end{array}\right], \quad \mathbf{C}=\left[\begin{array}{lll}
1 & 4 & 5 \\
& 2 & 6 \\
& & 3
\end{array}\right] .
$$

Eigenvalues and eigenvectors

Example 0.11 (Practice question). Given the matrix $\mathbf{A}=\left[\begin{array}{ccc}3 & 0 & 0 \\ 5 & 1 & -1 \\ -2 & 2 & 4\end{array}\right]$, find its eigenvalues and associated eigenvectors. What are the algebraic and geometric multiplicities of the eigenvalues?

Eigenvectors corresponding to distinct eigenvalues must be linearly independent

Theorem 0.3. If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are eigenvectors that correspond to distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$ of a square matrix \mathbf{A}, i.e.,

$$
\mathbf{A} \mathbf{v}_{1}=\lambda_{1} \mathbf{v}_{1}, \ldots, \mathbf{A} \mathbf{v}_{k}=\lambda_{k} \mathbf{v}_{k} \quad \text { (the } \lambda_{i} \text { 's are all different) }
$$

then the set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ must be linearly independent.

Eigenvalues and eigenvectors

Proof. We prove this result by using the so called Vandermonde matrix

$$
\mathbf{M}=\left[\begin{array}{ccccc}
1 & a_{1} & a_{1}^{2} & \ldots & a_{1}^{n-1} \\
1 & a_{2} & a_{2}^{2} & \ldots & a_{2}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & a_{n} & a_{n}^{2} & \ldots & a_{n}^{n-1}
\end{array}\right]
$$

which is invertible when all a_{i} 's are dinstinct:

$$
\operatorname{det}(\mathbf{M})=\Pi_{1 \leq i<j \leq n}\left(a_{j}-a_{i}\right) .
$$

Detailed steps are shown in class.

Eigenvalues and eigenvectors

Similar matrices

Def 0.4. We say that two square matrices \mathbf{A}, \mathbf{B} of the same size are similar if there exists an invertible matrix \mathbf{P} such that

$$
\mathbf{B}=\mathbf{P}^{-1} \mathbf{A P}
$$

Remark. An alternative, yet equivalent definition for \mathbf{A}, \mathbf{B} to be similar is

$$
\mathbf{B}=\mathbf{Q A}_{\mathbf{A}} \mathbf{Q}^{-1},
$$

for an invertible matrix \mathbf{Q}.

Eigenvalues and eigenvectors

Example 0.12. Verify that

$$
\underbrace{\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]}_{\mathbf{B}}=\underbrace{\left[\begin{array}{ll}
3 & 1 \\
1 & 1
\end{array}\right]^{-1}}_{\mathbf{P}^{-1}} \underbrace{\left[\begin{array}{ll}
2 & -3 \\
1 & -2
\end{array}\right]}_{\mathbf{A}} \underbrace{\left[\begin{array}{ll}
3 & 1 \\
1 & 1
\end{array}\right]}_{\mathbf{P}}
$$

This shows that \mathbf{A}, \mathbf{B} are similar to each other.

Eigenvalues and eigenvectors

Remark. Similar matrices must have the same determinant. To see this, write

$$
\operatorname{det}(\mathbf{B})=\operatorname{det}\left(\mathbf{P}^{-1} \mathbf{A P}\right)=\operatorname{det}\left(\mathbf{P}^{-1}\right) \operatorname{det}(\mathbf{A}) \operatorname{det}(\mathbf{P})=\operatorname{det}(\mathbf{A}) .
$$

They are thus both invertible or non-invertible at the same time (in fact, they must have the same rank).

Similar matrices also have the same eigenvalues

Theorem 0.4. Let \mathbf{A}, \mathbf{B} be two square matrices of the same size. If they are similar, then they have the same characteristic polynomial and thus the same eigenvalues (with the same algebraic multiplicities).

Proof: Suppose $\mathbf{B}=\mathbf{P}^{-1} \mathbf{A P}$ for some invertible matrix \mathbf{P} (of the same size). Then

$$
\begin{aligned}
p_{\mathbf{B}}(\lambda) & =\operatorname{det}(\mathbf{B}-\lambda \mathbf{I}) \\
& =\operatorname{det}\left(\mathbf{P}^{-1} \mathbf{A} \mathbf{P}-\lambda \mathbf{I}\right) \\
& =\operatorname{det}\left[\mathbf{P}^{-1}(\mathbf{A}-\lambda \mathbf{I}) \mathbf{P}\right] \\
& =\operatorname{det}(\mathbf{A}-\lambda \mathbf{I}) \\
& =p_{\mathbf{A}}(\lambda)
\end{aligned}
$$

Eigenvalues and eigenvectors

Remark. The converse of the theorem is not true, i.e., if \mathbf{A}, \mathbf{B} have the same eigenvalues, then they are not necessarily similar to each other.

A counterexample is

$$
\mathbf{A}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]
$$

They have the same characteristic polynomial and thus the same eigenvalues, but they are not similar. \longleftarrow Why?

Diagonalizability of square matrices

Def 0.5. A square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is diagonalizable if it is similar to a diagonal matrix, i.e., there exist an invertible matrix $\mathbf{P} \in \mathbb{R}^{n \times n}$ and a diagonal matrix $\mathbf{D} \in \mathbb{R}^{n \times n}$ such that

$$
\mathbf{A}=\mathbf{P D P}^{-1}, \quad \text { or equivalently }, \quad \mathbf{P}^{-1} \mathbf{A P}=\mathbf{D}
$$

Remark. If we write $\mathbf{P}=\left[\mathbf{p}_{1}, \ldots, \mathbf{p}_{n}\right]$ and $\mathbf{D}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, then the above equation can be rewritten as

$$
\mathbf{A P}=\mathbf{P D}
$$

Eigenvalues and eigenvectors

or in columns

$$
\mathbf{A}\left[\mathbf{p}_{1} \ldots \mathbf{p}_{n}\right]=\left[\mathbf{p}_{1} \ldots \mathbf{p}_{n}\right]\left[\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right]
$$

From this we get that

$$
\mathbf{A} \mathbf{p}_{i}=\lambda_{i} \mathbf{p}_{i}, 1 \leq i \leq n
$$

This shows that \mathbf{A} has n eigenvalues $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$ (not necessarily distinct) with corresponding eigenvectors $\mathbf{p}_{1}, \ldots, \mathbf{p}_{n} \in \mathbb{R}^{n}$ which are linearly independent.

Thus, the above factorization of a diagonalizable matrix \mathbf{A}, i.e.,

$$
\mathbf{A}=\mathbf{P D P}^{-1}
$$

is called the eigenvalue decomposition, or simply eigendecomposition, of \mathbf{A}.

Eigenvalues and eigenvectors

Example 0.13. The matrix

$$
\mathbf{A}=\left(\begin{array}{ll}
0 & 1 \\
3 & 2
\end{array}\right)
$$

is diagonalizable because

$$
\left(\begin{array}{ll}
0 & 1 \\
3 & 2
\end{array}\right)=\left(\begin{array}{cc}
1 & 1 \\
3 & -1
\end{array}\right)\left(\begin{array}{cc}
3 & \\
& -1
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
3 & -1
\end{array}\right)^{-1} \longleftarrow \text { eigendecomposition }
$$

but the matrix

$$
\mathbf{B}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 2
\end{array}\right)
$$

is not (we will see why later).

Why are diagonalizable matrices important?

Every diagonalizable matrix is similar to a diagonal matrix (that consists of its eigenvalues), and is easy to deal with in a lot of ways.

For example, it can help compute matrix powers $\left(\mathbf{A}^{k}\right)$. To see this, suppose $\mathbf{A} \in \mathbb{R}^{n \times n}$ is diagonalizable, that is, $\mathbf{A}=\mathbf{P D P}^{-1}$ for some invertible matrix \mathbf{P} and a diagonal matrix \mathbf{D}. Then

$$
\begin{aligned}
& \mathbf{A}^{2}=\mathbf{P D P}^{-1} \cdot \mathbf{P D P}^{-1}=\mathbf{P D}^{2} \mathbf{P}^{-1} \\
& \mathbf{A}^{3}=\mathbf{P D P}^{-1} \cdot \mathbf{P D P}^{-1} \cdot \mathbf{P D P}^{-1}=\mathbf{P D}^{3} \mathbf{P}^{-1} \\
& \mathbf{A}^{k}=\mathbf{P D}^{k} \mathbf{P}^{-1} \quad(\text { for any positive integer } k)
\end{aligned}
$$

where $\mathbf{D}^{k}=\operatorname{diag}\left(\lambda_{1}^{k}, \ldots, \lambda_{n}^{k}\right)$.

Eigenvalues and eigenvectors

Example 0.14. For the diagonalizable matrix in the preceding example,

$$
\underbrace{\left(\begin{array}{ll}
0 & 1 \\
3 & 2
\end{array}\right)}_{\mathbf{A}}=\underbrace{\left(\begin{array}{cc}
1 & 1 \\
3 & -1
\end{array}\right)}_{\mathbf{P}} \underbrace{\left(\begin{array}{cc}
3 & -1
\end{array}\right)}_{\mathbf{D}} \underbrace{\left(\begin{array}{cc}
1 & 1 \\
3 & -1
\end{array}\right)^{-1}}_{\mathbf{P}^{-1}}
$$

the 10th power of \mathbf{A} is

$$
\mathbf{A}^{10}=\mathbf{P D}^{10} \mathbf{P}^{-1}=\left(\begin{array}{cc}
1 & 1 \\
3 & -1
\end{array}\right)\left(\begin{array}{cc}
3^{10} & \\
& (-1)^{10}
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{4} & \frac{1}{4} \\
\frac{3}{4} & -\frac{1}{4}
\end{array}\right)=\left(\begin{array}{ll}
14763 & 14762 \\
44286 & 44287
\end{array}\right)
$$

Checking diagonalizability of a square matrix

Theorem 0.5. A matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is diagonalizable if and only if it has n linearly independent eigenvectors (i.e., $\sum g_{i}=n$).

Proof. We have already proved this result earlier:

$$
\mathbf{A}=\mathbf{P D P}^{-1} \Longleftrightarrow \mathbf{A P}=\mathbf{P D} \Longleftrightarrow \mathbf{A} \mathbf{p}_{i}=\lambda_{i} \mathbf{p}_{i}, 1 \leq i \leq n
$$

The \mathbf{p}_{i} 's are linearly independent if and only if \mathbf{P} is invertible.

Eigenvalues and eigenvectors

Example 0.15. The matrix $\mathbf{B}=\left(\begin{array}{cc}0 & 1 \\ -1 & 2\end{array}\right)$ is not diagonalizable because it has one distinct eigenvalue $\lambda_{1}=1$ with $a_{1}=2$ and $g_{1}=1$ (only one linearly independent eigenvector).

Eigenvalues and eigenvectors

Example 0.16. Is the following matrix diagonalizable? If yes, find the eigendecomposition.

$$
\mathbf{A}=\left[\begin{array}{ccc}
3 & 0 & 0 \\
2 & 1 & -1 \\
-2 & 2 & 4
\end{array}\right]
$$

Eigenvalues and eigenvectors

The previous theorem immediately implies the following results.
Corollary 0.6. Any matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ with n distinct eigenvalues, i.e.,

$$
a_{i}=1, \quad 1 \leq i \leq n,
$$

is diagonalizable.

Eigenvalues and eigenvectors

Example 0.17. Is the following matrix diagonalizable? If yes, find the eigendecomposition.

$$
\mathbf{A}=\left[\begin{array}{ccc}
3 & 0 & 0 \\
2 & 1 & 1 \\
-2 & 2 & 4
\end{array}\right]
$$

Eigenvalues and eigenvectors

To be introduced later

Another important result is that symmetric matrices, i.e., $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{A}^{T}=\mathbf{A}$, are always diagonalizable.

We will learn this in Chapter 7.

