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Spectral Curvature Clustering for Hybrid Linear Modeling

by Guangliang Chen

ABSTRACT

The problem of Hybrid Linear Modeling (HLM) is to model and segment data us-

ing a mixture of affine subspaces. Many algorithms have been proposed to solve this

problem, however, probabilistic analysis of their performance is missing. In this the-

sis we develop the Spectral Curvature Clustering (SCC) algorithm as a combination

of Govindu’s multi-way spectral clustering framework (CVPR 2005) and Ng et al.’s

spectral clustering algorithm (NIPS 2001) while introducing a new affinity measure.

Our analysis shows that if the given data is sampled from a mixture of distributions

concentrated around affine subspaces, then with high sampling probability the SCC

algorithm segments well the different underlying clusters. The goodness of clustering

depends on the within-cluster errors, the between-clusters interaction, and a tuning

parameter applied by SCC. Supported by the theory, we then present several novel

techniques for improving the performance of the algorithm. Specifically, we suggest

an iterative sampling procedure to improve the existing uniform sampling strategy, an

automatic scheme of inferring the tuning parameter from data, a precise initialization

procedure for K-means, as well as a simple strategy for isolating outliers. The resulting

algorithm requires only linear storage and takes linear running time in the size of the

data. We compare it with other state-of-the-art methods on a few artificial instances

of affine subspaces. Application of the algorithm to several real-world problems is also

discussed.

i



Acknowledgements

My first and foremost thanks go to Gilad Lerman for being an extremely helpful advisor.

Despite his busy schedule, Professor Lerman is always available to discuss research. He

is very patient with all sorts of questions. He is also exceedingly considerate for his

students. He would do everything possible to help his students grow academically. For

example, he even spent much of his time going over my job search documents and gave

me many valuable comments. He is undoubtedly the best advisor in all aspects and a

most beneficial friend that a student can expect to find.

The members of my dissertation committee and preliminary oral exam committee,

Snigdhansu Chatterjee, Dennis Cook, Peter Olver, and Fadil Santosa, have also gener-

ously given their time and provided insightful comments. I thank them for their service

in the committees.

I am also grateful to many friends, colleagues, teachers, and staff in the university

community who have advised, assisted, and supported my research and thesis writing.

Especially, I need to express my gratitude and deep appreciation to Antoine Choffrut

and Tyler Whitehouse, whose friendship, hospitality, knowledge, and wisdom have en-

couraged, enlightened, and entertained me during my PhD studies.

My thanks must also go to brothers and sisters in the Twin Cities Christian Assembly

(TCCA) who, like a big family to me, have accompanied me through the six years at

the University of Minnesota. I thank them for their constant love, strong support, and

ii



persistent prayers. Without them my life in Minnesota would have been a much more

difficult one.

I would like to finally acknowledge the firm support I received from my wife Paifang

Tsai, father Datong Chen, mother Yongxia Liu, and brother Guangfa Chen while I was

pursing a doctorate degree. Words are probably not enough to express my thanks to

my parents who have worked very hard all their lifetime. I need to specially thank

Paifang who has been my affectionate company during the dissertation writing period.

Her unreserved love is always a source of strength to me.

iii



Dedication

This dissertation is dedicated to my father Datong Chen and mother Yongxia Liu for

their hard work and for loving and supporting me over the years.

iv



Table of Contents

Abstract i

Acknowledgements ii

Dedication iv

List of Tables viii

List of Figures ix

Introduction 1

1 Background 5

1.1 The Problem of Hybrid Linear Modeling . . . . . . . . . . . . . . . . . . 6

1.2 The Polar Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Affinity Tensors and their Matrix Representations . . . . . . . . . . . . 10

2 Theoretical Spectral Curvature Clustering (TSCC) 12

3 Perturbation Analysis of TSCC 16

3.1 Analysis of TSCC with the Perfect Tensor . . . . . . . . . . . . . . . . . 17

3.2 Perturbation Analysis of TSCC with a General Affinity Tensor . . . . . 20

v



3.2.1 Measuring Goodness of Clustering of the TSCC Algorithm . . . 20

3.2.2 The Perturbation Result . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 The Effects of the Normalizations in TSCC . . . . . . . . . . . . . . . . 24

3.3.1 Possible Normalizations of U and Their Effects on Clustering . . 24

3.3.2 TSCC Without Normalizing W . . . . . . . . . . . . . . . . . . . 29

4 Probabilistic Analysis of TSCC 31

4.1 Basic Setting and Definitions . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 The Probabilistic Result . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Interpretation of the Constant α . . . . . . . . . . . . . . . . . . . . . . 34

4.4 On the Existence of Assumption 1 . . . . . . . . . . . . . . . . . . . . . 37

5 The SCC Algorithm 39

5.1 The Novel Methods of SCC . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.1 Iterative Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.2 Estimation of the Tuning Parameter σ . . . . . . . . . . . . . . . 42

5.1.3 Initialization of K-means . . . . . . . . . . . . . . . . . . . . . . 45

5.2 The SCC Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Complexity of the SCC Algorithm . . . . . . . . . . . . . . . . . . . . . 48

5.4 Outliers Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.5 Mixed Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 Experiments 53

6.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2.1 Motion Segmentation under Affine Camera Models . . . . . . . . 56

6.2.2 Face Clustering under Varying Lighting Conditions . . . . . . . . 59

6.2.3 Temporal Segmentation of Video Sequences . . . . . . . . . . . . 60

vi



7 Conclusion and Future Work 62

References 66

Appendix A. Proofs 72

A.1 Proof of Proposition 3.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A.2 Proof of Lemma 3.2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

A.3 Proof of Lemma 3.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A.4 Proof of Lemma 3.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A.5 Proof of Theorem 3.2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A.6 Proof of Lemma 3.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A.7 Proof of Theorem 3.3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A.8 Proof of Lemma 4.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

A.9 Proof of Lemma 4.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A.10 Proof of Theorem 4.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

A.11 Proof of Equation (4.18) . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.12 Proof of Equation (4.19) . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.13 Proof of Equation (4.20) . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A.14 Proof of Equation (4.21) . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

vii



List of Tables

6.1 Results of different methods for clustering linear subspaces . . . . . . . 55

6.2 Results of different methods for clustering affine subspaces . . . . . . . . 56

6.3 Results of different methods for clustering flats of mixed dimensions . . 57

6.4 Results of SCC and GPCA on the motion segmentation data . . . . . . 58

6.5 Results of SCC and GPCA on the face clustering data . . . . . . . . . . 60

6.6 Results of SCC and GPCA on the Fox video data . . . . . . . . . . . . . 61

viii



List of Figures

3.1 Illustration of the perfect tensor analysis . . . . . . . . . . . . . . . . . . 19

3.2 Illustration of the perturbation analysis . . . . . . . . . . . . . . . . . . 24

3.3 Illustration of the U,T,V spaces . . . . . . . . . . . . . . . . . . . . . . 26

5.1 Plots of the errors of different sampling strategies against time . . . . . 50

5.2 Illustration of the effect of σ on clustering . . . . . . . . . . . . . . . . . 51

5.3 Illustration of the row space of V . . . . . . . . . . . . . . . . . . . . . . 52

5.4 ROC curves corresponding to SCC and RGPCA . . . . . . . . . . . . . 52

6.1 The ten subjects in the Yale Face Database B . . . . . . . . . . . . . . . 59

6.2 Three frames extracted from the Fox video sequence . . . . . . . . . . . 61

ix



Introduction

This work addresses the problem of hybrid linear modeling (HLM). Roughly speaking,

we assume a data set that can be well approximated by a mixture of affine subspaces,

or equivalently, flats, and wish to estimate the parameters of the flats as well as the

membership of the given data points associated with them (see also formulations in

[1] and [2]). This problem has diverse applications in many areas, such as motion

segmentation in computer vision, hybrid linear representation of images, classification

of face images, and temporal segmentation of video sequences (see [2] and references

therein). Also, it is closely related to sparse representation and manifold learning [3, 4].

Many algorithms and strategies can be applied to this problem. For example,

RANSAC [5, 6, 7], K-Flats [8, 9, 10, 11], Subspace Separation [12, 13, 14], Mixtures

of Probabilistic PCA [15], Independent Component Analysis [16], Tensor Voting [17],

Multi-way Clustering [18, 19, 20, 21], Generalized Principal Component Analysis [1, 2],

Manifold Clustering [22], Local Subspace Affinity [23], Grassmann Clustering [24], Al-

gebraic Multigrid [25], Agglomerative Lossy Compression [26] and Poisson Mixture

Model [27]. However, we are not aware of any probabilistic analysis of the perfor-

mance of such algorithms given data sampled from a corresponding hybrid linear model

(with additive noise). One of the goals of this thesis is to rigorously justify a particular

solution to the HLM problem.

For simplicity, we restrict the discussion to d-flats clustering, i.e., all the underlying

1
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flats have the same dimension d ≥ 0, although our theory extends to mixed dimensions

by considering only the maximal dimension. We also assume here that the intrinsic

dimension, d, and the number of clusters, K, are both known, and leave their estimation

to future work.

Our solution to HLM, the Spectral Curvature Clustering (SCC) algorithm, follows

the multi-way spectral clustering framework of Govindu [19]. This framework (when

applied to HLM) starts by computing an affinity measure quantifying d-dimensional

flatness for any d+2 points of the data. It then forms pairwise weights by decomposing

the corresponding (d + 2)-way affinity tensor. At last, it suggests to apply spectral

clustering (e.g., [28]) with the pairwise weights.

However, the above steps are based only on heuristic arguments [19], with no formal

justification for them. Also, there are critical numerical issues associated with Govindu’s

framework that need to be thoroughly addressed. First of all, as the size of data and

the intrinsic dimension d increase, it is computationally prohibitive to calculate or store,

not to mention process, the affinity tensor. Approximating this tensor by a small subset

of uniformly sampled “fibers” [19] is insufficient for large d and data of moderate size.

Better numerical techniques have to be developed while maintaining both reasonable

performance and fast speed. Secondly, the multi-way affinities contain a tuning param-

eter, which sensitively affects clustering. It is not clear how to select its optimal value

while avoiding an exhaustive search. Last of all, there are also smaller issues, e.g., how

to deal with outliers.

Our algorithm, Spectral Curvature Clustering (SCC), combines Govindu’s frame-

work [19] and Ng et al.’s spectral clustering algorithm [29], while introducing the polar

tensor (defined in Section 1.3). We justify the algorithm following the strategy of [29] in

two steps. First, we consider in Chapter 3 a general affinity tensor instead of the polar

tensor, and control the “goodness of clustering” of SCC by the deviation of the affinity
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tensor from an ideal tensor. Next, in Chapter 4 we show that for the specific choice

of the polar tensor and data sampled from a hybrid linear model, the SCC algorithm

clusters the data well with high sampling probability. In addition, we express the good-

ness of clustering in terms of the within-cluster errors (which depend directly on the

flatness of the underlying measures), the between-clusters interaction (which depends

on the separation of the measures), and a tuning parameter applied by TSCC.

The SCC algorithm also provides solutions to the above-mentioned numerical issues.

More specifically, it contributes to the advancement of multi-way spectral clustering in

the following aspects.

• It introduces an iterative sampling procedure to significantly improve accuracy

over the standard random sampling scheme used in [19] (see Section 5.1.1).

• It suggests an automatic way of selecting the tuning parameter that is commonly

used in multi-way spectral clustering methods (see Section 5.1.2).

• It employs an efficient way of applying K-means in its setting (see Section 5.1.3).

• It proposes a simple strategy to isolate outliers while clustering flats (see Sec-

tion 5.4).

The rest of the thesis is organized as follows. In Chapter 1 we review some theo-

retical background. In particular, we formulate more precisely the problem of hybrid

linear modeling, introduce the polar curvature and at last form the affinity tensor. In

Chapter 2 we present the theoretical version of the SCC algorithm as a combination

of Govindu’s framework [19] and Ng et al.’s algorithm [29] while using the specific po-

lar curvatures. Chapters 3 and 4 analyze the performance of the TSCC algorithm.

Chapter 3 presents main technical estimates for a large class of affinity tensors while

quantifying fundamental notions, in particular, the goodness of clustering. Chapter 4
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assumes a hybrid linear probabilistic model and the use of the polar tensor, and re-

lates the estimates of Chapter 3 to the sampling distribution of the model. Chapter 5

introduces various techniques that are used to make the theoretical version practical,

and the SCC algorithm is formulated incorporating those techniques. We compare our

algorithm with other competing methods using various kinds of artificial data sets as

well as several real-world applications in Chapter 6. Chapter 7 concludes with a brief

discussion and possible avenues for future work. Mathematical proofs are provided in

Appendix A.



Chapter 1

Background

In this chapter we present some background material that is necessary for the subsequent

development of the thesis. We first define the problem of hybrid linear modeling in a

theoretical setting (Section 1.1), then introduce a class of curvatures, in particular, the

polar curvature, for measuring the flatness of a simplex (Section 1.2), and finally form

affinity tensors and their matrix representations (Section 1.3).

Notation and Basic Definitions

Throughout this paper we assume an ambient space RD and a collection of d-flats, i.e.,

d-dimensional flats, that are embedded in RD, with 0 ≤ d < D.

We denote scalars with possibly large values by upper-case plain letters (e.g., N,C),

and scalars with relatively small values by lower-case Greek letters (e.g., α, ε); vectors by

boldface lower-case letters (e.g., u,v); matrices by boldface upper-case letters (e.g., A);

tensors by calligraphic capital letters (e.g., A); and sets by upper-case Roman letters

(e.g., X).

For any integer n > 0, we denote the n-dimensional vector of ones by 1n, and the

5
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n× n matrix of ones by 1n×n. The n× n identity matrix is written as In.

The (i, j)-element of a matrix A is denoted by Aij , and the (i1, . . . , in)-element of

an n-way tensor A by A(i1, . . . , in). We denote the transpose of a matrix A by A′ and

that of a vector v by v′. The Frobenius norm of a matrix/tensor, denoted by ‖·‖F, is

the `2 norm of the quantity when viewed as a vector.

For a positive semidefinite square matrix A, we use En(A) to denote the subspace

spanned by the top n eigenvectors of A, and Pn(A) to represent the orthogonal projector

onto En(A).

Let x ∈ RD and F be a d-flat in RD. We denote the orthogonal distance from x

to F by dist(x, F ). For any r > 0, the ball centered at x with radius r is written as

B(x, r). If c > 0, then c · B(x, r) := B(x, c · r). If S is a subset of RD, we denote its

diameter by diam(S) and its complement by Sc. If S is furthermore discrete, we use |S|
to denote its number of elements.

Let µ be a measure on RD. We denote the support of µ by supp(µ), its restriction to

a given set S by µ|S, and the product measure of n copies of µ by µn. The d-dimensional

Lebesgue measure is denoted by Ld. Also, we use (RD)n to denote the Cartesian product

of n copies of RD.

We use P(n, r) to denote the number of permutations of size r from a sequence of n

available elements. That is, P(n, r) := n(n− 1) · · · (n− r + 1).

1.1 The Problem of Hybrid Linear Modeling

We formulate here a version of the HLM problem. We will introduce further restrictions

on its setting throughout the paper. Before presenting the problem we need to define

the notions of d-dimensional least squares errors and flats.

If µ is a Borel probability measure, then the least squares error of approximating µ
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by a d-flat is denoted by e2(µ) and defined as follows:

e2(µ) :=

√
inf

d-flats F

∫
dist2(x, F ) dµ(x). (1.1)

Any minimizer of the above quantity is referred to as a least squares d-flat.

We now incorporate the above definitions and present the problem of hybrid linear

modeling below.

Problem 1. Let µ1, . . . , µK be Borel probability measures and assume that their d-

dimensional least square errors {e2(µk)}K
k=1 are sufficiently small and that their least

squares d-flats do not coincide. Suppose a data set X = {x1, . . . ,xN} ⊂ RD generated

as follows: For each k, Nk points are sampled independently and identically from µk, so

that N = N1 + · · · + NK . The goal of hybrid linear modeling is to partition X into K

subsets representing the underlying d-flats and simultaneously estimate the parameters

of the underlying flats.

We remark that the above notion of sufficiently small least square errors combined

with non-coinciding least squares d-flats is quantified for our particular solution later

in Section 4.2 (by restricting the size of the constant α of equation (4.5)). We also

remark that we will restrict in Section 1.2 the above setting by requiring the measures

µ1, . . . , µK to be “regular and possibly d-separated” (see Remark 1.2.5) and later in

Section 3.2 by imposing the comparability of sizes of N1, . . . , NK (see equation (3.4)).

1.2 The Polar Curvature

For any d + 2 distinct points z1, . . . , zd+2 ∈ RD, we denote by Vd+1(z1, . . . , zd+2) the

(d + 1)-volume of the (d + 1)-simplex formed by these points. The polar sine at each

vertex zi, 1 ≤ i ≤ d + 2, is

psinzi
(z1, . . . , zd+2) :=

(d + 1)! · Vd+1(z1, . . . , zd+2)∏
1≤j≤d+2, j 6=i ‖zj − zi‖2

. (1.2)
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Definition 1.2.1. The polar curvature of z1, . . . , zd+2 is

cp(z1, . . . , zd+2) := diam({z1, . . . , zd+2}) ·

√√√√
d+2∑

i=1

psin2
zi

(z1, . . . , zd+2). (1.3)

Remark 1.2.2. The notion of curvature here designates a function of d + 2 variables

generalizing the distance function. Indeed, when d = 0, the polar curvature coincides

with the Euclidean distance. We use this name (and probably abuse it) due to the

comparability when d = 1 of the polar curvature with the Menger curvature multiplied

by the square of the corresponding diameter (see [30]).

Let µ be a Borel probability measure on RD. We define the polar curvature of the

measure µ to be

cp(µ) :=

√∫
c2
p(z1, . . . , zd+2) dµ(z1) . . . dµ(zd+2). (1.4)

The polar curvatures of randomly sampled (d+1)-simplices can be used to estimate

the least squares errors of approximating certain probability measures by d-flats. We

start with two preliminary definitions and then state the main result, which is proved

in [31] (following the methods of [32, 30, 33]).

Definition 1.2.3. We say that a Borel probability measure µ on RD is d-separated

(with parameters 0 < δ, ω < 1) if there exist d+2 balls {Bi}d+2
i=1 in RD with µ-measures

at least δ such that

Vd(xi1 , . . . ,xid+1
) > ω · diam(supp(µ))d, (1.5)

for any xik ∈ 2Bik , 1 ≤ k ≤ d + 1 and 1 ≤ i1 < · · · < id+1 ≤ d + 2.

Definition 1.2.4. We say that a Borel probability measure µ on RD is regular (with

parameters Cµ and γ) if there exist constants γ > 2 and Cµ ≥ 1 such that for any

x ∈ supp(µ) and 0 < r ≤ diam(supp(µ)):

µ(B(x, r)) ≤ Cµ · rγ . (1.6)
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If D = 2 (or supp(µ) is contained in a 2-flat), then one can allow 1 < γ ≤ 2 while

strengthening the above equation as follows:

C−1
µ · rγ ≤ µ(B(x, r)) ≤ Cµ · rγ . (1.7)

Theorem 1.2.1. For any regular and d-separated Borel probability measure µ there

exists a constant C (depending only on the d-separation parameters, i.e., ω, δ, and the

regularity parameters, i.e., γ, Cµ) such that

C−1 · e2(µ) ≤ cp(µ) ≤ C · e2(µ). (1.8)

The following two curvatures also satisfy Theorem 1.2.1 [31]:

cdls(z1, . . . , zd+2) :=

√√√√ inf
d−flats F

d+2∑

i=1

dist2(zi, F ), (1.9)

ch(z1, . . . , zd+2) := min
1≤i≤d+2

dist(zi, F(i)), (1.10)

where F(i) is the (d − 1)-flat spanned by all the d + 2 points except zi. In this paper

we use cp as a representative of the class of curvatures that satisfy Theorem 1.2.1, since

it seems computationally faster than the above two (using the numerical framework

described later in Section 5.3). However, all the theory developed in this paper applies

to the rest of the class.

Remark 1.2.5. Since we will use Theorem 1.2.1 in Section 4.3 to justify our proposed

solution to HLM, we need to assume that the measures µ1, . . . , µK of Problem 1 are

regular and d-separated. However, those restrictions could be relaxed or avoided as

follows. If either cdls or ch is used instead of cp, then Theorem 1.2.1 holds for merely

d-separated probability measures (no need for regularity). Moreover, in Section 4.3 we

may only use the right hand side of equation (1.8), i.e., the upper bound of cp(µ) in

terms of e2(µ) (though it is preferable to have a tight estimate as suggested by the
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full equation). For such a bound it is enough to assume that µ is merely a regular

probability measure. If we use instead of cp any of the curvatures cdls, ch, then this

upper bound holds for any Borel probability measure. We also comment that the reg-

ularity conditions described in Definition 1.2.4 could be further relaxed when replacing

diam({z1, . . . , zd+2}) in equation (1.3) with e.g., a geometric mean of corresponding

edge lengths. More details appear in [31].

1.3 Affinity Tensors and their Matrix Representations

Throughout the rest of this paper, we consider (d + 2)-way tensors of the form

{A(i1, . . . , id+2)}1≤i1,...,id+2≤N .

We assume that their elements are between zero and one, and invariant under arbitrary

permutations of the indices (i1, . . . , id+2), i.e., these tensors are super-symmetric.

Most commonly, we form the following affinities using the polar curvature (see equa-

tion (1.3)):

Ap(i1, . . . , id+2) :=





e−cp(xi1
,...,xid+2

)/σ, if xi1 , . . . ,xid+2
are distinct;

0, otherwise.
(1.11)

The corresponding tensor Ap is referred to as the polar tensor.

In the special case of underlying linear subspaces (instead of general affine ones), we

may work with the following (d + 1)-way tensor:

Ap,L(i1, . . . , id+1) :=





e−cp(0,xi1
,...,xid+1

)/σ, if 0,xi1 , . . . ,xid+1
are distinct;

0, otherwise.
(1.12)

In most of the paper we use the (d + 2)-tensor Ap, while in a few places we refer to the

(d + 1)-tensor Ap,L.
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Given a (d + 2)-way affinity tensor A ∈ RN×N×···×N we unfold it into an N ×Nd+1

matrix A in a similar way as in [34, 35]. The i-th row of A contains all the elements

in the i-th “slice” of A: {A(i, i2, . . . , id+2) | 1 ≤ i2, . . . , id+2 ≤ N}, according to an

arbitrary but fixed ordering of the last d+1 indices (i2, . . . , id+2), e.g., the lexicographic

ordering. This ordering (when fixed for all rows) is not important to us, since we are

only interested in the uniquely determined matrix W := A ·A′ (see Algorithm 1 below).



Chapter 2

Theoretical Spectral Curvature

Clustering (TSCC)

We combine Govindu’s framework of multi-way spectral clustering [19] and Ng et

al.’s spectral clustering algorithm [29] while incorporating the polar affinities (equa-

tion (1.11)), to formulate below (Algorithm 1) the Theoretical Spectral Curvature Clus-

tering (TSCC) algorithm for solving Problem 1.

12
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Algorithm 1: Theoretical Spectral Curvature Clustering (TSCC)

Input : X = {x1,x2, ...,xN} ⊂ RD: data set, d: common dimension of flats,

K: number of d-flats, σ: the tuning parameter for computing A
Output: K disjoint clusters C1, . . . , CK

begin

Construct the polar tensor Ap using equation (1.11) and the given σ1

Unfold Ap to obtain the affinity matrix A, and form the weight matrix2

W := A ·A′

Compute the degree matrix D := diag{W · 1N}, and use it to normalize W3

to get Z := D−1/2 ·W ·D−1/2

Find the top K eigenvectors u1,u2, . . . ,uK of Z and define4

U := [u1u2 . . .uK ] ∈ RN×K

(optional) Normalize the rows of U to have unit length or using other5

methods (see Section 3.3.1)

Apply K-means [36] to the rows of U to find K clusters, and partition the6

original data into K subsets C1, . . . , CK accordingly

end

The performance of the TSCC algorithm is evaluated by computing two types of er-

rors: eOLS, e%. For any K detected clusters C1, . . . ,CK , the total (squared) Orthogonal

Least Squares (OLS) error is defined as follows:

eOLS =
K∑

k=1

∑

x∈Ck

dist2(x, Fk), (2.1)

where Fk is the OLS d-flat approximating Ck (can be obtained by Principal Component

Analysis (PCA)). In situations where we know the true membership of the data points,
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we also compute the percentage of misclassified points. That is,

e% =
# of misclassified points

N
· 100%. (2.2)

We refer to the above algorithm as theoretical because its complexity and storage

requirement can be rather large (even though polynomial). In Chapter 5 we develop

various numerical techniques to make the algorithm practical. In particular, we suggest

a sampling strategy to approximate the matrix W in an iterative way, an automatic

scheme of tuning the parameter σ, and a straightforward procedure to initialize K-means

for clustering the rows of U.

The TSCC algorithm can be seen as two steps of embedding data followed by K-

means. First, each data point xi is mapped to A(i, :), the i-th row of the matrix A,

which contains the interactions between the point xi and all d-flats spanned by any d+1

points in the data (indeed, each column corresponds to d + 1 data points). Second, xi

is further mapped to the i-th row of the matrix U. The rows of U are treated as points

in RK , to which K-means is applied.

The question of whether or not to normalize the rows of the matrix U is an interesting

one. For ease of the subsequent theoretical development, we do not normalize the rows

of U. Such a choice is also adopted in Chapter 5 where the practical implementation

of the TSCC algorithm yields good numerical results. In Section 3.3.1 we discuss more

carefully the normalization of the matrix U and show the advantage of such practice.

We remark that one can replace the polar tensor (applied in Step 1 of Algorithm 1)

with other affinity tensors, based on the polar curvature or other ones that satisfy

Theorem 1.2.1, to form different versions of TSCC. For example, when the underlying

subspaces are known to be linear, one may use the (d+1)-tensor Ap,L of equation (1.12),

forming the Theoretical Linear Spectral Curvature Clustering (TLSCC) algorithm. An-

other example is the following class of affinity tensors that are based on the powers of
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the polar curvature:

Ap,q(i1, . . . , id+2) :=





e−
c
q
p

(
xi1

,...,xid+2

)

σq , if xi1 , . . . ,xid+2
are distinct;

0, otherwise,

(2.3)

where q ≥ 1 (see Remark 4.3.1 for interpretation). While Algorithm 1 uses q = 1, its

practical version, Algorithm 2, uses q = 2 for faster convergence.

We justify the TSCC algorithm in two steps. In Chapter 3 we analyze the TSCC

algorithm with a very general tensor (replacing the polar tensor), and develop conditions

under which TSCC is expected to work well. In particular, the corresponding analysis

applies to the polar tensor. Chapter 4 relates this analysis to the sampling of Problem 1,

and correspondingly formulates a probabilistic statement for TSCC with its own polar

tensor.



Chapter 3

Perturbation Analysis of TSCC

Following a strategy of Ng et al. [29], we analyze the performance of the TSCC algorithm

with a general affinity tensor (replacing the polar tensor in Step 1 of Algorithm 1) in

two steps. First, we define a “perfect” tensor representing the ideal affinities, and show

that in such a hypothetical situation, the K underlying clusters are correctly separated

by the TSCC algorithm. Next, we assume that TSCC is applied with a general affinity

tensor, and control the goodness of clustering of TSCC by the deviation of the given

tensor from the perfect tensor. Finally, we discuss the effect of the two normalizations

in the TSCC algorithm (Steps 3 and 5 of Algorithm 1).

Notational Convenience

We maintain the common setting of Problem 1 and all the notation used in the TSCC

algorithm.

We denote the K underlying clusters by C̃1, . . . , C̃K . Each C̃k has Nk points, so

that N =
∑

1≤k≤K Nk. For ease of presentation we suppose that N1 ≤ N2 ≤ · · · ≤ NK ,

and that the points in X are ordered according to their membership. That is, the first

16
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N1 points of X are in C̃1, the next N2 points in C̃2, etc..

We define K index sets I1, . . . , IK having the indices of the points in C̃1, . . . , C̃K

respectively, that is,

Ik := {n ∈ N |
∑

1≤j≤k−1

Nj < n ≤
∑

1≤j≤k

Nj}, for each 1 ≤ k ≤ K. (3.1)

We let u(i), 1 ≤ i ≤ N , denote the i-th row of U and c(k), 1 ≤ k ≤ K, denote the

center of the k-th cluster, i.e.,

c(k) :=
1

Nk

∑

j∈Ik

u(j). (3.2)

3.1 Analysis of TSCC with the Perfect Tensor

We define here the notion of a perfect tensor and show that TSCC obtains a perfect

segmentation with such a tensor.

Definition 3.1.1. The perfect tensor associated with Problem 1 is defined as follows.

For any 1 ≤ i1, . . . , id+2 ≤ N ,

Ã(i1, . . . , id+2) :=





1, if xi1 , . . . ,xid+2
are distinct and in the same C̃k;

0, otherwise.
(3.3)

We designate quantities derived from the perfect tensor Ã (by following the TSCC

algorithm) with the tilde notation, e.g., Ã,W̃, D̃, Z̃, Ũ.

Remark 3.1.2. When d = 0, the perfect tensor Ã reduces to a block diagonal matrix,

with the blocks corresponding to the underlying clusters. Ng et al. [29] also considered

an ideal affinity matrix with a block diagonal structure. However, they maintained the

diagonal blocks that are computed from the data, while we assume a more extreme case

in which the elements of these blocks are identically one (except at the diagonal entries).
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With our assumption it is possible to follow the steps of TSCC and exactly compute

each quantity.

Our result for TSCC with the perfect tensor Ã is formulated as follows (see proof

in Appendix A.1).

Proposition 3.1.1. If Nk > d + 2 for all k = 1, . . . , K, then

1. Z̃ has exactly K eigenvalues of one; the rest are d+1
(Nk−1)(Nk−d−1) , 1 ≤ k ≤ K, each

replicated Nk − 1 times.

2. The rows of Ũ are K mutually orthogonal vectors in RK . Moreover, each vector

corresponds to a distinct underlying cluster.

Remark 3.1.3. For the TLSCC algorithm, the corresponding perfect tensor ÃL is a (d+

1)-dimensional equivalent of the (d+2)-way tensor Ã of equation (3.3). Proposition 3.1.1

still holds for ÃL but with d replaced by d− 1.

Example 3.1.4. Illustration of the perfect tensor analysis: We randomly gen-

erate three clean linear lines in R2 and then sample 25 points from each line (see

Figure 3.1(a)). We then apply TSCC with the polar tensor of equation (1.11) and

σ = .00001. The corresponding tensor is a close approximation to the perfect tensor,

because taking the limit of equation (1.11) as σ → 0+ essentially yields the perfect

tensor. Intermediate and final clustering results are reported in Figures 3.1(b)-3.1(d).

In this case, the top three eigenvalues are hardly distinguished from 1, and the rest

are close to zero (see Figure 3.1(b)). The rows of U accumulate at three orthogonal

vectors (see Figure 3.1(c)), and thus form three tight clusters, each representing an

underlying line (see Figure 3.1(d)).
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Figure 3.1: Illustration of the perfect tensor analysis
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3.2 Perturbation Analysis of TSCC with a General Affin-

ity Tensor

We assume that the underlying clusters have comparable and adequate sizes, more

precisely, there exists a constant 0 < ε1 ≤ 1 such that

Nk ≥ max (ε1 ·N/K, 2d + 3) , k = 1, . . . , K. (3.4)

We also assume that all the affinity tensors A considered in this section are super-

symmetric, and with elements between 0 and 1. Moreover, they satisfy the following

condition.

Assumption 1. There exists a constant ε2 > 0 such that

D ≥ ε2 · D̃. (3.5)

Remark 3.2.1. We feel the need to have some lower bound on D, possibly even weaker

than that of Assumption 1, to ensure that the TSCC algorithm would work well. In-

deed, for each i ∈ Ik, 1 ≤ k ≤ K, the sum
∑

j∈Ik
Wij measures the “connectedness”

between the point xi and the other points in C̃k, and thus should be sufficiently large.

Accordingly, since Dii ≥
∑

j∈Ik
Wij , these diagonal entries of the matrix D should be

correspondingly large as well. In Section 4.4 we discuss the existence of this condition

for the polar tensor while taking into account the restrictions on the tuning parameter

σ implied by Theorem 4.2.1.

3.2.1 Measuring Goodness of Clustering of the TSCC Algorithm

We use two equivalent ways to quantify the goodness of clustering of the TSCC algorithm

when applied with a general affinity tensor A. In Section 3.3.1 we relate them to the

more absolute notion of “clustering identification error”.
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We first investigate each of the K underlying clusters in the U space, i.e., {u(i)}i∈Ik , 1 ≤
k ≤ K, and estimate the sum of their variances. We refer to this sum as the total vari-

ation of the matrix U.

Definition 3.2.2. The total variation of U (with respect to the K underlying clusters)

is

TV(U) :=
∑

1≤k≤K

∑

i∈Ik

∥∥∥u(i) − c(k)
∥∥∥

2

2
, (3.6)

where c(1), . . . , c(K) are the centers of the underlying clusters in the U space (see equa-

tion (3.2)).

The smaller the total variation TV(U) is, the more concentrated the underlying

clusters in the U space are. In fact, the following lemma (proved in Appendix A.3)

implies that the smaller TV(U) is, the more separated the centers are from the origin

and from each other.

Lemma 3.2.1.

∑

1≤k≤K

Nk ·
∥∥∥c(k)

∥∥∥
2

2
= K − TV(U), (3.7)

∑

1≤k<`≤K

NkN` · 〈c(k), c(`)〉2 ≤ TV(U) . (3.8)

The other measurement of the goodness of clustering of TSCC is motivated by the

fact that, in the ideal case, the subspace spanned by the top K eigenvectors of Z̃, EK(Z̃),

leads to a perfect segmentation (see Proposition 3.1.1). When given a general affinity

tensor A, the eigenspace EK(Z) determines the clustering result of TSCC. We thus

suggest to measure the discrepancy between these two eigenspaces, EK(Z) and EK(Z̃),

by comparing the orthogonal projectors onto them, PK(Z) and PK(Z̃), in the following

way.
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Definition 3.2.3. The distance between the two subspaces EK(Z̃) and EK(Z) is

dist(EK(Z), EK(Z̃)) :=
∥∥∥PK(Z)− PK(Z̃)

∥∥∥
F

. (3.9)

A geometric interpretation of the above distance is provided using the notion of

principal angles [37]. The principal angles 0 ≤ θ1 ≤ · · · ≤ θK ≤ π/2 between two

K-dimensional subspaces S and T are defined recursively as follows (see e.g., [37]):

cos θ1 = max
x∈S,‖x‖2=1

max
y∈T,‖y‖2=1

x′y = x′1y1, (3.10)

cos θ2 = max
x∈S,‖x‖2=1

x⊥x1

max
y∈T,‖y‖2=1

y⊥y1

x′y = x′2y2, (3.11)

. . . . . .

cos θK = max
x∈S,‖x‖2=1

x⊥{x1,...,xK−1}

max
y∈T,‖y‖2=1

y⊥{y1,...,yK−1}

x′y = x′KyK . (3.12)

Another formula for the cosines of the principal angles is obtained in the following

way. Let S and T be two matrices whose columns define orthonormal bases of S and T

respectively. Since any x ∈ S and y ∈ T can be represented as x = S · u and y = T · v
respectively, where u and v are unit vectors in RK , it follows that

cos θk = σk

(
S′ ·T)

for 1 ≤ k ≤ K, (3.13)

where σk(·) denotes the k-th largest singular value of the matrix.

We present the geometric interpretation in Lemma 3.2.2 and prove it in Appendix A.4.

Lemma 3.2.2. Let 0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θK ≤ π/2 be the K principal angles between

the two subspaces EK(Z) and EK(Z̃). Then

dist2(EK(Z), EK(Z̃)) = 2 ·
K∑

k=1

sin2 θk. (3.14)

At last, we claim that the above two ways of measuring the goodness of clustering

of TSCC are equivalent in the following sense (see proof in Appendix A.2).
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Lemma 3.2.3.

dist2(EK(Z), EK(Z̃)) = 2 · TV(U) . (3.15)

3.2.2 The Perturbation Result

Given a general affinity tensor A we quantify its deviation from the perfect tensor Ã by

the difference

E := A− Ã. (3.16)

Our main result shows that the magnitude of this perturbation controls the goodness

of clustering of the TSCC algorithm.

Theorem 3.2.4. Let A be any affinity tensor satisfying Assumption 1 and E its devi-

ation from the perfect tensor. There exists a constant C1 = C1(K, d, ε1, ε2) (estimated

in equation (A.49) of Appendix A.5) such that if

N−(d+2) ‖E‖2
F ≤

1
8C1

, (3.17)

then

TV(U) ≤ C1 ·N−(d+2) ‖E‖2
F . (3.18)

Remark 3.2.4. For the TLSCC algorithm, Theorem 3.2.4 holds with d replaced by

d− 1.

Example 3.2.5. Illustration of the perturbation analysis: We corrupt the data

in Figure 3.1 with 2.5% additive Gaussian noise (see Figure 3.2(a)), and apply TSCC

with the polar tensor of equation (1.11) and σ = 0.1840. In this case of moderate noise,

the top three eigenvalues are still clearly separated from the rest, even though two of

them deviate from 1 (see Figure 3.2(b)). The rows of U still form three well separated

clusters, but they deviate from concentrating at exactly three orthogonal vectors (see
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Figure 3.2(c)). The underlying clusters are detected correctly, except possibly for a few

points at their intersection (see Figure 3.2(d)).
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Figure 3.2: Illustration of the perturbation analysis

3.3 The Effects of the Normalizations in TSCC

3.3.1 Possible Normalizations of U and Their Effects on Clustering

The analysis of the previous sections uses the embedding represented by the rows of U.

It is possible to normalize these rows (e.g., by their lengths as in [29]) before applying

K-means. In the following we consider two normalized versions of the rows of U, and
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analyze their effects on the TSCC algorithm (in comparison with the rows of U).

Using the cluster sizes, or the row lengths, one could normalize the matrix U and

obtain two matrices T,V whose rows are defined as follows:

t(i) =
√

Nk · u(i), i ∈ Ik, 1 ≤ k ≤ K; (3.19)

v(i) =
1∥∥u(i)

∥∥
2

· u(i), 1 ≤ i ≤ N. (3.20)

These two normalizations are explained as follows. The V normalization discards all the

magnitude information of the rows of U to contain only the angular information between

them. The T normalization, containing the same angular information, reduces to U

when N1 = · · · = NK = N/K, and otherwise tries to further separate the underlying

clusters by scaling the rows using the cluster sizes. See Figure 3.3(a) for an illustration

of the U, T, V spaces.

Remark 3.3.1. The normalization T assumes knowledge of the underlying cluster sizes,

but can be effectively approximated without this knowledge when using the practical

version of TSCC, SCC (see Algorithm 2). The SCC algorithm employs an iterative

sampling procedure which converges quickly, thus it can estimate T in the current

iteration by using the clusters obtained in the previous iteration.

We view the matrix V as a weak approximation to T. Indeed, in the ideal case they

coincide, since ∥∥∥ũ(i)
∥∥∥

2
=

1√
Nk

, i ∈ Ik, 1 ≤ k ≤ K (3.21)

(see equation (A.10)). In the general case, the above equality only holds on average.

More precisely, the orthonormality of U implies that

K∑

k=1

∑

i∈Ik

∥∥∥u(i)
∥∥∥

2

2
= ‖U‖2

F =
K∑

j=1

‖uj‖2
2 = K. (3.22)

We next define two criterions for analyzing the performance of U, T and V when

directly applying K-means to them.
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The given data consists of 80 and 20 points on two lines in R2. We note that, in order
for the rows of U to have similar magnitudes to those of T and V, we have scaled each
row of U by the square root of the average cluster size

√
N/K.
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First, we define a notion of the separation factor for the centers of the underlying

clusters in each of the U, T and V spaces. The separation factor of the centers in the

U space is defined as follows:

β(U) :=

∑
1≤i<j≤K〈c(i), c(j)〉2

(∑
1≤k≤K

∥∥c(k)
∥∥2

2

)2 . (3.23)

The separation factors β(T), β(V) are defined similarly. The smaller β is, the more

separated in RK the centers of the underlying clusters are. Lemma 3.2.1 directly implies

that β(T) is controlled by TV(U) as follows.

Lemma 3.3.1.

β(T) ≤ TV(U)
(K − TV(U))2

. (3.24)

We note that β(U) = β(T) when Nk = N/K, k = 1, . . . ,K. In general, we observe

that β(U) ≤ β(T) ≤ β(V), with the former two being fairly close. For example,

β(U) = .0004, β(T) = .0006, β(V) = .0032 in Figure 3.3(a). In practice, however, we

have found that the underlying clusters in the U,T,V spaces are usually not closely

concentrated around their centers, thus this criterion is not sufficient.

Second, we define a notion of the clustering identification error in the U, T and V

spaces respectively. For ease of discussion, we suppose that K = 2. In the U space, the

corresponding error has the form:

eid(U) :=
1
N
·

∑

k=1,2

#
{

i ∈ Ik |
∥∥∥u(i) − c(k)

∥∥∥
2
≥ 1/2 ·

∥∥∥c(1) − c(2)
∥∥∥

2

}
(3.25)

The errors in the T,V spaces are defined similarly. The following lemma (proved in

Appendix A.6) shows that both eid(T) and eid(U) can be controlled by TV(U), with

the former having a smaller upper bound.

Lemma 3.3.2. Suppose that K = 2. If

TV(U) <
(√

3− 1
)2

, (3.26)
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then the identification error in the T space is bounded above as follows:

eid(T) ≤ 4 · TV(U)
2− TV(U)−2

√
TV(U)

. (3.27)

If

TV(U) <

(√
2 +

4
ε2
1

− 2
ε1

)2

, (3.28)

then the identification error in the U space is bounded above as follows:

eid(U) ≤ 4 · TV(U)
2− TV(U)−4/ε1 ·

√
TV(U)

, (3.29)

where the constant ε1 is defined in equation (3.4).

We remark that the clustering identification errors eid(U), eid(T), eid(V) have only

theoretical meanings. However, they can be used to estimate the clustering errors of

K-means when applied in the U,T,V spaces respectively. We observed in practice that

eid(T) and eid(V) are often very close.

Following the above discussion we think that T is probably the right normalization

to be used in TSCC. Its practical implementation should follow Remark 3.3.1. We note

that the application of this normalization in Lemma 3.2.1 results in analogous estimates

for the T space which are independent of the sizes of clusters. Indeed, this normalization

seems to outperform U when N1, . . . , NK vary widely (this claim is supported in practice

by numerical experiments and in theory by Lemma 3.3.2). Another reason for our

preference of T is that performing K-means in the T space is equivalent to performing

weighted K-means (with weights Nk/N, 1 ≤ k ≤ K) in the U space, which allows small

clusters to have relatively larger variances (see e.g., Figure 3.3(a)).

The V normalization is another possibility to use in TSCC. On one hand, it is a

weak approximation to T; on the other hand, it contains only the angular information

of the rows of U. The use of only angular information for K-means clustering, partly

supported by the polarization theorem in [38], seems to also separate the underlying
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clusters further. However, we need to understand this normalization more thoroughly,

i.e., in terms of theoretical analysis.

In Chapters 5 and 6 we will use U to demonstrate our numerical strategies, though

they also apply to T and V.

3.3.2 TSCC Without Normalizing W

We analyze here the TSCC algorithm when the matrix W is not normalized, i.e., skip-

ping Step 3 of Algorithm 1 and letting Z := W. We refer to the corresponding variant

of TSCC as TSCC-UN, and formulate below analogous results of Proposition 3.1.1 and

Theorem 3.2.4. The proof of Proposition 3.3.3 directly follows that of Proposition 3.1.1

in Appendix A.1 (in particular, equations (A.2) and (A.3)). Theorem 3.3.4 is proved in

Appendix A.7.

Proposition 3.3.3. Suppose that the TSCC-UN algorithm is applied with the perfect

tensor Ã. Then

1. The eigenvalues of W̃ are d̃K ≥ · · · ≥ d̃2 ≥ d̃1 (each of multiplicity 1), and

ν̃K ≥ · · · ≥ ν̃2 ≥ ν̃1 (of multiplicity NK , . . . , N2, N1 respectively), where

d̃k := (Nk − d− 1) · P(Nk − 1, d + 1), (3.30)

ν̃k := (d + 1) · P(Nk − 2, d). (3.31)

2. If d̃1 > ν̃K , the rows of Ũ are exactly K mutually orthogonal vectors, each repre-

senting a distinct underlying cluster.

Theorem 3.3.4. Suppose that TSCC-UN is applied with a general affinity tensor A,

and that

N ≥
√

2(d + 1)
(

1− K − 1
K

ε1

)d (
2K

ε1

)d+2

, (3.32)
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Let

C2(K, d, ε1, ε2) := 32
(

2K

ε1

)2(d+2)

. (3.33)

If

N−(d+2) ‖E‖2
F ≤

1
8C2

, (3.34)

then

TV(U) ≤ C2 ·N−(d+2) ‖E‖2
F . (3.35)

In view of equation (3.32), the TSCC-UN algorithm seems to require large data

size in order to work well. Numerical experiments also indicate that this approach is

very sensitive to the variation of cluster sizes, and works consistently worse than the

normalized approach, i.e., TSCC. Our current analysis, however, does not manifest the

significant advantage of the normalized approach. We thus leave the related exploration

to later research.

Von Luxburg et al. [39] have shown that in the framework of kernel spectral cluster-

ing, the normalized method is consistent under very general conditions. On the other

hand, the unnormalized method is only consistent under very specific conditions that

are rarely met in practice. Since W can be seen as a kernel matrix, [39] provides another

evidence for our preference of the normalized approach.



Chapter 4

Probabilistic Analysis of TSCC

In this chapter we analyze the performance of the TSCC algorithm with its own affin-

ity tensor, i.e., the polar tensor of equation (1.11). We control with high sampling

probability the goodness of clustering of TSCC when applied to the data generated in

Problem 1.

4.1 Basic Setting and Definitions

We follow the setting of hybrid linear modeling described in Problem 1 together with

the assumptions of regularity and possibly d-separation of {µi}K
i=1 (see Remark 1.2.5)

as well as the restriction imposed by equation (3.4). We denote the corresponding N

random variables by X1, . . . ,XN ∈ RD and maintain the previous notation for their

sampled values x1, . . . ,xN . The joint sample space is (RD)N , and the corresponding

joint probability measure is

µp := µN1
1 × · · · × µNK

K . (4.1)

We introduce an incidence constant reflecting the separation between the measures

µ1, . . . , µK in regard to the polar curvature cp and the tuning parameter σ. We first
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define the following sets

Sk := (supp(µk))
d+2 , 1 ≤ k ≤ K. (4.2)

Then, given a constant σ > 0, the incidence constant has the form:

Cin(µ1, . . . , µK ; σ) :=

max
1≤k1,...,kd+2≤K

not all equal

∫

Sk1

· · ·
∫

Skd+2

e
−cp(z1,...,zd+2)

σ dµk1(z1) . . . dµkd+2
(zd+2), (4.3)

where the maximum is taken over all 1 ≤ k1, . . . , kd+2 ≤ K except k1 = k2 = · · · = kd+2.

Remark 4.1.1. For TLSCC, the incidence constant is defined as follows:

Cin,L(µ1, . . . , µK ;σ) :=

max
1≤k1,...,kd+1≤K

not all equal

∫

Sk1

· · ·
∫

Skd+1

e
−cp(0,z1,...,zd+1)

σ dµk1(z1) . . . dµkd+1
(zd+1). (4.4)

We note that for both TSCC and TLSCC, the incidence constant is between 0 and

1. The smaller the incidence constant is, the more separated (in terms of the polar

curvature and the tuning parameter) the measures are. In Section 4.3 we estimate the

incidence constant in a few special instances of hybrid linear modeling.

4.2 The Probabilistic Result

The following theorem (proved in Appendix A.10) shows that, when the underlying

measures are sufficiently flat and well separated from each other, with high probability

(with respect to the sampling of Problem 1) the TSCC algorithm segments the K

underlying clusters well.

Theorem 4.2.1. Suppose that the TSCC algorithm is applied to the data generated in

Problem 1 with a tuning parameter σ > 0. Let

α :=
1
σ2

K∑

k=1

c2
p(µk) + Cin(µ1, . . . , µK ; σ/2), (4.5)
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and C1 = C1(K, d, ε1, ε2) be the constant defined in Theorem 3.2.4. If

α <
1

16C1
, (4.6)

then

µp (TV(U) ≤ 2α · C1 | Assumption 1 holds) ≥ 1− e−2Nα2/(d+2)2 . (4.7)

Remark 4.2.1. Theorem 4.2.1 also holds for the TLSCC algorithm, but with d replaced

by d− 1, and the constant α by

αL :=
1
σ2

K∑

k=1

c2
p,L(µk) + Cin,L(µ1, . . . , µK ; σ/2), (4.8)

where for any Borel probability measure µ,

cp,L(µ) :=

√∫
c2
p(0, z1, . . . , zd+1) dµ(z1) . . . dµ(zd+1). (4.9)

Remark 4.2.2. A similar version of Theorem 4.2.1 holds for general affinity tensors of

the form {e−c(xi1
,...,xid+2

)/σ}1≤i1,...,id+2≤N , where c is a nonnegative, symmetric function

defined on Rd+2. The significance of using the polar curvature, or any other curvature

satisfying Theorem 1.2.1, is explained in Section 4.3.

We showed in Lemma 3.3.2 that the clustering identification errors eid(U) and eid(T)

can be controlled by TV(U) when K = 2. Combining Lemma 3.3.2 and Theorem 4.2.1

yields the following probabilistic statement.

Corollary 4.2.2. Suppose that K = 2, and that α, C1 are the constants defined in

Theorem 4.2.1. If

α <
1

16C1
, (4.10)

then

µp

(
eid(T) ≤ 4α C1

1− α C1 −
√

2α C1
| Assumption 1 holds

)

≥ 1− e−2Nα2/(d+2)2 . (4.11)
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If

α <
1

2C1
·min


1

8
,

(√
2 +

4
ε2
1

− 2
ε1

)2

 , (4.12)

then

µp

(
eid(U) ≤ 4α C1

1− α C1 − 2/ε1 ·
√

2α C1
| Assumption 1 holds

)

≥ 1− e−2Nα2/(d+2)2 . (4.13)

4.3 Interpretation of the Constant α

Theorem 4.2.1 shows the strong effect of the constant α on the goodness of clustering

of the TSCC algorithm. This constant has two parts, which are explained respectively

as follows.

Theorem 1.2.1 implies that the first part of α is comparable to

1
σ2
·

K∑

k=1

e2
2(µk). (4.14)

We thus view the first part as the sum of the within-cluster errors of the model scaled

by σ2.

Remark 4.3.1. A similar interpretation applies to the tensors defined in equation (2.3).

In this case, for any q ≥ 1, the first term of α is replaced by

1
σ2

K∑

k=1

c(2q)
p (µk), (4.15)

where for any Borel probability measure µ,

c(2q)
p (µ) :=

∫
c2q
p (z1, . . . , zd+2) dµ(z1) . . . dµ(zd+2). (4.16)

The above sum is then comparable to

1
σ2
·

K∑

k=1

e2q
2q(µk), (4.17)
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where e2q(µk) is the error of approximating µk by a d-flat while minimizing the L2q

norm [31].

We interpret the second part of α, i.e., the incidence constant, as the between-

clusters interaction of the model. Unlike the first part, we do not have a theoretical

result that fully establishes this interpretation. We show in a few special cases (with

underlying linear subspaces) how to control this constant.

In the first example (Example 4.3.2) we estimate the incidence constant for two

orthogonal line segments when using TSCC. The next three examples assume the use

of the TLSCC algorithm. In Example 4.3.3 the model includes distributions along

two clean line segments with an arbitrary angle θ between them. We establish the

dependence of the incidence constant on θ and σ. In Example 4.3.4 we consider two

orthogonal lines with uniform noise around them, and demonstrate the dependence of

the incidence constant on the level of the noise and σ. Example 4.3.5 considers two

clean orthogonal planes in R3.

Example 4.3.2. (TSCC: two orthogonal clean lines). We consider the following

two orthogonal line segments in R2:

L1 : y = 0, 0 ≤ x ≤ L,

and

L2 : x = 0, 0 ≤ y ≤ L,

in which L > 0 is a fixed constant. We assume arclength measures µ1 = dx
L , µ2 = dy

L

supported on L1 and L2 respectively. For any σ > 0, the incidence constant for TSCC

is bounded as follows (see Appendix A.11):

Cin(µ1, µ2; σ) ≤ σ√
2L

(
1− e−

√
2L/σ

)
. (4.18)
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Example 4.3.3. (TLSCC: two intersecting clean lines). We consider the following

two lines in R2:

L1 : y = 0, 0 ≤ x ≤ L,

and

L2 : y = r sin θ, x = r cos θ, 0 ≤ r ≤ L,

in which L > 0 and 0 < θ ≤ π/2 are fixed constants. We assume arclength measures

µ1 = dx
L , µ2 = dr

L supported on L1 and L2 respectively. For any σ > 0, the incidence

constant for TLSCC is bounded as follows (see Appendix A.12):

Cin,L(µ1, µ2; σ) ≤ 2
( σ

L sin θ

)2
·
(

1− e−
L sin θ

σ

(
1 +

L sin θ

σ

))
. (4.19)

We note that when θ = π/2, Cin,L has a faster decay rate than Cin (see Example 4.3.2).

Example 4.3.4. (TLSCC: two orthogonal rectangles). We consider two rectan-

gular strips in R2 determined by the following vertices respectively:

R1 : (ε, 0), (L + ε, 0), (ε, ε), (L + ε, ε),

and

R2 : (0, ε), (0, L + ε), (ε, ε), (ε, L + ε),

in which 0 < ε < L. We assume uniform measures µi = 1
LεL2 restricted to Ri, i = 1, 2.

We view R1 and R2 as two lines surrounded by uniform noise. Let ω := L/ε. For

any σ > 0, the incidence constant for TLSCC has the following upper bound (see

Appendix A.13)

Cin,L(µ1, µ2; σ) ≤
√

σ

ω2
+

2 4
√

σ

ω
· e−1/(2σ3/4) + e−1/σ3/4

. (4.20)

In the limiting case of ε → 0+, i.e., when having two orthogonal lines with practically

no noise, the above estimate decays faster to zero than the one in Example 4.3.3 with
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θ = π/2. This is due to the fact that in the current example we exclude the intersection

of the two lines for any ε > 0. As it turned out, the limit of the corresponding integral

(as ε → 0+) is not the same as the full integral of this limit.

Example 4.3.5. (TLSCC: two perpendicular clean half-disks). We consider the

following portions of two unit disks (in polar coordinates) in R3:

D1 : x = 0, y = ρ cosϕ, z = ρ sinϕ, 0 ≤ ρ ≤ 1, 0 ≤ ϕ ≤ π,

and

D2 : x = r cos θ, y = r sin θ, z = 0, 0 ≤ r ≤ 1,−π/2 ≤ θ ≤ π/2.

We also assume uniform measures µi = 2
πL2 restricted on Di, i = 1, 2. In this case,

the incidence constant for TLSCC is bounded above by the following quantity (see

Appendix A.14)

Cin,L(µ1, µ2; σ) ≤ 8
√

σ

π2
+

8 4
√

σ

π
+

4σ2

(sin 4
√

σ)4
. (4.21)

4.4 On the Existence of Assumption 1

The theory developed in this paper assumes that all affinity tensors used with TSCC,

in particular the polar tensor, satisfy Assumption 1. We present some partial results

regarding the existence of this assumption for the polar tensor while taking into account

the restrictions on the size of σ imposed by Theorem 4.2.1. We remark that those results

also extend to some other tensors.

We first show in the following lemma (proved in Appendix A.8) that if a data set is

sampled from a hybrid linear model without noise, then Assumption 1 is always satisfied

with the constant ε2 = 1.

Lemma 4.4.1. If the TSCC is applied to data sampled from a mixture of clean d-flats,

then

D ≥ D̃. (4.22)
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For more general data sampled from a hybrid linear model, we obtain the following

estimate in expectation (see proof in Appendix A.9).

Lemma 4.4.2. If the TSCC is applied to data sampled according to Problem 1, then

Assumption 1 holds in expectation in the following sense:

Eµp(D) ≥ ε2 · D̃, (4.23)

where

ε2 = e−
2
σ
·max1≤k≤K cp(µk). (4.24)

Remark 4.4.1. We do not expect Assumption 1 to hold with high probability (i.e.,

having the µp measure close to one) while maintaining the constant ε2 formulated in

Lemma 4.4.2. However, it seems reasonable to have a statement in high probability

when replacing the polar curvature cp(µk) used in defining this constant with their

following upper bounds:

ĉ 2
p (µk) = max

z1∈supp(µk)

∫
c2
p(z1, z2, . . . , zd+2) dµk(z2) . . . dµk(zd+2) . (4.25)

We leave the investigation of such a statement and the effect of using ĉ 2
p (µ) instead of

c 2
p (µ) to future research.



Chapter 5

The SCC Algorithm

The TSCC algorithm cannot be directly performed in practice due to its high complexity.

In this chapter we first introduce several numerical techniques (in Section 5.1) to make

the TSCC algorithm practical and then form the SCC algorithm (in Section 5.2). We

next analyze the complexity of the SCC algorithm in terms of both storage and running

time (in Section 5.3), and finally propose two more strategies: one for isolating outliers

(in Section 5.4), and the other for segmenting flats of mixed dimensions (in Section 5.5).

5.1 The Novel Methods of SCC

5.1.1 Iterative Sampling

The TSCC algorithm is not applicable in practice for two reasons: First, the amount of

space for storing the affinity matrix A ∈ RN×Nd+1
can be huge (O(Nd+2)); Second, full

computation of A and multiplication of this large matrix and its transpose (to produce

W) can be computationally prohibitive. One solution might be to use uniform sampling,

i.e., randomly select and compute a small subset of the columns of A, to produce an
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estimate of W [40, 19] 1 , which is stated below.

Denoting by A(:, j) the j-th column of A, we compute W in the following way:

W =
Nd+1∑

j=1

A(:, j) ·A(:, j)′. (5.1)

Consequently, W is a sum of Nd+1 rank-1 matrices, i.e., the products of the columns of

A and their transposes. Let j1, . . . , jc be c integers that are randomly selected between

1 and Nd+1. Then W can be approximated as follows [40] 2 :

W ≈
c∑

t=1

A(:, jt) ·A(:, jt)′. (5.2)

In practice, in order to have at most quadratic complexity, we expect the maximum

possible c to be an absolute constant or a small number times N , resulting in c/Nd+1 ≤
O(N−d). We thus conclude that uniform sampling (maintaining quadratic complexity)

is almost surely not able to capture the column space of A when N is large and d

is moderate. Indeed, this is demonstrated in Figure 5.1(a): In the two cases where

d > 2, the error eOLS does not get close to the model error even with c = 100 ·N . This

illustrates a fundamental limitation of uniform sampling. In the following we explain

our strategy to resolve this issue.

We note that each column j of A uniquely corresponds to an ordered list of d + 1

points (xj1 ,xj2 , . . . ,xjd+1
), and moreover, repeated points lead to a zero column (see

equation (1.11)). Thus, we will select only tuples of d + 1 distinct points in X when

sampling columns of A.

We say that an n-tuple of points is pure if these n points are in the same underlying

cluster, and that it is mixed otherwise. Similarly, a column of the matrix A is said to
1 In [40] a more accurate sampling scheme according to the magnitudes of the columns is also

suggested. Nevertheless, since we do not have the full affinity matrix A, this technique can not be
applied in our setting.

2 More precisely, a scaling constant needs to be used in front of the sum in order to have the right
magnitude (see [40, Section 4]). However, since we are only interested in the eigen-structure of W, this
constant is omitted.
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be pure if it corresponds to a pure (d + 1)-tuple, and mixed otherwise. We use these

two categories of columns of A to explain our sampling strategy.

In the ideal case (see Section 3.1), any mixed column of A is identically zero and

thus makes no contribution to computing the matrix W. On the other hand, the

pure columns lead to a block diagonal structure of W, which guarantees a perfect

segmentation (see Proposition 3.1.1). In practice the mixed columns are typically not

all zero. Since the percentage of the mixed columns in A is high, the matrix W loses

the desired block diagonal structure. If we only use the pure columns of A, then we can

expect W to be nearly block diagonal.

The iterative sampling scheme is motivated by the above observations and works

as follows. We fix c to be some constant, e.g., c = 100 · K. Initially, c columns

of A are randomly selected and computed so as to produce W, and then an initial

segmentation of X into K clusters is obtained with this W (we call this initial step the

zeroth iteration). We then re-sample c columns of A by selecting c/K columns from

within each of the K initially found clusters, or from the points within a small strip

around the OLS d-flat of each such cluster, and obtain K newer clusters. In order to

achieve the best segmentation, one can iterate this process a few times, as the newer

clusters are expected to be closer to the underlying clusters.

We demonstrate the strength of this sampling strategy by repeating the experiments

in Figure 5.1(a), but with iterative sampling replacing uniform sampling. Due to the

randomness of sampling, we compute both the mean and the standard deviation of the

errors eOLS in the 500 experiments in each of the intermediate steps of iterative sampling

(see Figure 5.1(b)). In all cases, the mean drops rapidly below the model error when

iterating, and the standard deviation also decays quickly.

We remark that as d increases, we should also use larger c in the zeroth iteration

in order to capture “enough” pure columns. Indeed, in order to have (on average) c0
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pure columns sampled from each underlying cluster in the zeroth iteration, we need to

have c ≈ c0 ·Kd+2. Afterwards, we may still reduce c to a constant multiple of K in the

subsequent iterations. We plan to study more carefully the required magnitudes of c (for

the zeroth iteration and the subsequent iterations respectively) to ensure convergence.

When the theoretical value of c is unrealistically large, we can sample columns in other

ways, e.g., from the output of other d-flats clustering algorithms (such as K-Subspaces)

to initialize SCC.

5.1.2 Estimation of the Tuning Parameter σ

The choice of the tuning parameter σ is crucial to the performance of any algorithm

involving Gaussian-kernel affinities. However, selecting its optimal value is not an easy

task, and also is insufficiently investigated in the literature. Common practice is to

manually select a small set of values and choose the one that works the best (e.g., [29]).

Since the optimal value of σ should depend on the scale of data, subjective choices may

work poorly (see Figure 5.2). We develop an automatic scheme to infer the optimal

value of σ (or an interval containing it) from the data itself.

We start by assuming that all curvatures are computed (which is unrealistic when

d is large). In this case, we estimate the correct choice of σ, starting with the clean

case and then corrupting it by noise. We follow by examining the practical setting of c

sampled columns, i.e., when only a fraction of the curvatures are computed.

In the clean case, the polar curvatures of all pure (d+2)-tuples are zero. In contrast,

(almost) all mixed (d + 2)-tuples have positive curvatures 3 . By taking a sufficiently

small σ > 0 the resulting affinity tensor can closely approximate the perfect tensor

(see Definition 3.1.1), thus an accurate segmentation is guaranteed. When the data is

corrupted with moderate noise, we still expect the curvatures of most pure (d+2)-tuples
3 When a mixed (d+2)-tuple happen to be lying on a d-flat, the polar curvature will be correspond-

ingly zero. However, such mixed tuples should be rare in most cases.
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to be small, and those of most mixed (d + 2)-tuples to be large. The optimal value of

σ, σopt, is the maximum of the small curvatures corresponding to pure tuples (up to a

scaling constant). Indeed, transforming the curvatures by exp(−·/(2σ2
opt)) will produce

affinities that are close to zero (for mixed tuples) and one (for pure tuples). In other

words, this transformation serves like a “low-pass filter”: It “passes” smaller curvatures

by producing large affinities toward 1, and “blocks” bigger curvatures toward zero.

Therefore, in the case of small within-cluster curvatures and large between-cluster

curvatures, one can compute all the curvatures, have them sorted in an increasing order,

estimate the number of small curvatures corresponding to pure tuples, and take as σ the

curvature value at that particular index in the sorted vector. The key step is determining

the index of that curvature value. For this reason we refer to our approach as index

estimation.

We next obtain this index in two cases. First, we suppose that all Nj are known.

Then the proportion of pure (d + 2)-tuples to all (d + 2)-tuples equals:

γ =

∑
1≤j≤K P(Nj , d + 2)

P(N, d + 2)
≈

K∑

j=1

(
Nj

N

)d+2

. (5.3)

That is, the curvature value at the index of γ · P(N, d + 2) can be used as the best

estimate for the optimal σ. Second, when Nj are unknown, we work out the absolute

minimum4 of the last quantity in equation (5.3) and use it as a lower bound for the

fraction γ:

γ ' K ·
(

1
K

)d+2

=
1

Kd+1
. (5.4)

We note that if all Nj are equal to N/K, then this lower bound coincides with its tighter

estimate provided in equation (5.3). The following example demonstrates this strategy.
4 The absolute minimum can be obtained by solving a constrained optimization problem:

min
γ1,...,γK>0

K∑
j=1

γd+2
j subject to

K∑
j=1

γj = 1.

The minimum is attained when γj = 1/K, j = 1, . . . , K.
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Example 5.1.1. We take the data in Figure 5.2 which consists of three lines in R2, each

having 25 points. This data set has a relatively small size, so we are able to compute

all the polar curvatures. We apply equation (5.3) (or (5.4)) and obtain that γ ≈ 1/9.

Thus, we use the 1/9 · P(75, 2) = 617th smallest curvature as the optimal value of the

tuning parameter: σ = 1.5111. We also remark that the optimal value σ = 0.1840 in

Example 3.2.5 was obtained similarly.

We now go to our practical setting (Section 5.1.1) where we iteratively sample only

c columns of A and thus do not have all the curvatures. We assume convergence of the

iterative sampling so that the proportion of pure columns (in the c sampled columns)

increases with the iterations. Consequently, we obtain a lower bound for σ from the

zeroth iteration, and an upper bound from the last iteration.

In the zeroth iteration (uniform sampling), c columns of A are randomly selected.

We expect to have the same lower bound as in equation (5.4) for the proportion of pure

(d + 2)-tuples in these c columns. We note that there are exactly N − d − 1 elements

corresponding to tuples of d + 2 distinct points in each of these c columns. Denoting

by c the vector of the (N − d − 1) · c corresponding curvatures sorted in an increasing

order, we write a lower bound for σ as follows:

σmin = c
(
(N − d− 1) · c/Kd+1

)
. (5.5)

In the last iteration (when the scheme converges to finding the true clusters), c/K

columns are sampled from each of the K underlying clusters, thus all the c columns

are pure. In this case, the number of pure (d + 2)-tuples in the c columns attains the

following maximum possible value:
K∑

j=1

(Nj − d− 1) · c

K
= N · c/K − (d + 1) · c. (5.6)

Therefore, we have the following upper bound for σ:

σmax = c ((N/K − d− 1) · c) . (5.7)
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We present two practical ways of searching the interval [σmin, σmax] for the optimal

value of σ. First, one can start with the upper bound σmax and divide it by a constant

(e.g., 2) each time until it falls below the lower bound σmin. Second, one can search by

the index of the vector c, i.e., choose the optimal value from a subset of c:

{c (N · c/Kq) | q = 1, . . . , d + 1}. (5.8)

We remark that the second strategy always requires d + 1 searches for σ, thus one can

have control over the total number of iterations. We have found in experiments that this

search strategy works sufficiently well. To further improve efficiency, we can gradually

raise the lower bound (i.e., σmin) in the subsequent iterations.

5.1.3 Initialization of K-means

The clustering step in the TSCC algorithm applies K-means to the rows of U. In the

ideal case, these rows coincide with K mutually orthogonal vectors (the “seeds”) in RK

(see Proposition 3.1.1); in the case of noise, the rows of U correspond to more than K

points that originate from those seeds and possibly overlap in between. See Figure 5.3

for an illustration. We locate these seeds by maximizing the variance among all possible

combinations of K rows of U, and then use them to initialize K-means.

Formally, the indices of these seeds can be found by solving the following optimiza-

tion problem:

{s1, . . . , sK} = arg max
1≤n1<···<nK≤N

K∑

i=1

‖U(ni, :)− 1
K
·

K∑

j=1

U(nj , :)‖2. (5.9)

With a little algebra we obtain an equivalent representation 5 :

{s1, . . . , sK} = arg max
1≤n1<···<nK≤N

∑

1≤i<j≤K

‖U(ni, :)−U(nj , :)‖2. (5.10)

5 When all the rows of U have unit length, this criterion reduces to minimizing the total sum of
inner products among all possible combinations of K rows of U. With this normalization, our strategy
(equations (5.11) and (5.12)) still differentiates from that of Ng et al. [29].
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We thus apply an inductive scheme (via equation (5.10)) to solve the above maximization

problem. The first index s1 is chosen to be that of the row farthest from the center of

all N rows. That is,

s1 = arg max
1≤n≤N

‖U(n, :)− 1
N

N∑

i=1

U(i, :)‖. (5.11)

Suppose now that 1 ≤ k < K seeds have been chosen, then the index of the (k + 1)-st

seed is determined by

sk+1 = arg max
1≤n≤N

n6=s1,...,sk

k∑

i=1

‖U(si, :)−U(n, :)‖2. (5.12)

5.2 The SCC Algorithm

We combine together the theoretical algorithm and all the techniques introduced in the

previous section to form a comprehensive Spectral Curvature Clustering (SCC) algo-

rithm for practical use (Algorithm 2).
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Algorithm 2: Spectral Curvature Clustering (SCC)
input : Data set X, intrinsic dimension d, number of d-flats K (required);

number of sampled columns c (default = 100 ·K)

output: K disjoint clusters C1, . . . , CK and error eOLS

begin

Sample randomly c subsets of X, each containing exactly d + 1 distinct points.1

repeat

Compute the polar curvature of any subset and each of the rest of points2

in X by equation (1.2), and sort increasingly into a vector c those

(N − d− 1) · c curvatures.

for q = 1 to d + 1 do

Use equation (2.3) with q = 2 and σ = c (N · c/Kq) to compute the c3

selected columns of A. Form a matrix Ac ∈ RN×c using these c

columns.

Compute D = diag{Ac · (A′
c · 1)} and use it to normalize Ac:4

A∗
c = D−1/2 ·Ac.

Stack in columns the top K left singular vectors of A∗
c to form U.5

Apply K-means, initialized according to equations (5.11) and (5.12),6

to the rows of U a and separate them into K clusters.

Use these detected clusters to group the points of X into K subsets,7

and compute the corresponding error eOLS using equation (2.1).

end

Record the K subsets C1, . . . , CK of X that correspond to the smallest8

error eOLS in the above loop. Sample c/K (d + 1)-tuples from each Cj (or

the points within a small strip around each of their OLS d-flats).

until eOLS converges

end

aThe reader might want to apply the V normalization (equation (3.20)) to the rows of U before

K-means in order to obtain better results. See Section 3.3.1 for relevant discussions.
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5.3 Complexity of the SCC Algorithm

The implementation of the SCC algorithm is mainly through standard matrix opera-

tions, such as element-wise manipulation, matrix-vector multiplication, Singular Value

Decomposition (SVD), etc.. Consequently, the complexity of SCC is completely deter-

mined by the sizes of the matrices used in the algorithm and the types of operations

between them.

The storage requirement of the algorithm is O(N · (D + c)). Indeed, the biggest

matrices are X (when considered as a matrix), whose size is N×D, and Ac,A∗
c (defined

in Algorithm 2), which have size N × c. In order to estimate the running time, we

first note that it takes O((d + 1) · D · N · c)) time to compute Ac by using matrix

manipulations (see code at http://www.math.umn.edu/∼lerman/scc/ ). Also, it takes

O(N · c) time to compute D, Ãc, and O((N + c) · K2) time to calculate U by fast

SVD algorithms (e.g. [41]). Thus, each iteration takes O((d + 1)2 ·D ·N · c) time (the

computation is repeated d+1 times in Step 2 of Algorithm 2). Let ns denote the number

of sampling iterations performed. We then obtain that the total running time of the

SCC algorithm is O(ns · (d + 1)2 ·D ·N · c).

5.4 Outliers Detection

We detect outliers according to the degrees of the data points, i.e., the diagonal elements

of the matrix D in Algorithm 2. We assume that the percentage of outliers is known.

In each sampling iteration, after the degrees D have been computed, we isolate the

percentage of points with the smallest degrees as intermediate outliers, and remove

the corresponding rows from the matrix Ac. We then re-compute D from the reduced

matrix Ac and follow the subsequent steps of SCC to obtain K clusters. In the next

iteration, we will sample c/K columns only from each of the previously detected clusters
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to form Ac (thus excluding the previous outliers). Those outliers isolated in the final

sampling iteration will be the ultimate outliers.

To evaluate the performance of this outliers detection strategy associated with SCC,

we plot in Figure 5.4 a Receiver Operating Characteristic (ROC) curve in the case of lines

contaminated with outliers. An ROC curve is the plot of the true positive rates (TPR)

against the false positive rates (FPR). The TPR is the percentage of correctly detected

outliers; while the FPR is the percentage of data points in the stable distribution which

are falsely detected as outliers. A large area under the ROC curve is indication of good

performance in outliers detection for a wide rage of FPRs. The area of the region under

the ROC curve corresponding to SCC is 0.8105. In comparison, the Robust GPCA

algorithm (RGPCA) [2] has an area of 0.7613 under its ROC curve. The figure also

emphasizes the fact that SCC has a better performance than RGPCA at low FPRs

which are practically more important.

5.5 Mixed Dimensions

The SCC algorithm is formulated in the setting of data sampled from flats of the same

dimension d. In fact, it can be easily adapted to cluster flats of mixed dimensions, i.e.,

when the dimensions d1, d2, . . . , dK are not necessarily the same.

Our strategy is to use the maximum of the dimensions

dmax = max
1≤j≤K

dj , (5.13)

and apply SCC to segment K dmax-flats. We find in experiments that this technique

often results in small segmentation errors e%. At this stage we cannot compute eOLS

due to not knowing the intrinsic dimensions of the detected clusters. We will try to

resolve this issue in later research.
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(a) Uniform Sampling: The errors obtained using different choices of c. On each curve a
symbol represents a distinct value of c. Left: c is taken to be N, 2N, . . . , 10N respectively;
Right: c = N, 5N, 10N, 50N, 100N .
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(b) Iterative Sampling: The mean (left) and standard deviation (right) of the errors obtained
in the initial step (uniform sampling) and the first 9 updates using iterative sampling with
c = N = 100 ·K always fixed.

Figure 5.1: Plots of the errors (eOLS) using different sampling strategies against time.
In each experiment we randomly generate K = 3 d-dimensional linear subspaces in RD.
Each subspace contains 100 points, so N = 100 · K. The model error is 0.05 in all
situations (indicated by the dash lines). We repeat this experiment 500 times (for each
fixed pair (d,D)) in order to compute an average of eOLS for each iteration.
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Figure 5.2: Segmentation results with different choices of σ. The value 1.5111 is inferred
from data using our strategy (explained in Example 5.1.1); the other values are manually
selected.
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(b) New coordinates in R3 (i.e., the rows of U)

Figure 5.3: Three data sets of the same model but with increasing levels of noise, and
their images in the embedded space.
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Figure 5.4: ROC curves corresponding to SCC and RGPCA. We randomly generate
K = 3 linear lines in R2, and sample 100 points from each line. The samples are then
corrupted with 5% Gaussian noise and further contaminated with some percentage of
outliers. The percentages used are 5%, 10%, 15%, . . . , 95% respectively, as indicated by
the symbols on each curve. For each fixed percentage, 500 experiments are repeated in
order to compute an average for each of the two rates.



Chapter 6

Experiments

In this chapter we test the performance of the SCC algorithm on both synthetic data

and real-world applications.

6.1 Simulations

We compare the SCC algorithm (and also LSCC when applicable) with other competing

methods on a number of artificial data sets in the setting of hybrid linear modeling.

The three methods that we compare with are the Mixtures of Probabilistic PCA al-

gorithm (MoPPCA) [15], the K-Subspaces algorithm (KS) [9], and the GPCA algorithm

with voting (GPCA) [2]. We use the Matlab codes of the GPCA algorithm that are read-

ily available at http://perception.csl.uiuc.edu/gpca/. We also borrow from that web site

the Matlab code that generates various data sets. MoPPCA and KS are implemented

by Stefan Atev and ourselves (see codes at http://www.math.umn.edu/∼lerman/scc/ ).

These two methods are always initialized with a random guess of the membership of

the data points. Due to the randomness in the initialization, multiple restarts are used

and the best segmentation result is recorded.

53



54

The three multi-way clustering algorithms [18, 19, 20] seem highly related and should

have been included for comparison. However, they mainly focus on how to process a

given affinity tensor; many practical and sensitive issues are not fully discussed in the

context of hybrid linear modeling, and are also missing from their implementation. In

fact, we have compared with [19] (in Figures 5.1 and 5.2) regarding random sampling

and choices of the tuning parameter σ. We also tried to compare with k-Manifolds [22].

However, this method tends to find curves/surfaces instead of straight lines/flat planes,

so it performs poorly in this context and is also not included.

In the following we conduct experiments in the cases of linear/affine subspaces of the

same dimension/mixed dimensions to compare the performance of the four algorithms,

namely MoPPCA, KS, GPCA, and SCC. The simulations were performed on a compute

server with two dual-core AMD Opteron 64-bit 280 processors (2.4 GHz) with 8 GB of

RAM. We remark that when applying SCC (Algorithm 2) we fix c = 100 ·K.

We first randomly generate K linear subspaces of a fixed dimension d in some Eu-

clidean space RD, which we write dK ∈ RD for short. We follow [2] to mandate the

angles between these subspaces to be at least 30 degrees in order to ensure enough sep-

aration. Also, the diameter of each subspace is fixed to be 1. We then randomly draw

100 samples from each of the subspaces, and corrupt them with 5% Gaussian noise.

We apply the four algorithms to the data and record both types of errors eOLS and

e% as well as the computation time t. This experiment is repeated 500 times and the

averaged errors and time are shown in Table 6.1. In all the three scenarios, MoPPCA,

KS and SCC have comparable performance, but they all outperform GPCA at 1−10−7

confidence level using paired t-tests.

We also note that LSCC has a slightly better segmentation result than SCC. The

reasons are explained as follows: (1) The new matrix A (in full form) has less columns

than before by one order of N , so the same number of sampled columns can be a better
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Table 6.1: The two types of errors eOLS, e% and computation time t (in seconds) of the
four methods when clustering linear subspaces. The number of subspaces K and the
intrinsic dimension d are given to all algorithms. The MoPPCA and KS algorithms are
randomly initialized. Ten restarts are used for each of them, and the smallest error is
used.

24 ∈ R3 33 ∈ R4 43 ∈ R6

eOLS e% t eOLS e% t eOLS e% t

MoPPCA .042 19.2% 0.7 .043 16.8% 0.4 .048 3.2% 0.4
KS .043 19.5% 0.2 .043 16.3% 0.2 .048 3.1% 0.2

LSCC .043 19.8% 1.8 .044 17.3% 1.5 .048 3.4% 1.8
SCC .048 23.1% 3.0 .044 18.2% 2.0 .048 3.6% 2.1
GPCA .088 39.5% 1.5 .077 32.5% 1.3 .126 31.7% 3.1

representative of the column space of A; (2) With d + 1 points and the origin, a small

curvature always implies that the d + 1 points are close to being on some underlying

linear subspace. This excludes the unfavorable small curvatures for d + 2 points lying

around an affine subspace (which is the case for SCC).

We next compare the SCC algorithm with the other methods on clustering affine sub-

spaces. We generate affine subspaces with the same controlling parameters as in the lin-

ear case. We remark that the software borrowed from http://perception.csl.uiuc.edu/gpca/

tries to avoid intersection of these affine subspaces, or more precisely, of the sampled

clusters. We note that, since SCC does not distinguish between linear and affine sub-

spaces, its performance in the case of intersecting affine subspaces can be reflected in

Table 6.1 (where we have intersecting linear subspaces). The two types of errors due

to all four methods and their computation time are recorded in Table 6.2. The results

of paired t-tests between SCC and the other three methods show that SCC performs

better at 1− 10−7 confidence level in terms of both errors.

We finally compare all the algorithms on clustering linear/affine subspaces of mixed

dimensions in order to further evaluate their performance. We follow the notation in [2]

to denote data sampled from subspaces of mixed dimensions by (d1, . . . , dK) ∈ RD. All
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Table 6.2: The two types of errors eOLS, e% and computation time t (in seconds) of the
four algorithms when clustering affine subspaces. The number of subspaces K and the
intrinsic dimension d are given to all algorithms. The MoPPCA and KS algorithms are
randomly initialized. Ten restarts are used for each of them, and the smallest error is
used.

14 ∈ R2 23 ∈ R3 43 ∈ R5

eOLS e% t eOLS e% t eOLS e% t

GPCA .174 29.1% 1.3 .116 20.1% 1.0 .138 30.2% 1.5
MoPPCA .110 35.4% 0.7 .115 47.6% 0.6 .089 49.0% 0.9

KS .089 25.5% 0.2 .113 45.4% 0.1 .090 49.3% 0.2
SCC .049 4.2% 1.3 .049 2.8% 1.0 .048 1.4% 2.1

the parameters used in generating data are the same as above, except that the noise level

becomes 3%. Table 6.3 shows the percentage of misclassified points (i.e., e%) and elapsed

time by each of the four algorithms in eight scenarios. Without further processing, the

LSCC (resp. SCC) algorithm in the case of linear (resp. affine) subspaces still exhibits

better performance in terms of e% than its competitors at 1 − 10−7 confidence level

(using paired t-tests).

6.2 Applications

Hybrid linear modeling has broad applications in many areas, such as computer vision,

image processing, pattern recognition, and system identification. We exemplify below

the application of the SCC algorithm to a few real-world problems that are studied

in [1, 2].

6.2.1 Motion Segmentation under Affine Camera Models

Suppose that a video sequence consists of F frames of images of several objects that are

moving independently against the background, and that N feature points y1, . . . ,yN ∈
R3 are detected on the objects and the background. Let zij ∈ R2 be the coordinates of
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Table 6.3: The percentage of misclassified points e% and elapsed time t (in seconds) by
all algorithms when clustering hybrid data sampled from linear(L)/affine(A) subspaces
of mixed dimensions. The dimensions of the subspaces are given to all the algorithms.
The MoPPCA and K-Subspaces algorithms are randomly initialized. Ten restarts are
used for each of them, and the smallest error is used.

(1, 2, 2) ∈ R3 (1, 1, 2) ∈ R3 (1, 1, 2, 2) ∈ R3 (1, 2, 3) ∈ R4

e% · 100 L A L A L A L A
KS 10.6 34.1 11.2 26.9 21.8 36.6 19.5 38.6

MoPPCA 8.0 41.4 24.0 37.6 20.4 44.0 24.0 31.8
GPCA 7.3 11.7 17.8 18.1 25.2 24.7 13.2 17.4
SCC 7.2 1.0 9.2 0.5 18.6 1.4 8.4 0.3
LSCC 6.1 7.1 10.8 6.6

t

KS 0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.1
MoPPCA 0.4 0.6 0.4 0.6 0.8 1.0 0.6 0.7
GPCA 2.2 2.5 2.1 1.9 3.5 3.6 6.4 4.5
SCC 1.2 0.9 1.1 0.9 2.2 1.6 1.6 1.4
LSCC 0.7 0.8 1.3 1.5

the feature point yj in the i-th image frame for every 1 ≤ i ≤ F and 1 ≤ j ≤ N . Then

zj = [z′1j z′2j . . . z′Fj ]
′ ∈ R2F represents the trajectory of the j-th feature point across

the F frames. The problem is how to separate these trajectory vectors z1, . . . , zN into

independent motions undertaken by those objects and the background.

It has been shown (e.g., in [2]) that, under affine camera models and with some

mild conditions, the trajectory vectors corresponding to different moving objects and

the background across the F image frames live in distinct linear subspaces of dimension

at most four in R2F , or affine subspaces of dimension at most three within those linear

subspaces.

We borrow the data from [42], which are also used in [2]. This data consist of two

outdoor sequences taken by a moving camera tracking a car moving in front of a parking

lot and a building (Sequences A and B), and one indoor sequence taken by a moving

camera tracking a person moving his head (Sequence C), as shown in [42, Figure 7].
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Following the above theory, we first apply SCC (Algorithm 2) as well as LSCC to

segment two 4-dimensional linear subspaces in R2F for each of the three sequences. We

also apply SCC to each sequence and segment 3-dimensional affine subspaces in R2F .

In all these cases, SCC obtains 100% accuracy. In contrast, GPCA cannot be applied

directly to the original trajectories in Sequences A and C, as it is computationally too

expensive to find all the normal vectors of these low dimensional linear subspaces within

a high dimensional ambient space. Even in Sequence B where we could apply GPCA

(where 2F = 34 is small), it produces varying errors, which are sometimes nearly 40%

(see Table 6.4).

Table 6.4: Percentage of misclassified points e% by SCC and GPCA respectively using
different combinations (d,D). Here d is the dimension of the subspaces, and D is the
ambient dimension. Both algorithms are without post-optimization. In the table below
N/A represents Not Applicable, while VE is short for Varying Errors.

Sequence A B C
Number of points N 136 63 73
Number of frames F 30 17 100

SCC/LSCC d = 4, D = 2F 0% 0% 0%
SCC d = 3, D = 2F 0% 0% 0%

PCA+SCC d = 3, D = 4 0% 0% 0%
GPCA d = 3/4, D = 2F N/A VE N/A

SVD+GPCA d = 4, D = 5 0% 0% 40%

To further evaluate the performance of the two algorithms, we have also applied

GPCA and SCC to the three sequences after reducing the ambient dimensions. We

first project the trajectories onto a 5-dimensional space by direct SVD (to maintain the

linear structure), and apply GPCA to segment 4-dimensional linear subspaces in R5 as

suggested in [2], but without post-optimization by KS. A segmentation error as large as

40% is obtained for Sequence C (see Table 6.4). The equivalent way of applying SCC

is to first project the data onto the first four principal components by PCA, and then

segment 3-flats in R4. Again, SCC achieves zero error (see Table 6.4).
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6.2.2 Face Clustering under Varying Lighting Conditions

We study the problem of clustering a given collection of images of human faces in

fixed pose under varying illumination conditions. It has been proved that the set of

all images of a Lambertian object under a variety of lighting conditions form a convex

polyhedral cone in the image space, and this cone can be accurately approximated by a

low-dimensional linear subspace (of dimension at most 9) [9, 43, 44]. If we assume that

images of different faces lie in different subspaces, then we can cluster these images by

segmenting an arrangement of linear subspaces using SCC (and also LSCC).

Figure 6.1: The ten subjects in the Yale Face Database B. First row: subjects 1 through
5; second row: subjects 6 to 10.

Following Vidal et al. [1] we use a subset of the Yale Face Database B [45] consisting

of the frontal face images of three subjects (numbered by 5, 8, and 10) of the ten (see

Figure 6.1) under 64 varying lighting conditions. There are N = 64× 3 images in total.

For computational efficiency, we have downsampled each image to 120× 160 pixels, so

the dimension of the image space is D′ = 120× 160. We then stack these images (after

vectorized) into a D′ × N matrix X and apply SVD to reduce the ambient dimension

to D ¿ D′, forming a new matrix Y ∈ RD×N .

We apply SCC to the columns of Y and cluster three d-dimensional linear subspaces

in RD. The above theory indicates that d should be at most 9. We have tried all the
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possible combinations 0 ≤ d < D ≤ 10. The pairs (d,D) with which SCC and LSCC give

a perfect segmentation are listed in Table 6.5. In comparison, we have also applied the

GPCA-voting algorithm to the columns of Y with 0 ≤ d < D ≤ 10. There are many

situations where GPCA does not give 100% accuracy but SCC does (see Table 6.5).

Table 6.5: Combinations (d,D) with which SCC and GPCA achieves a perfect segmen-
tation respectively. Here d is the dimension of the subspaces while D is the ambient
dimension.

Methods (d,D)
SVD+SCC (0, 2 ≤ D ≤ 4), (1, 3/4), 2 ≤ d < D ≤ 10
SVD+LSCC (1, 3/4/5/7/8), 2 ≤ d < D ≤ 10
SVD+GPCA (3, 5), (4, 6), (4, 7), (5, 7), (4, 8), (6, 8)

Vidal et al. [1] suggest to first project the data onto the top three principal compo-

nents and then apply GPCA to the data in homogeneous coordinates by fitting three

linear subspaces of dimensions 3, 2, and 2 in R4. They obtain zero error in this case.

However, we are not aware of the reason of using mixed dimensions. We follow their

strategy but instead we apply GPCA using the same dimension 3 for each linear sub-

space. Then a segmentation error of about 4% is obtained. We note that applying

GPCA with d = 3 for each linear subspace (in homogeneous coordinates) in R4 is

equivalent to applying SCC with D = 3 and d = 2. In this case, SCC achieves a perfect

segmentation.

6.2.3 Temporal Segmentation of Video Sequences

We consider the problem of partitioning a long video sequence into multiple short seg-

ments corresponding to different scenes. We assume that all the image frames having

the same scene live in a low dimensional subspace of the image space and that different

scenes correspond to different subspaces. We show that the SCC and LSCC algorithms
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can be applied to solve this problem.

Figure 6.2: The first, 56th and last (135th) frames of the Fox video sequence.

The video sequence that we received from Rene Vidal is about an interview at Fox

TV (Figure 6.2). It is also used in [1]. It consists of 135 images of size 294× 413, each

containing either the interviewer alone, or the interviewee alone, or both. We would

like to segment these images into the three scenes. We view each image frame as a

sample point in RD′ , where D′ = 294× 413. We first apply SVD to reduce the ambient

dimension from D′ to D ≤ 10, and then apply SCC to segment three d-dimensional

linear subspaces within RD. The combinations (d,D) with which SCC/LSCC obtains

100% accuracy are reported in Table 6.6.

Table 6.6: The pairs (d,D) with which each algorithm obtains 100% accuracy. Here D
is the ambient dimension while d is the dimension of the subspaces.

Method (d,D)
SVD+SCC (0, 1/2/3/4), (1, 3/4), (2, 3/4/5)
SVD+LSCC (1, 3), (2, 3/4), (3, 4)
SVD+GPCA NONE

Vidal et al. [1] applied GPCA to solve this problem and obtained 100% accuracy.

We do not know what dimensions of the ambient space and the subspaces they used.

We also apply GPCA to segment d-dimensional linear subspaces in the projected space

RD, where 1 ≤ d < D ≤ 10. However, we did not find any combination that leads to a

perfect segmentation.



Chapter 7

Conclusion and Future Work

We first proposed the Theoretical Spectral Curvature Clustering (TSCC) algorithm

(Algorithm 1) for solving the problem of hybrid linear modeling, and then analyzed

the theoretical performance of SCC in the setting of Problem 1. We showed that the

TSCC algorithm could precisely cluster the underlying components knowing the perfect

tensor (Proposition 3.1.1), and established good performance in the case of reasonable

deviation from the perfect case (Theorem 3.2.4). Using this result, we proved that if a

data set is sampled independently and identically according to the setting of Problem 1,

then with high sampling probability the TSCC algorithm will perform well as long as

the underlying distributions are sufficiently flat and separated (Theorem 4.2.1).

We next introduced various techniques to make the algorithm practical, forming the

Spectral Curvature Clustering (SCC) algorithm (Algorithm 2). The complexity of SCC,

i.e., the storage and running time, depends linearly on both the size of the data and the

ambient dimension. We performed extensive simulations to compare our algorithm with

a few other standard methods. It seemed that our algorithm is at least comparable to

its competitors. It has a marked advantage in the case of affine subspaces and in certain

instances of mixed dimensions. We also applied our algorithm to several real-world

62
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problems, and obtained satisfactory results in all cases. Our algorithm performed well

even in relatively high dimensional projected spaces, sometimes including the full space,

and thus did not require aggressive dimensionality reduction as other algorithms.

We conclude this paper by discussing both the open directions and the possible

extensions of this work.

Further understanding of the two normalizations discussed in Section 3.3.1:

We first explored in Section 3.3.1 possible normalizations of the matrix U, and analyzed

(to some extent) the performance of TSCC with and without them. We concluded that

the normalization suggested by the matrix T is probably the right one to apply in TSCC.

It will be interesting to test our practical strategy when applying such a normalization

(see Remark 3.3.1) on both artificial and practical data sets with varying numbers of

points within each cluster. Also, we wish to study more carefully the possible advantages

of the normalization suggested by the matrix V.

At last, Section 3.3.1 analyzed the TSCC algorithm when applied without the un-

normalized matrix Z. The perturbation results there were practically comparable to

those obtained when applying TSCC with the normalized matrix Z. It thus did not

reveal the significant advantage of using Z. In future investigations we would like to

improve the current estimates so that they emphasize this significant advantage.

Further interpretation of the incidence constant: Currently we have described

the behavior of the incidence constant in a few typical examples of two intersecting

linear subspaces. We ask about characterization of this constant for general mixtures

of flats, and its dependence on the separation between the subspaces, the magnitude of

noise as well as the tuning parameter.

Estimation of the clustering identification error: We showed in Section 3.3.1 that

when K = 2 and TV(U) is sufficiently small, then a large percentage of the points can
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be clustered correctly. We would like to extend the corresponding analysis to the case

where K > 2.

Further investigation of Assumption 1: Assumption 1 is a crucial condition for

Algorithm 1 to work well. Our partial results (i.e., Lemmas 4.4.1 and 4.4.2) showed that

this assumption holds at least in expectation. We would like to explore the existence

in high probability of Assumption 1 with a constant ε2 > 0 that does not contradict

the bounds imposed by Theorem 4.2.1 (see discussion in Section 4.4, in particular,

Remark 4.4.1).

Justification of Iterative Sampling: Our heuristic idea of iterative sampling seems

to work well in all cases and thus results in a fast and accurate algorithm. We are inter-

ested in a more rigorous foundation of this procedure, in particular, finding conditions

under which it converges (e.g., how large c should be to ensure convergence).

Thorough Study of Robustness: Numerical experiments indicate that the SCC

algorithm (without isolating outliers in each iteration) is robust to outliers. We would

like to pursue a theoretical justification of robustness of the SCC algorithm (or TSCC).

We are also interested in improving the strategy for detecting outliers, especially when

the outlier percentage is not given.

Improving the Case of Mixed Dimensions: Currently, when dealing with mixed

dimensions, we use the highest dimension. This strategy works well in terms of e%.

To improve the performance of SCC in this case, and consequently to more accurately

evaluate the other error eOLS, we plan to explore estimation of the true dimensions of

the detected flats. Another strategy might be to hierarchically perform SCC according

to different intrinsic dimensions.

Determining the Number of Flats and Their Dimensions: Throughout this
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paper we have assumed that K and dk are given. In many cases prior knowledge

of these parameters may not be available. We thus need to develop techniques and

criterions to select an optimal model.
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Appendix A

Proofs

A.1 Proof of Proposition 3.1.1

The affinity matrix Ã, the matricized version of Ã, is a 0/1 matrix of size N×Nd+1. We

identify the unit entries in each row as follows. For any fixed 1 ≤ i ≤ N1, the entries of

the i-th row of Ã are of the form Ã(i, i2, . . . , id+2), 1 ≤ i2, . . . , id+2 ≤ N . These entries

will be 1 if they represent affinities of distinct d + 2 points in C̃1, that is, the indices

i, i2, . . . , id+2 are distinct and between 1 and N1. Therefore, the i-th row has exactly

P(N1 − 1, d + 1) entries filled by a 1, which is exactly the number of permutations of

size d + 1 out of the first N1 points excluding i. Similarly, each of the subsequent N2

rows has P(N2 − 1, d + 1) ones, and each of the next N3 rows has P(N3 − 1, d + 1) ones,

etc..

The weight matrix W̃ = ÃÃ′ can be expressed in terms of the tensor Ã in the

following way:

W̃ij =
∑

1≤i2,...,id+2≤N

Ã(i, i2, . . . , id+2)Ã(j, i2, . . . , id+2), 1 ≤ i, j ≤ N. (A.1)

If xi and xj are not in the same underlying cluster, then all the products are zero.
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Therefore, W̃ is block diagonal:

W̃ = diag{W̃(1),W̃(2), . . . ,W̃(K)}, (A.2)

where W̃(k) ∈ RNk×Nk , corresponding to the underlying cluster C̃k, has the following

form:

W̃
(k)
ij =





P(Nk − 1, d + 1), if i = j;

P(Nk − 2, d + 1), otherwise.
(A.3)

Indeed, the diagonal elements of W̃(k) are simply the number of ones in the correspond-

ing rows of Ã, and the off-diagonal elements are the number of ones that appear at the

intersection of the corresponding pair of rows.

It then follows that

D̃ = diag{W̃ · 1} = diag{d̃1IN1 , d̃2IN2 , . . . , d̃KINK
}, (A.4)

where

d̃k = P(Nk − 1, d + 1) + (Nk − 1) · P(Nk − 2, d + 1)

= (Nk − d− 1) · P(Nk − 1, d + 1). (A.5)

The normalized matrix Z̃ = D̃−1/2W̃D̃−1/2 is also block diagonal:

Z̃ = diag{Z̃(1), Z̃(2), . . . , Z̃(K)}, (A.6)

where each block has the form Z̃(k) = W̃(k)/d̃k, 1 ≤ k ≤ K. The (i, j)-element of Z̃(k),

for all 1 ≤ i, j ≤ Nk, is

Z̃
(k)
ij =





1
Nk−d−1 , if i = j;

Nk−d−2
(Nk−1)(Nk−d−1) , otherwise.

(A.7)



74

Straightforward calculation shows that each block matrix Z̃(k) has two distinct eigen-

values:

λ̃(k)
n =





1, if n = 1;

d+1
(Nk−1)(Nk−d−1) , if 2 ≤ n ≤ Nk.

(A.8)

The eigenspace associated with the single eigenvalue 1 for Z̃(k) is spanned by 1Nk
,

the Nk-dimensional column vector of all ones. Since the eigenvalues and eigenvectors of

a block diagonal matrix are essentially the union of those of its blocks (for eigenvectors

we need to append zeros in an appropriate way), we conclude that Z̃ has the largest

eigenvalue 1 of multiplicity K with associated eigenspace spanned by the following K

orthonormal vectors:

1√
N1




1N1

0
...

0




,
1√
N2




0

1N2

...

0




, . . . ,
1√
NK




0
...

0

1NK



∈ RN . (A.9)

We note that the K eigenvectors associated with the eigenvalue 1 can only be de-

termined up to an orthonormal transformation. That is,

Ũ =




1√
N1

1N1 0 . . . 0

0 1√
N2

1N2 . . . 0
...

...
. . .

...

0 0 . . . 1√
NK

1NK




Q ∈ RN×K , (A.10)

where Q is a K ×K orthonormal matrix.

If we write Q = (q1,q2, . . . ,qK)′, where qk is the k-th column of Q′, then equa-

tion (A.10) implies that the K clusters are mapped one-to-one to the K mutually

orthogonal vectors 1√
N1
· q1, . . . ,

1√
NK

· qK ∈ RK .
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A.2 Proof of Lemma 3.2.3

We first note that PK(Z) = UU′ and PK(Z̃) = ŨŨ′, due to the fact that both U and

Ũ are composed of orthonormal columns. Therefore,

∥∥∥PK(Z)− PK(Z̃)
∥∥∥

2

F
=

∥∥∥UU′ − ŨŨ′
∥∥∥

2

F
= trace

((
UU′ − ŨŨ′

)2
)

= trace
(
UU′ −UU′ŨŨ′ − ŨŨ′UU′ + ŨŨ′

)
. (A.11)

Since

trace
(
UU′) = trace

(
U′U

)
= trace(IK) = K, (A.12)

and similarly,

trace
(
ŨŨ′

)
= K, (A.13)

we have

∥∥∥PK(Z)− PK(Z̃)
∥∥∥

2

F
= 2K − 2 · trace

(
UU′ŨŨ′

)
. (A.14)

In the formula of the matrix Ũ (see equation (A.10)), there is an arbitrary orthonor-

mal matrix Q. However, the product ŨŨ′ does not depend on Q. Hence, we can use a

representation of Ũ where Q is the identity matrix, and proceed as follows:

∥∥∥PK(Z)− PK(Z̃)
∥∥∥

2

F
= 2K − 2 ·

∥∥∥U′Ũ
∥∥∥

2

F

= 2K − 2 ·
∥∥∥∥∥∥


∑

i∈I1

1√
N1

(
u(i)

)′
. . .

∑

i∈IK

1√
NK

(
u(i)

)′



∥∥∥∥∥∥

2

F

= 2K − 2 ·
K∑

k=1

1
Nk

∥∥∥∥∥∥
∑

i∈Ik

u(i)

∥∥∥∥∥∥

2

2

= 2K − 2 ·
K∑

k=1

Nk

∥∥∥c(k)
∥∥∥

2

2
. (A.15)
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Since the columns of the matrix U are unit vectors, we have

N∑

i=1

∥∥∥u(i)
∥∥∥

2

2
= ‖U‖2

F =
K∑

k=1

‖uk‖2
2 = K. (A.16)

Combining the last two equations we get that

∥∥∥PK(Z)− PK(Z̃)
∥∥∥

2

F
= 2 ·

(
N∑

i=1

∥∥∥u(i)
∥∥∥

2

2
−

K∑

k=1

Nk ·
∥∥∥c(k)

∥∥∥
2

2

)

= 2 ·
K∑

k=1


∑

i∈Ik

∥∥∥u(i)
∥∥∥

2

2
−Nk ·

∥∥∥c(k)
∥∥∥

2

2




= 2 ·
K∑

k=1

∑

i∈Ik

∥∥∥u(i) − c(k)
∥∥∥

2

2
. (A.17)

A.3 Proof of Lemma 3.2.1

Equation (3.7) is a direct consequence of combining equation (A.15) and Lemma 3.2.3.

To show equation (3.8), we first expand the following two products

UU′ =
(
〈u(i),u(j)〉

)
1≤i,j≤N

, (A.18)

ŨŨ′ = diag
{

1
N1

1N1×N1 , . . . ,
1

NK
1NK×NK

}
. (A.19)

Then

∥∥∥PK(Z)− PK(Z̃)
∥∥∥

2

F
=

∥∥∥UU′ − ŨŨ′
∥∥∥

2

F

=
∑

1≤k≤K

∑

i,j∈Ik

(
〈u(i),u(j)〉 − 1

Nk

)2

+
∑

1≤k 6=`≤K

∑

i∈Ik,j∈I`

(
〈u(i),u(j)〉

)2

≥
∑

1≤k 6=`≤K

∑

i∈Ik,j∈I`

(
〈u(i),u(j)〉

)2
. (A.20)
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We next apply the inequality (
∑m

i=1 ai)
2 ≤ m ·∑m

i=1 a2
i and conclude that

∥∥∥PK(Z)− PK(Z̃)
∥∥∥

2

F
≥

∑

1≤k 6=`≤K

1
NkN`

·

 ∑

i∈Ik,j∈I`

〈u(i),u(j)〉



2

=
∑

1≤k 6=`≤K

NkN` · 〈c(k), c(`)〉2. (A.21)

Finally, combining the last equation and Lemma 3.2.3 completes the proof.

A.4 Proof of Lemma 3.2.2

From the proof of Lemma 3.2.3 we have that

∥∥∥PK(Z)− PK(Z̃)
∥∥∥

2

F
= 2K − 2

∥∥∥U′Ũ
∥∥∥

2

F
= 2K − 2

K∑

k=1

σ2
k

(
U′Ũ

)

= 2K − 2
K∑

k=1

cos2 θk = 2
K∑

k=1

sin2 θk. (A.22)

A.5 Proof of Theorem 3.2.4

The proof is based on a perturbation result by Zwald and Blanchard [46, Theorem 3].

In fact, we only need a special case of it which is formulated below.

Theorem A.5.1 (Matrix version of Theorem 3 in Zwald and Blanchard [46]). Let S be

a symmetric positive square matrix with nonzero eigenvalues λ1 ≥ · · · ≥ λK > λK+1 ≥
· · · ≥ 0, where K > 0 is an integer. Define δK = λK−λK+1 > 0, which denotes the Kth

eigengap of S. Let B be another symmetric matrix such that ‖B‖F < δK/4 and S + B

is still a positive matrix. Then

∥∥PK(S + B)− PK(S)
∥∥

F
≤ 2 ‖B‖F /δK . (A.23)

In order to apply the above theorem to the quantity
∥∥∥PK(Z)− PK(Z̃)

∥∥∥
F
, we need

a lower bound on δ̃K , the Kth eigengap of Z̃, and an upper bound on the Frobenius
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norm of the difference B := Z− Z̃. While the former bound is immediate, we find the

latter bound somewhat challenging.

First, equation (A.8), together with N1 = min1≤k≤K Nk, implies that:

δ̃K = 1− d + 1
(N1 − 1)(N1 − d− 1)

. (A.24)

Since N1 ≥ 2(d + 1) + 1 by equation (3.4), we then obtain that

δ̃K ≥ 2d + 3
2d + 4

≥ 3
4
. (A.25)

Next, we estimate the Frobenius norm of the perturbation B as follows. Using the

definitions of the matrices Z and W, we rewrite B in the following way:

B = D−1/2AA′D−1/2 − D̃−1/2ÃÃ′D̃−1/2. (A.26)

Regrouping terms gives that

B =
(
D−1/2A− D̃−1/2Ã

)(
D−1/2A− D̃−1/2Ã

)′

+
(
D−1/2A− D̃−1/2Ã

)
Ã′D̃−1/2 + D̃−1/2Ã

(
D−1/2A− D̃−1/2Ã

)′
. (A.27)

We thus get an initial upper bound on its Frobenius norm:

‖B‖F ≤
∥∥∥D−1/2A− D̃−1/2Ã

∥∥∥
2

F
+ 2

∥∥∥D̃−1/2Ã
∥∥∥

F

∥∥∥D−1/2A− D̃−1/2Ã
∥∥∥

F
. (A.28)

By using equations (A.6) and (A.7), we get that

∥∥∥D̃−1/2Ã
∥∥∥

2

F
= trace

(
D̃−1/2W̃D̃−1/2

)
= trace

(
Z̃

)
=

K∑

k=1

Nk

Nk − d− 1
. (A.29)

Equation (3.4) implies that

Nk

Nk − d− 1
< 2, 1 ≤ k ≤ K. (A.30)

Consequently, we have ∥∥∥D̃−1/2Ã
∥∥∥

2

F
< 2K, (A.31)
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and thus equation (A.28) becomes

‖B‖F <
∥∥∥D−1/2A− D̃−1/2Ã

∥∥∥
2

F
+ 2

√
2K ·

∥∥∥D−1/2A− D̃−1/2Ã
∥∥∥

F
. (A.32)

Therefore, in order to control ‖B‖F, we only need to bound
∥∥∥D−1/2A− D̃−1/2Ã

∥∥∥
F
.

Let

E := A− Ã. (A.33)

Replacing A with Ã + E yields that

∥∥∥D−1/2A− D̃−1/2Ã
∥∥∥

F
=

∥∥∥
(
D−1/2 − D̃−1/2

)
Ã + D−1/2E

∥∥∥
F

≤
∥∥∥
(
D−1/2 − D̃−1/2

)
Ã

∥∥∥
F

+
∥∥∥D−1/2E

∥∥∥
F

. (A.34)

The second term on the right hand side of equation (A.34) is bounded as follows

∥∥∥D−1/2E
∥∥∥

F
≤

∥∥∥D−1/2
∥∥∥

2
· ‖E‖F ≤

∥∥∥(ε2D̃)−1/2
∥∥∥

2
· ‖E‖F

=
(
ε2d̃1

)−1/2
· ‖E‖F , (A.35)

in which the second inequality follows from Assumption 1 (D ≥ ε2D̃ > 0), and the

last equality is due to our convention: N1 = min1≤k≤K Nk (which implies that d̃1 =

min1≤k≤K d̃k).

Bounding the first term of the right hand side of equation (A.34) requires more work.

We estimate it as follows:

∥∥∥
(
D−1/2 − D̃−1/2

)
· Ã

∥∥∥
F

=
∥∥∥∥D̃−1/2D−1/2

(
D1/2 + D̃1/2

)−1 (
D− D̃

)
· Ã

∥∥∥∥
F

≤
∥∥∥∥D̃−1/2

(
ε2D̃

)−1/2 (
D̃1/2

)−1 (
D− D̃

)
· Ã

∥∥∥∥
F

= ε
−1/2
2

∥∥∥D̃−3/2
(
D− D̃

)
· Ã

∥∥∥
F

. (A.36)

We proceed by using the index sets I1, . . . , IK (see equation (3.1)) to expand the last
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equation:

∥∥∥
(
D−1/2 − D̃−1/2

)
· Ã

∥∥∥
F
≤ ε

−1/2
2

√ ∑

1≤k≤K

∑

i∈Ik

(
Dii − d̃k

)2
d̃−3

k ·
∥∥∥Ã(i, :)

∥∥∥
2

2

= ε
−1/2
2

√√√√√ ∑

1≤k≤K

∑

i∈Ik

(
Dii − d̃k

)2

(Nk − d− 1) · d̃2
k

≤ ε
−1/2
2 d̃−1

1 (N1 − d− 1)−1/2 ·
∥∥∥D− D̃

∥∥∥
F

. (A.37)

Using the definitions of D and D̃, we obtain that

∥∥∥D− D̃
∥∥∥

F
=

∥∥∥
(
W − W̃

)
· 1N

∥∥∥
2
≤

∥∥∥W − W̃
∥∥∥

F
· ‖1N‖2

= N1/2 ·
∥∥∥ÃE′ + EÃ′ + EE′

∥∥∥
F

≤ N1/2 ·
(
2

∥∥∥Ã
∥∥∥

F
‖E‖F + ‖E‖2

F

)
. (A.38)

Combining equations (A.37) and (A.38) and applying N1−d−1 > N1
2 ≥ ε1N

2K (following

equation (3.4)) gives that

∥∥∥
(
D−1/2 − D̃−1/2

)
Ã

∥∥∥
F
≤

(
2K

ε1ε2

)1/2

d̃−1
1

(
2

∥∥∥Ã
∥∥∥

F
‖E‖F + ‖E‖2

F

)
. (A.39)

By substituting equations (A.35) and (A.39) into equation (A.34), we arrive at

∥∥∥D−1/2A− D̃−1/2Ã
∥∥∥

F
≤

(
2K

ε1ε2

)1/2

d̃−1
1

(
2

∥∥∥Ã
∥∥∥

F
‖E‖F + ‖E‖2

F

)

+ ε
−1/2
2 d̃

−1/2
1 ‖E‖F . (A.40)

In order to complete the above estimate for
∥∥∥D−1/2A− D̃−1/2Ã

∥∥∥
F
, we need to estimate∥∥∥Ã

∥∥∥
F

from above

∥∥∥Ã
∥∥∥

F
<
√

Nd+2 = N (d+2)/2, (A.41)

and d̃1 from below

d̃1 = (N1 − d− 1) · P(N1 − 1, d + 1) ≥ (N1/2)d+2 ≥
(

ε1N

2K

)d+2

. (A.42)
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We also note that all the elements of the matrix E are between -1 and 1, and thus

‖E‖F ≤ N (d+2)/2. (A.43)

We then continue from equation (A.40), together with the last three estimates, and get

that

∥∥∥D−1/2A− D̃−1/2Ã
∥∥∥

F

≤
(

2K

ε1ε2

)1/2 (
ε1N

2K

)−(d+2)

3N (d+2)/2 ‖E‖F + ε
−1/2
2

(
ε1N

2K

)−(d+2)/2

‖E‖F

≤ 4ε
−1/2
2

(
2K

ε1

)d+5/2

N−(d+2)/2 ‖E‖F . (A.44)

Finally, it follows from equations (A.32) and (A.44) that

‖B‖F ≤ C0(K, d, ε1, ε2) ·N−(d+2)/2 ‖E‖F , (A.45)

where

C0(K, d, ε1, ε2) := 16ε−1
2

(
2K

ε1

)2d+5

+ 2
√

2K · 4ε
−1/2
2

(
2K

ε1

)d+5/2

. (A.46)

By combining Theorem A.5.1 with equations (A.25) and (A.45), we obtain that when

C0(K, d, ε1, ε2) ·N−(d+2)/2 ‖E‖F < 3/16, (A.47)

then

∥∥∥PK(Z)− PK(Z̃)
∥∥∥

F
≤ 8/3 · C0(K, d, ε1, ε2) ·N−(d+2)/2 ‖E‖F . (A.48)

Letting

C1(K, d, ε1, ε2) := 32/9 · C2
0 (K, d, ε1, ε2), (A.49)

and noting

‖E‖F ≡ ‖E‖F , (A.50)

we complete the proof by combining Lemma 3.2.3 and equations (A.48) and (A.49).
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A.6 Proof of Lemma 3.3.2

In the T space the centers of the underlying clusters are

c(k)
T :=

√
Nk · c(k), 1 ≤ k ≤ K. (A.51)

Applying Lemma 3.2.1 with K = 2 gives that

∥∥∥c(1)
T − c(2)

T

∥∥∥
2

2
= N1 ·

∥∥∥c(1)
∥∥∥

2

2
+ N2 ·

∥∥∥c(2)
∥∥∥

2

2
− 2

√
N1N2 · 〈c(1), c(2)〉

≥ 2− TV(U)−2
√

TV(U). (A.52)

When

TV(U) <
(√

3− 1
)2

, (A.53)

we can let

τ :=
√

2− TV(U)−2
√

TV(U). (A.54)

Then the clustering identification error of TSCC in the T space is bounded as follows:

eid(T) ≤ 1
N
·

2∑

k=1

#
{

i ∈ Ik |
∥∥∥t(i) − c(k)

T

∥∥∥
2
≥ τ/2

}
. (A.55)

For each k = 1, 2, we apply Chebyshev’s inequality and obtain that

#
{

i ∈ Ik |
∥∥∥t(i) − c(k)

T

∥∥∥
2
≥ τ/2

}
≤ 4

τ2

∑

i∈Ik

∥∥∥t(i) − c(k)
T

∥∥∥
2

2
. (A.56)

Thus,

eid(T) ≤ 1
N
·

∑

k=1,2

4
τ2

∑

i∈Ik

∥∥∥t(i) − c(k)
T

∥∥∥
2

2

≤ 4
τ2

2∑

k=1

Nk

N

∑

i∈Ik

∥∥∥u(i) − c(k)
∥∥∥

2

2

≤ 4
τ2
· TV(U) . (A.57)
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In the U space, we also apply Lemma 3.2.1 with K = 2, together with the assump-

tions N2 ≥ N1 ≥ ε1 ·N/2, and obtain that

∥∥∥c(1) − c(2)
∥∥∥

2

2
=

∥∥∥c(1)
∥∥∥

2

2
+

∥∥∥c(2)
∥∥∥

2

2
− 2 · 〈c(1), c(2)〉

≥ 1
N2

·
(

N1

∥∥∥c(1)
∥∥∥

2

2
+ N2

∥∥∥c(2)
∥∥∥

2

2

)
− 2√

N1N2
·
√

N1N2 〈c(1), c(2)〉

≥ 1
N2

· (2− TV(U))− 2
N1

√
TV(U)

≥ 1
N
·
(
2− TV(U)−4/ε1 ·

√
TV(U)

)
. (A.58)

When

TV(U) <

(√
2 +

4
ε2
1

− 2
ε1

)2

, (A.59)

we can apply similar steps as above to obtain that

eid(U) ≤ 4 TV(U)
2− TV(U)−4/ε1 ·

√
TV(U)

. (A.60)

A.7 Proof of Theorem 3.3.4

The proof proceeds in parallel to that of Theorem 3.2.4. That is, we bound from below

the Kth eigengap δ̃K of W̃, estimate from above the Frobenius norm of the perturbation

B := W − W̃, and then conclude the theorem by combining these two bounds with

Theorem A.5.1.

Straightforward calculation shows that the matrix W̃ (see formula in Equation (A.3))

has the following eigenvalues:

d̃K ≥ · · · ≥ d̃2 ≥ d̃1 and νK ≥ · · · ≥ ν2 ≥ ν1, (A.61)

where d̃k, 1 ≤ k ≤ K, are defined in equation (3.30), and

νk := (d + 1) · P(Nk − 2, d), k = 1, . . . , K. (A.62)



84

Using equation (3.4) we obtain that

NK = N −
K−1∑

k=1

Nk ≤ N − (K − 1) · ε1N

K
=

(
1− K − 1

K
ε1

)
·N. (A.63)

The above equation together with equations (3.4) and (3.32) implies that

δ̃K = d̃1 − νK

≥
(

N1

2

)d+2

− (d + 1) ·NK
d

≥
(

ε1N

2K

)d+2

− (d + 1) ·
(

1− K − 1
K

ε1

)d

Nd

≥ 1
2

(
ε1N

2K

)d+2

. (A.64)

We follow by bounding the magnitude of the perturbation B = W̃ −W:

‖B‖F =
∥∥∥AE′ + EÃ′

∥∥∥
F
≤ ‖A‖F ‖E‖F + ‖E‖F

∥∥∥Ã
∥∥∥

F
≤ 2N (d+2)/2 ‖E‖F . (A.65)

Therefore, by combining equations (A.64) and (A.65) with Theorem A.5.1 we conclude

that when

N−(d+2)/2 ‖E‖F ≤
1
16

( ε1

2K

)d+2
, (A.66)

we have ∥∥∥PK(W)− PK(W̃)
∥∥∥

F
≤ 8

(
2K

ε1

)d+2

N−(d+2)/2 ‖E‖F . (A.67)

Theorem 3.3.4 is then a direct consequence of combining the above equation and Lemma 3.2.3.

A.8 Proof of Lemma 4.4.1

For any 1 ≤ k ≤ K and i ∈ Ik, we have

Dii ≥
∑

j∈Ik

Wij ≥
∑

j∈Ik

∑

i2,...,id+2∈Ik

A(i, i2, . . . , id+2)A(j, i2, . . . , id+2)

=
∑

j∈Ik

∑

i2,...,id+2∈Ik\{i,j}
and are distinct

e−
cp

(
xi,xi2

,...,xid+2

)
+cp

(
xj ,xi2

,...,xid+2

)

σ . (A.68)
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When the given data is noiseless, the polar curvature of any distinct d + 2 points in

C̃k is zero. Hence,

Dii ≥
∑

j∈Ik

∑

i2,...,id+2∈Ik\{i,j}
and are distinct

1 = d̃k, (A.69)

where d̃k (replicated Nk times), 1 ≤ k ≤ K, are the diagonal elements of D̃ (see

equation (3.30)). We have thus proved that D ≥ D̃.

A.9 Proof of Lemma 4.4.2

We take the expectation of each side of equation (A.68) with respect to the measure µp

(defined in equation (4.1)), and proceed using Jensen’s inequality (twice) as follows:

Eµp(Dii) ≥
∑

j∈Ik

∑

i2,...,id+2∈Ik\{i,j}
and are distinct

e
− 2

σ
·E

µd+2
k

cp
(
Xi,Xi2

,...,Xid+2

)

≥
∑

j∈Ik

∑

i2,...,id+2∈Ik\{i,j}
and are distinct

e
− 2

σ
·
√

E
µd+2

k

c2p

(
Xi,Xi2

,...,Xid+2

)

= e−
2
σ
·cp(µk) · d̃k, (A.70)

where in the last step we have used equation (1.4). Letting

ε2 := min
1≤k≤K

e−
2
σ
·cp(µk) = e−

2
σ
·max1≤k≤K cp(µk), (A.71)

we have that

Eµp(Dii) ≥ ε2 · d̃k, i ∈ Ik, 1 ≤ k ≤ K. (A.72)

Equivalently,

Eµp(D) ≥ ε2 · D̃. (A.73)
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A.10 Proof of Theorem 4.2.1

We first bound the expectation of the perturbation ‖Ep‖2
F, where Ep = Ap − Ã, and

then apply McDiarmid’s inequality [47] to obtain a probabilistic estimate for ‖Ep‖2
F.

Finally, we conclude the proof by combining the probabilistic estimate together with

Theorem 3.2.4.

Using the definitions of the sets I1, . . . , IK and the tensors Ap and Ã, we express

‖Ep‖2
F as a function of the random variables X1, . . . , XN :

‖Ep‖2
F =

K∑

k=1

∑

Id+2
k

(
1− e

−cp(Xi1
,...,Xid+2

)

σ

)2

+
∑

(
⋃K

k=1 Id+2
k )c

(
e
−cp(Xi1

,...,Xid+2
)

σ

)2

. (A.74)

By applying the inequality: 1− e−|x| ≤ |x|, we obtain that

‖Ep‖2
F ≤

K∑

k=1

∑

Id+2
k

c2
p(Xi1 , . . . ,Xid+2

)
σ2

+
∑

(
⋃K

k=1 Id+2
k )c

e
−cp(Xi1

,...,Xid+2
)

σ/2 . (A.75)

We then take the expectation of ‖Ep‖2
F (with respect to µp) using equations (1.4)

and (4.3) and have that

Eµp(‖Ep‖2
F) ≤ 1

σ2

K∑

k=1

Nd+2
k c2

p(µk) + Nd+2Cin(µ1, . . . , µK ; σ/2)

= Nd+2 ·
(

1
σ2

K∑

k=1

(
Nk

N

)d+2

c2
p(µk) + Cin(µ1, . . . , µK ; σ/2)

)

≤ α ·Nd+2, (A.76)

in which

α :=
1
σ2
·

K∑

k=1

c2
p(µk) + Cin(µ1, . . . , µK ; σ/2). (A.77)

We next note that for each fixed 1 ≤ i ≤ N ,

sup
X1,...,XN ,X̂i

| ‖Ep‖2
F (X1, . . . ,Xi, . . . ,XN )− ‖Ep‖2

F (X1, . . . , X̂i, . . . , XN )| ≤ (d + 2) ·Nd+1.

(A.78)
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Indeed, the number of additive terms in ‖Ep‖2
F (X1, . . . ,XN ) that contain Xi is (d + 2) ·

P(N − 1, d + 1), and each of them is between 0 and 1.

The above property implies that ‖Ep‖2
F satisfies McDiarmid’s inequality [47], that

is,

µp

(
‖Ep‖2

F − Eµp(‖Ep‖2
F) ≥ αNd+2

)
≤ e−2Nα2/(d+2)2 . (A.79)

Combining the last equation with equation (A.76) yields that

µp

(
‖E‖2

F ≥ 2αNd+2
)
≤ e−2Nα2/(d+2)2 , (A.80)

or equivalently,

µp

(
N−(d+2) ‖Ep‖2

F < 2α
)
≥ 1− e−2Nα2/(d+2)2 . (A.81)

Consequently, combining Theorem 3.2.4 and the last equation gives that, if

2α ≤ 1
8C1

, (A.82)

where C1 = C1(K, d, ε1, ε2) is defined in equation (A.49), then

µp (TV(U) < 2α · C1 | Assumption 1 holds)

≥ µp

(
TV(U) < 2α · C1 | Assumption 1 holds, and N−(d+2) ‖Ep‖2

F < 2α
)

· µp

(
N−(d+2) ‖Ep‖2

F < 2α | Assumption 1 holds
)

= 1 · µp

(
N−(d+2) ‖Ep‖2

F < 2α
)

≥ 1− e−2Nα2/(d+2)2 . (A.83)
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A.11 Proof of Equation (4.18)

For any three points p1(x1, 0),p2(x2, 0) ∈ L1, and q(0, y) ∈ L2, their polar curvature is

bounded below by

cp(p1,p2,q) = diam{p1,p2,q} ·
√

sin2 ∠p1p2q + sin2 ∠p2p1q + sin2 ∠p1qp2

≥ max
(√

x2
1 + y2,

√
x2

2 + y2

)
·
√

y2

x2
1 + y2

+
y2

x2
2 + y2

≥
√

y2 + y2 =
√

2 · y. (A.84)

Thus, by using the symmetry of the lines, we obtain that

Cin(µ1, µ2;σ) =
∫

L1

∫

L1

∫

L2
e−

cp(p1,p2,q)

σ dµ1(p1) dµ1(p2) dµ2(q)

≤
∫ L

0
e−

√
2 y
σ

dy

L
=

σ√
2L

(
1− e−

√
2L/σ

)
. (A.85)

A.12 Proof of Equation (4.19)

For any two points p(x, 0) ∈ L1,q(r cos θ, r sin θ) ∈ L2, the polar curvature of p,q and

the origin o is bounded below by

cp(o,p,q) = diam{o,p,q} ·
√

sin2 θ + sin2 ∠opq + sin2 ∠oqp

≥ max(x, r) · sin θ. (A.86)
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Thus, the incidence constant is bounded above by

Cin,L(µ1, µ2;σ) =
∫

L1

∫

L2
e−

cp(o,p,q)

σ dµ1(p) dµ2(q)

≤
∫ L

0

∫ L

0
e−

max(x,r)·sin θ
σ

dx

L

dr

L

= 2
∫∫

0≤x≤r≤L
e−

r sin θ
σ

dx

L

dr

L

=
2
L

∫ L

0
r · e− r sin θ

σ
dr

L

= 2
( σ

L sin θ

)2
·
(

1− e−
L sin θ

σ

(
1 +

L sin θ

σ

))
. (A.87)

A.13 Proof of Equation (4.20)

For any p(x, y2) ∈ R1,q(x1, y) ∈ R2, we define p̃(x, ε) ∈ R1, q̃(ε, y) ∈ R2. The polar

curvature of p,q and the origin o is bounded below by

cp(o,p,q) ≥ max(‖op‖, ‖oq‖) · sin∠poq ≥ max(x, y) · sin∠p̃oq̃

=
max(x, y) · (xy − ε2)√

(x2 + ε2)(y2 + ε2)
. (A.88)

Thus, the incidence constant is

Cin,L(µ1, µ2; σ) =
∫

R1

∫

R2
e−

cp(o,p,q)

σ
dx

L

dy2

ε

dx1

ε

dy

L

≤ 1
L2

·
∫ L+ε

ε

∫ L+ε

ε
e
− max(x,y)·(xy−ε2)

σ·
√

(x2+ε2)(y2+ε2) dxdy. (A.89)

Changing variables x := x/ε, y := y/ε and setting ω := L/ε gives that

Cin(µ1, µ2;σ) ≤ 1
ω2

·
∫ 1+ω

1

∫ 1+ω

1
e
− max(x,y)·(xy−1)

σ·
√

(x2+1)(y2+1) dxdy. (A.90)

We observe that the integrand is bounded between 0 and 1, symmetric about x and
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y, and decreasing in each of its arguments. We thus obtain that

Cin,L(µ1, µ2;σ) ≤ 1
ω2

·
(∫ 1+ 4

√
σ

1

∫ 1+ 4
√

σ

1
+2

∫ 1+ 4
√

σ

1

∫ 1+ω

1+ 4
√

σ
+

∫ 1+ω

1+ 4
√

σ

∫ 1+ω

1+ 4
√

σ

)

e
− max(x,y)·(xy−1)

σ·
√

(x2+1)(y2+1) dxdy

≤ 1
ω2

·




(
4
√

σ
)2 + 2 · 4

√
σ · (ω − 4

√
σ) · e

−(1+ 4√σ)·(1·(1+ 4√σ)−1)
σ·

√
2·

(
1+(1+ 4√σ)2

)



+
1
ω2

· (ω − 4
√

σ
)2 · e

−
(1+ 4√σ)·

(
(1+ 4√σ)2−1

)

σ·
(

1+(1+ 4√σ)2
)

≤
√

σ

ω2
+

2 4
√

σ

ω
· e−1/(2σ3/4) + e−1/σ3/4

. (A.91)

A.14 Proof of Equation (4.21)

Let p(0, ρ cosϕ, ρ sinϕ) ∈ D1, and q1(0, r1 cos θ1, r1 sin θ1),q2(0, r2 cos θ2, r2 sin θ2) ∈
D2. Then the polar curvature of these three points and the origin o has the following

lower bound:

cp(o,p,q1,q2) ≥ |op| · psino(p,q1,q2) = ρ · sinϕ sin|θ1 − θ2|. (A.92)

Due to the symmetry of the two disks, we have that

Cin,L(µ1, µ2;σ) =
∫

D1

∫

D2

∫

D2
e−cp(o,p,q1,q2)/σ dµ1(p) dµ2(q1) dµ2(q2)

≤
∫ 1

0

∫ π

0

∫ π/2

−π/2

∫ π/2

−π/2
e−

ρ sin ϕ·sin|θ1−θ2|
σ

ρdρ dϕ

π/2
dθ1

π

dθ2

π

=
4
π3
·
∫ 1

0

∫ π

0

∫∫

−π
2
≤θ2≤θ1≤π

2

e
−ρ sin ϕ·sin(θ1−θ2)

σ ρ dρ dϕdθ1 dθ2. (A.93)

Changing variables θ := θ1 − θ2, θ2 := θ2 and exchanging the corresponding double
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integral, we obtain that

Cin,L(µ1, µ2; σ) ≤ 4
π3
·
∫ 1

0

∫ π

0

∫ π

0
e−

ρ sin ϕ·sin θ
σ ρdρ dϕ (π − θ) dθ

≤ 4
π2
·
∫ 1

0

∫ π

0

∫ π

0
e−

ρ sin ϕ·sin θ
σ ρdρ dϕdθ

=
16
π2
·
∫ 1

0

∫ π/2

0

∫ π/2

0
e−

ρ sin ϕ·sin θ
σ ρdρ dϕdθ. (A.94)

We observe that the integrand is bounded between 0 and 1, symmetric about ϕ and

θ, and decreasing in each of them. Thus,

Cin,L(µ1, µ2; σ) ≤ 16
π2
·
∫ 1

0

(∫ 4√σ

0

∫ 4√σ

0
+2

∫ 4√σ

0

∫ π
2

4√σ
+

∫ π
2

4√σ

∫ π
2

4√σ

)

e−
ρ sin ϕ·sin θ

σ ρdρ dϕdθ

≤ 16
π2
·
((

4
√

σ
)2 + 2 · 4

√
σ ·

(π

2
− 4
√

σ
))

·
∫ 1

0
ρ dρ

+
16
π2
·
(π

2
− 4
√

σ
)2
·
∫ 1

0
e−

ρ·(sin 4√σ)2

σ ρ dρ

≤ 8
√

σ

π2
+

8 4
√

σ

π
+

4σ2

(sin 4
√

σ)4
. (A.95)


