Course and Contact Information

Class Days and Time: Mondays and Wednesdays 10:30 AM to 12:10 PM
Classroom: Engineering 339
Registration Code: 24739
Prerequisites: ME 20, MatE 25, ME 101, CE 112, all with C- or better
Corequisite: Tech/ME 41 (either completed previously or co-enrolled)
Instructor: Sang-Joon (John) Lee
Office Location: Engineering 115A
Telephone: 408-924-7167
Email: sang-joon.lee@sjsu.edu
Office Hours: Mondays and Wednesdays 2:00 PM to 3:00 PM, and by appointment

Course Format

This is a mixed-mode class, with both in-person and online components. Online components require use of the Canvas learning management system, accessed via https://sjsu.instructure.com/. Successful completion of course requirements necessitates accessing the course website frequently, typically at least twice a week on a regular basis. Most or all class assignments will be collected in electronic format, and in some cases acceptable format may be restricted (e.g., PDF files). Accordingly, inexperience or difficulty with document format requirements must be resolved well in advance of (i.e., days before) respective assignment deadlines. Support for Canvas and use academic software tools is available at http://www.sjsu.edu/ecampus/. Important communications regarding this class may be sent via Canvas or to email addresses listed in MySJSU, and thus each student is expected to maintain up-to-date contact information in both systems.

Course Description: http://info.sjsu.edu/web-dbgen/catalog/courses/ME154.html

Course Learning Outcomes

Upon successful completion of this course, students will be able to:

1. Apply the concept of kinematics pairs (joints) and determine the number of degrees of freedom for a given mechanism.
2. Identify the different types of four-bar mechanisms and their classifications.
3. Identify the toggle positions and to determine the minimum transmission angle and mechanical advantage of a given mechanism.
4. Synthesize a four-bar mechanism using graphical and analytical methods for a given motion or function generation task.
5. Perform a kinematics analysis of a mechanism to determine position, velocity, and acceleration of all members.
6. Perform a kinetic analysis of a mechanism to determine the forces on all joints and the torque required to drive the mechanism.
7. Determine the magnitude and location of the maximum stress (principal stresses, maximum shear stress and von Mises stress) on a component.
8. Design and analyze short and long columns.
9. Design and analyze thin and thick walled cylinders under pressure and to select proper interference fits for press or shrink fits.
10. Design and analyze ductile and brittle machine components under static loads using appropriate failure criterion.
11. Estimate the value of stress concentration factor.
12. Design and analyze machine components under cyclic loads to guard against fatigue failure.
13. Design bolted joints in tension and shear.
14. Work as a team to accomplish a project goal.

Required Textbooks

Supplementary Textbooks

Course Requirements and Assignments

According to the Office of Graduate and Undergraduate Programs http://www.sjsu.edu/gup/syllabusinfo/, “Success in this course is based on the expectation that students will spend, for each unit of credit, a minimum of 45 hours over the length of the course (normally 3 hours per unit per week with 1 of the hours used for lecture) for instruction or preparation/studying or course related activities including but not limited to internships, labs, clinical practica. Other course structures will have equivalent workload expectations as described in the syllabus.”

- **Design Project**: A major (and hopefully enjoyable!) part of this course is the Design Project. Students are responsible for working in a team to design a mechanism (both synthesis and analysis) and to build a prototype that demonstrates its functionality. Details are provided via separate documentation.

- **Exams**: There are two midterms and one final exam. All students are expected to complete exams in class as scheduled. There are no make-up exams, but for truly unavoidable and extenuating circumstances with firm documentation, a student may petition to have weight redistributed to the final exam. Disability accommodations must be coordinated through the Accessible Education Center http://www.sjsu.edu/aec/.

- **Homework**: Routine homework will be assigned approximately one week before the deadline. Collaborating among classmates on general strategies and cross-checking intermediate values are welcome and encouraged. However, all homework must still be freshly prepared and submitted individually. Raw copying of solutions or exact duplication of figures is cheating. In addition to completeness and correctness, format compliance, legibility, and professionalism (e.g., name, date, class, and assignment identified, problems arranged in order) may be also weighed in grading.

- **Participation Tasks**: Throughout the semester there will be several participation tasks to promote active engagement. Specific examples include assigned discussion posts, online quizzes or surveys, and peer review. Tasks may be in-class or online, so it is important to attend class and to check Canvas regularly.
Grading Information

The course grade will be weighted as follows:
10% for Homework
10% for Participation Tasks
20% for Design Project
30% for two Midterm Exams (15% each)
30% for Final Exam

The overall course grade is calculated from a weighted sum of all graded components. Graded percentage points correspond to letter grades as follows:
93.0-100 A | 90.0-92.9 A- | 87.0-89.9 B+ | 83.0-86.9 B | 80.0-82.9 B-
77.0-79.9 C+ | 73.0-76.9 C | 70.0-72.9 C- | 67.0-69.9 D+ | 63.0-66.9 D | 60.0-62.9 D- | 0-59.9 F

Team Assignments and Peer Grading: Team assignments will be used for some portions of the course, and some assignments may involve peer grading. Alternative options will be considered for compelling reasons, but arrangements must be pre-approved in writing with ample time before corresponding deadlines (i.e. several days or even weeks in advance).

Late Policy: Unless otherwise specified for a particular assignment, work that is submitted late will be accepted with reduced credit according to a depreciation rate of 1.5% for each late hour breached. Exams, however, are strictly limited to designated; late exams are not accepted.

Exceptions: Any grading appeals or late petitions must be petitioned promptly in writing (or email). Exceptions will normally be evaluated at the very end of the semester in context with semester track record and all other exceptions class-wide. Special consideration for truly unavoidable and extenuating circumstances will depend on timing and strength of supporting documentation (e.g., doctor's note, jury summons, military orders).

University Policies

Per University Policy S16-9, university-wide policy information relevant to all courses, such as academic integrity, accommodations, etc. will be available on the Office of Graduate and Undergraduate Programs Syllabus Information web page at http://www.sjsu.edu/gup/syllabusinfo/.
Course Schedule

This schedule is subject to change with fair notice via announcement in class or notification via Canvas. Specific reading assignments and deadlines will be communicated in Canvas.

<table>
<thead>
<tr>
<th>Week</th>
<th>Dates</th>
<th>Topics, Readings, Assignments, Deadlines</th>
<th>Related Chapters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/27, 1/29</td>
<td>Course organization, introduction of linkages, degrees of freedom, kinematic pairs, 4-bar mechanisms. Mechanism classification, transmission angle, mechanical advantage, toggle positions.</td>
<td>DoM* Ch 2, DoM Ch 3</td>
</tr>
<tr>
<td>2</td>
<td>2/3, 2/5</td>
<td>Graphical synthesis: motion generation mechanisms (two and three positions), adding dyad to mechanism.</td>
<td>DoM Ch 3</td>
</tr>
<tr>
<td>3</td>
<td>2/10, 2/12</td>
<td>Vectors in complex polar notation. Position analysis: closed loop vector equation, motion generation mechanisms.</td>
<td>DoM Ch 4</td>
</tr>
<tr>
<td>4</td>
<td>2/17, 2/19</td>
<td>Analytical linkage synthesis: closed loop vector equation, motion generation mechanisms. (two to five positions).</td>
<td>DoM Ch 5</td>
</tr>
<tr>
<td>5</td>
<td>2/24, 2/26</td>
<td>Velocity analysis. Acceleration analysis.</td>
<td>DoM Ch 6, DoM Ch 7</td>
</tr>
<tr>
<td>6</td>
<td>3/2, 3/4</td>
<td>Mechanism kinematics review and practice 1st Midterm Exam (Wednesday)</td>
<td>DoM Ch 2-7</td>
</tr>
<tr>
<td>7</td>
<td>3/9, 3/11</td>
<td>Forces on mechanisms: free body diagrams, matrix solution method for linear equations. Example problems.</td>
<td>DoM Ch 11</td>
</tr>
<tr>
<td>8</td>
<td>3/16, 3/18</td>
<td>Review of stress and strain, principal stresses. Review of combined stresses: bending, torsion. Column design.</td>
<td>MD** Ch 4</td>
</tr>
<tr>
<td>9</td>
<td>3/23, 3/25</td>
<td>Failure theories for static loads: maximum shear stress theory, the distortion-energy theory for ductile materials, modified Coulomb-Mohr theory for brittle materials.</td>
<td>MD Ch 5</td>
</tr>
<tr>
<td>10</td>
<td>3/30, 4/1</td>
<td>Spring Recess (no classes)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>4/6, 4/8</td>
<td>Pressurized cylinders, press and shrink fits, material selection for design. Stress concentrations.</td>
<td>MD Ch 2, MD Ch 4</td>
</tr>
<tr>
<td>12</td>
<td>4/13, 4/15</td>
<td>Stress analysis review and practice 2nd Midterm Exam (Wednesday)</td>
<td>MD Ch 6</td>
</tr>
<tr>
<td>13</td>
<td>4/20, 4/22</td>
<td>Failure theory for cyclic loads, high cycle fatigue, S-N curve. Effect of mean stress on fatigue life (Modified Goodman Diagram), combined stresses for cyclic loading.</td>
<td>MD Ch 6</td>
</tr>
<tr>
<td>14</td>
<td>4/27, 4/29</td>
<td>Bolted joint design: thread standards, stresses, bolt stiffness and member stiffness. Bolted joints in tensile and shear, bolt preload and torque.</td>
<td>MD Ch 15</td>
</tr>
<tr>
<td>15</td>
<td>5/4, 5/6</td>
<td>Design Project presentations</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>5/11</td>
<td>Semester review and practice</td>
<td></td>
</tr>
</tbody>
</table>

The Final Exam will be held on **Friday, May 15th from 9:45 AM to 12:00 noon** in the regular classroom, according to the university-assigned schedule http://info.sjsu.edu/static/catalog/final-exam-schedule-spring.html.

* Design of Machinery textbook
** Machine Design textbook