appletmagic.com Thayer Watkins Silicon Valley & Tornado Alley USA 


The Cubic Mandelbrot set is the set of complex numbers c such that the iteration scheme
is bounded when starting from the point z_{0}=0. A significant subset of this set consists of those values of c such that the iteration scheme approaches limits for which
Such a limit point z* satisfies the equation
For any c there is a limit point z*; i.e., such that if z_{0}=z* the iteration will remain at z* forever.
The crucial question is what are the limit points that are stable so that the iteration starting from z_{0}=0 will approach them.
Consider the deviations of the iteration values from the corresponding limit point; i.e.,
Thus
For values of z_{n} close to z* this reduces to 3z*²<1. The boundary between the stable and unstable limit points is given by z*=1/√3. Such limit points are given by the equation
The question is what are the values of c which give those limit points. Those values of c are simply
This equation is a parametric equation for the set of c values. It shows how the points on the circle of radius (1/√3) in the z* space map into the c space. For example, z*=1/√3 maps into c=2/(3√3), and z*=−1/√3 maps into c=−2/(3√3). On the other hand z*=±i/√3 map into ±i4/(3√3), respectively.
The plot below shows the full set of c values.
This is the double lobed shape that bounds the main body of the cubic mandelbrot set.
The iteration may approach a limit cycle rather than a limit point. For a twoperiod cycle of z_{1}* and z_{2}* the values would have to satisfy the equations
From these equations defining z_{1}* and z_{2}* it follows that
When z_{1}*z_{2}* is added to both sides of the above equation the result can be put into the form
The deviations z_{n}z* satisfy the equations
Therefore if z_{n+2}z_{2}* is to be less than z_{n}z_{2}* it must be that
For values very close to a cycle pair this reduces to:
For the boundary of the stable set equality prevails; i.e.,
This means that z_{2}*z_{1}* is on a circle in the complex plane of radius (1/3). This means that
It was previously determined that (z_{1}*+z_{2}*)² = z_{1}*z_{2}*  1 therefore the condition for the boundary of stability reduces to:
This says that (z_{2}*+z_{1}*)² is on a circle of radius (1/3) centered at (−1,0).
It the above equation is multiplied by z_{1}*² the result reduces as follows:
The expansion of the square on the left gives
This reduces to a quadratic equation in z_{1}*²; i.e.,
This quadratic can be solved for z_{1}* (and z_{2}*), but their values are not of interest. It is the values of c which they correspond to that are of interest.
From the original equations
Multiplying these expressions gives
The term (z_{1}*^{4}+z_{2}*^{4}) is the sum of the squares of the roots of the quadratic equation. It can be the shown that the sum of the squares of the roots of the quadratic equation ax²+bx+c=0 is equal to (b/a)²−(c/a). This means that
When this expression is substituted into the equation for c² the result is:
The curve for c² is shown below:
But it is the c curve which is important. That is shown below:
(To be continued.)
HOME PAGE OF Thayer Watkins 