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Eigenvalues and eigenvectors

Introduction
In this chapter we focus on square matrices A ∈ Rn×n.

We regard them as linear transformations from Rn to Rn:

x ∈ Rn 7−→ Ax ∈ Rn

We will find special vectors v ∈ Rn which are “stretched” by the matrix A:

A · v︸ ︷︷ ︸
image of v under A

= λ · v︸︷︷︸
a multiple of v

and say that

• the scalar λ is an eigenvalue of A, and

• the vector v is an eigenvector of A corresponding to the eigenvalue λ.
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Eigenvalues and eigenvectors

In the picture below, λ1 > 0 and λ2 < 0 are eigenvalues of A with associated
eigenvectors v1,v2, respectively.

b

Av1 = λ1v1

v1

v2

Av2 = λ2v2
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Eigenvalues and eigenvectors

Example 0.1. Let

A =
[

5
2 −1
1 0

]
, v1 =

[
1
1

]
, v2 =

[
2
1

]
, v3 =

[
1
2

]
.

Compute Avi for i = 1, 2, 3. Are they multiples of vi?
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Eigenvalues and eigenvectors

Application to orthogonal least squares fitting

Given a data set x1, . . . ,xn ∈ Rd, find
the best-fit line that minimizes the total
squared (orthogonal) fitting error

n∑
i=1

e2
i .

It turns out the optimal line is given by
an eigenvector of some matrix.

We will introduce an algorithm later for
finding such a line.
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Eigenvalues and eigenvectors

Defintion of eigenvalues and eigenvectors
Def 0.1. Let A be a square matrix. For any pair of scalar λ and nonzero vector
v that satisfy the equation

A · v = λ · v

we say that

• λ is an eigenvalue of A, and

• v is an eigenvector of A associated/corresponding to the eigenvalue λ

Remark. In the above definition, λ is allowed to be zero, so we may have zero
eigenvalues (for which we have Av = 0). ←− We will revisit this later
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Eigenvalues and eigenvectors

Example 0.2. In the previous example where

A =
[

5
2 −1
1 0

]
, v1 =

[
1
1

]
, v2 =

[
2
1

]
, v3 =

[
1
2

]
.

we have shown that
Av2 = 2v2, Av3 = 1

2v3

Therefore,

• 2 is an eigenvalue of A and v2 is an eigenvector corresponding to it;

• 1
2 is an eigenvalue of A and v3 is an eigenvector corresponding to it;

• v1 is not an eigenvector of A (since Av1 is not a multiple of v1)
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Eigenvalues and eigenvectors

Example 0.3. Let

A =
[

1 −2
−1 2

]
, v =

[
2
1

]
.

Determine if v is an eigenvector of A. If yes, find the corresponding eigenvalue.

Prof. Guangliang Chen | Mathematics & Statistics, San José State University 9/40



Eigenvalues and eigenvectors

Example 0.4. Determine if −4 is an eigenvalue of the matrix A =
[

1 6
5 2

]
. If

yes, find all eigenvectors associated to it.
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Eigenvalues and eigenvectors

The previous example shows that for a fixed eigenvalue λ of a square matrix
A ∈ Rn×n, there are infinitely many eigenvectors associated to it. In fact, they
form a subspace of Rn.

Proof: We verify the three conditions directly:
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Eigenvalues and eigenvectors

Let A be an n× n matrix with an eigenvalue λ0. Its associated eigenvectors all
satisfy

Av = λ0v i.e. (A− λ0I)v = 0

This indicates that they comprise the null space of the n × n matrix A − λ0I,
which is a subspace of Rn.

Def 0.2. We call the subspace of all eigenvectors of A associated to the fixed
eigenvalue λ0, the eigenspace of A corresponding to λ0, and denote it by

E(λ0) = Nul(A− λ0I)

Its dimension is called the geometric multiplicity of the eigenvalue λ0:

g0 = dimNul(A− λ0I)
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Eigenvalues and eigenvectors

Example 0.5. It is known that the following matrix

A =

1 0 0
0 2 1
0 1 2


has two eigenvalues, λ1 = 1 and λ2 = 3. Find a basis for each of the two corre-
sponding eigenspaces. What are the geometric multiplicities of the eigenvalues?
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Eigenvalues and eigenvectors

Existence of a zero eigenvalue ⇐⇒ matrix is not invertible

Theorem 0.1. Let A be any square matrix. If A has a zero eigenvalue, then it is
not invertible.

Proof. Suppose A has a zero eigenvalue with eigenvector v 6= 0. That is,

A · v = 0 · v = 0

This shows that the homogeneous equation Ax = 0 has a nontrivial solution
(i.e., the eigenvector v). According to the Invertible Matrix Theorem, A is not
invertible.

Remark. The converse is also true, i.e., if A is not invertible, then 0 is an
eigenvalue of A.
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Eigenvalues and eigenvectors

Example 0.6. The matrix

A =
[

1 −1
−1 1

]
is not invertible because 0 is an eigenvalue[

1 −1
−1 1

][
1
1

]
=
[

0
0

]
= 0 ·

[
1
1

]
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Eigenvalues and eigenvectors

How to find all the eigenvalues of A
Theorem 0.2. Let A be any square matrix. λ is an eigenvalue of A if and only if
A− λI is not invertible.

Proof. Suppose A has an eigenvalue λ with eigenvector v 6= 0. That is,

A · v = λ · v, or equivalently, (A− λI)v = 0.

This shows that the homogeneous equation (A − λI)x = 0 has a nontrivial
solution (i.e., the eigenvector v). According to the Invertible Matrix Theorem,
A− λI is not invertible.

The converse is also true by reversing the above process.

Prof. Guangliang Chen | Mathematics & Statistics, San José State University 16/40



Eigenvalues and eigenvectors

The theorem implies that the eigenvalues λ of A all satisfy det(A− λI) = 0.

Example 0.7. For each of the following matrices A, find an expression in λ for
det(A− λI):

• A =
[

1 −1
−1 1

]

• A =

1 0 0
0 2 1
0 1 2


Remark. In general, if A is an n× n matrix, then det(A− λI) is an nth order
polynomial in λ.
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Eigenvalues and eigenvectors

The characteristic polynomial of A
Def 0.3. For any square matrix A ∈ Rn×n,

p(λ) = det(A− λI)←− nth order polynomial

is called the characteristic polynomial of A. Clearly, its roots are all and the
only eigenvalues of A (and there are at most n of them).

If λ0 is an eigenvalue of A, then λ− λ0 is a factor of p(λ). Its exponent in p(λ)
is called the algebraic multiplicity of the eigenvalue λ0.

Remark. It can be shown that for any eigenvalue λ0, its geometric multiplicity
never exceeds the algebraic multiplicity, i.e.,

1 ≤ g0 ≤ a0
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Eigenvalues and eigenvectors

Example 0.8. For each of the following matrices A, find all of its eigenvalues,
as well as the algebraic multiplicities. What are the geometric multiplicities?

• A =
[

1 −1
−1 1

]

• A =

1 0 0
0 2 1
0 1 2


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Eigenvalues and eigenvectors

Remark. Roots of a characteristic polynomial can be complex numbers sometimes,
so a real, square matrix could have several complex eigenvalues.

Example 0.9. Find the eigenvalues of

A =

1 0 0
0 2 1
0 −1 2


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Eigenvalues and eigenvectors

Remark. The eigenvalues of a diagonal or lower/upper triangular matrix are the
entries on its main diagonal.

Example 0.10. Determine the eigenvalues of the following matrix

A =

1
2

3

 , B =

1
4 2
5 6 3

 , C =

1 4 5
2 6

3

 .
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Eigenvalues and eigenvectors

Example 0.11 (Practice question). Given the matrix A =

 3 0 0
5 1 −1
−2 2 4

, find
its eigenvalues and associated eigenvectors. What are the algebraic and geometric
multiplicities of the eigenvalues?
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Eigenvalues and eigenvectors

Eigenvectors corresponding to distinct eigenvalues must be
linearly independent

Theorem 0.3. If v1, . . . ,vk are eigenvectors that correspond to distinct eigenvalues
λ1, . . . , λk of a square matrix A, i.e.,

Av1 = λ1v1, . . . , Avk = λkvk (the λi’s are all different)

then the set {v1, . . . ,vk} must be linearly independent.
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Eigenvalues and eigenvectors

Proof. We prove this result by using the so called Vandermonde matrix

M =


1 a1 a2

1 . . . an−1
1

1 a2 a2
2 . . . an−1

2
...

...
...

. . .
...

1 an a2
n . . . an−1

n


which is invertible when all ai’s are dinstinct:

det(M) = Π1≤i<j≤n(aj − ai).

Detailed steps are shown in class.
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Eigenvalues and eigenvectors

Similar matrices
Def 0.4. We say that two square matrices A,B of the same size are similar if
there exists an invertible matrix P such that

B = P−1AP

Remark. An alternative, yet equivalent definition for A,B to be similar is

B = QAQ−1,

for an invertible matrix Q.
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Eigenvalues and eigenvectors

Example 0.12. Verify that[
1 0
0 −1

]
︸ ︷︷ ︸

B

=
[

3 1
1 1

]−1

︸ ︷︷ ︸
P−1

[
2 −3
1 −2

]
︸ ︷︷ ︸

A

[
3 1
1 1

]
︸ ︷︷ ︸

P

This shows that A,B are similar to each other.
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Eigenvalues and eigenvectors

Remark. Similar matrices must have the same determinant. To see this, write

det(B) = det(P−1AP) = det(P−1) det(A) det(P) = det(A).

They are thus both invertible or non-invertible at the same time (in fact, they
must have the same rank).
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Eigenvalues and eigenvectors

Similar matrices also have the same eigenvalues
Theorem 0.4. Let A,B be two square matrices of the same size. If they are
similar, then they have the same characteristic polynomial and thus the same
eigenvalues (with the same algebraic multiplicities).

Proof : Suppose B = P−1AP for some invertible matrix P (of the same size).
Then

pB(λ) = det(B− λI)
= det(P−1AP− λI)
= det

[
P−1(A− λI)P

]
= det(A− λI)
= pA(λ)
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Eigenvalues and eigenvectors

Remark. The converse of the theorem is not true, i.e., if A,B have the same
eigenvalues, then they are not necessarily similar to each other.

A counterexample is

A =
[

1 0
0 1

]
, B =

[
1 0
1 1

]
They have the same characteristic polynomial and thus the same eigenvalues, but
they are not similar. ←− Why?
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Eigenvalues and eigenvectors

Diagonalizability of square matrices

Def 0.5. A square matrix A ∈ Rn×n is diagonalizable if it is similar to a
diagonal matrix, i.e., there exist an invertible matrix P ∈ Rn×n and a diagonal
matrix D ∈ Rn×n such that

A = PDP−1, or equivalently, P−1AP = D.

Remark. If we write P = [p1, . . . ,pn] and D = diag(λ1, . . . , λn), then the above
equation can be rewritten as

AP = PD,

Prof. Guangliang Chen | Mathematics & Statistics, San José State University 30/40



Eigenvalues and eigenvectors

or in columns

A[p1 . . .pn] = [p1 . . .pn]

λ1

. . .
λn

.
From this we get that

Api = λipi, 1 ≤ i ≤ n.

This shows that A has n eigenvalues λ1, . . . , λn ∈ R (not necessarily distinct)
with corresponding eigenvectors p1, . . . ,pn ∈ Rn which are linearly independent.

Thus, the above factorization of a diagonalizable matrix A, i.e.,

A = PDP−1

is called the eigenvalue decomposition, or simply eigendecomposition, of A.
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Eigenvalues and eigenvectors

Example 0.13. The matrix

A =
(

0 1
3 2

)
is diagonalizable because(

0 1
3 2

)
=
(

1 1
3 −1

)(
3
−1

)(
1 1
3 −1

)−1

←− eigendecomposition

but the matrix

B =
(

0 1
−1 2

)
is not (we will see why later).

Prof. Guangliang Chen | Mathematics & Statistics, San José State University 32/40



Eigenvalues and eigenvectors

Why are diagonalizable matrices important?
Every diagonalizable matrix is similar to a diagonal matrix (that consists of its
eigenvalues), and is easy to deal with in a lot of ways.

For example, it can help compute matrix powers (Ak). To see this, suppose
A ∈ Rn×n is diagonalizable, that is, A = PDP−1 for some invertible matrix P
and a diagonal matrix D. Then

A2 = PDP−1 ·PDP−1 = PD2P−1

A3 = PDP−1 ·PDP−1 ·PDP−1 = PD3P−1

Ak = PDkP−1 (for any positive integer k)

where Dk = diag(λk
1 , . . . , λ

k
n).
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Eigenvalues and eigenvectors

Example 0.14. For the diagonalizable matrix in the preceding example,(
0 1
3 2

)
︸ ︷︷ ︸

A

=
(

1 1
3 −1

)
︸ ︷︷ ︸

P

(
3
−1

)
︸ ︷︷ ︸

D

(
1 1
3 −1

)−1

︸ ︷︷ ︸
P−1

the 10th power of A is

A10 = PD10P−1 =
(

1 1
3 −1

)(
310

(−1)10

)(
1
4

1
4

3
4 − 1

4

)
=
(

14763 14762
44286 44287

)
.
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Eigenvalues and eigenvectors

Checking diagonalizability of a square matrix

Theorem 0.5. A matrix A ∈ Rn×n is diagonalizable if and only if it has n linearly
independent eigenvectors (i.e.,

∑
gi = n).

Proof. We have already proved this result earlier:

A = PDP−1 ⇐⇒ AP = PD ⇐⇒ Api = λipi, 1 ≤ i ≤ n

The pi’s are linearly independent if and only if P is invertible.
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Eigenvalues and eigenvectors

Example 0.15. The matrix B =
(

0 1
−1 2

)
is not diagonalizable because it

has one distinct eigenvalue λ1 = 1 with a1 = 2 and g1 = 1 (only one linearly
independent eigenvector).
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Eigenvalues and eigenvectors

Example 0.16. Is the following matrix diagonalizable? If yes, find the eigende-
composition.

A =

 3 0 0
2 1 −1
−2 2 4

 .
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Eigenvalues and eigenvectors

The previous theorem immediately implies the following results.

Corollary 0.6. Any matrix A ∈ Rn×n with n distinct eigenvalues, i.e.,

ai = 1, 1 ≤ i ≤ n,

is diagonalizable.
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Eigenvalues and eigenvectors

’

Example 0.17. Is the following matrix diagonalizable? If yes, find the eigende-
composition.

A =

 3 0 0
2 1 1
−2 2 4

 .
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Eigenvalues and eigenvectors

To be introduced later

Another important result is that symmetric matrices, i.e., A ∈ Rn×n and AT = A,
are always diagonalizable.

We will learn this in Chapter 7.
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