

NNAATTCCAARR

Department of Mechanical and Aerospace Engineering

ME106 Fundamentals of Mechatronics

Andrew Nguyen

Ryan Nunn-Gage

Amir Sepahmansour

Maryam Sotoodeh

May 16, 2006

Table of Contents

I. Summary …………………………….…………………………….3

II. Introduction ……………………………………………………4

III. Analog Design ………..………………..…………………………5

a. Power Design

b. Sensor and Filter Design

c. H-Bridge Design

IV. Digital Design …………………………………………….…….10

a. ADC Interfacing

b. Servo Control

c. Motor Control

V. Outcome ……………………………………………………….12

VI. References ……………………………………………………….13

VII. Appendix A: Analog Design Layout

VIII. Appendix B: Program for Microcontroller

IX. Appendix C: ADC Schematic

Summary

As a group we chose to enter in the NATCAR competition for many reasons. The

NATCAR is project, which integrates many different aspects of engineering, such as

analog design, digital design, system integration, and mechatronics. In order to have a

successful racecar, we needed to design a car that will be able to navigate a preset course

as fast as possible.

The NATCAR competition required us to build a fully autonomous racecar, which meets

the given constraints of the competition. For the analog portion of the car we designed a

sensor network, which would inductively pick up the signal from the track. In addition,

we needed additional circuitry to regulate the power that would be used for the analog

components. In order to autonomously control the car we used a CEREBOT

microcontroller to program the steering and speed control.

After months of hard work on the project, we successfully built a car that will follow a

wire autonomously. We learned a lot about the analog design during testing of the

racecar. We learned that the analog design could not handle the amount of current

flowing through it and after approximately five minutes of the car running the analog

components would get so hot that all the chips would burn out. In addition, we learned a

lot about how to program microcontrollers.

Introduction

The NATCAR competition is an autonomous 1/10th scale car race that is held in the

spring every year. The competition is held on the UC Davis campus. The autonomous car

must traverse through the track as fast as possible without hitting any border cones.

The key to this competition is simplicity. The problem is just trying to get a complicated

project such as this to work to its best before adapting fancier solutions to the car. Keep it

simple. The closest competition in the past has been UC Berkley and California State

University of Sacramento. Competition has been tight sometimes the teams have been

within .5 seconds to 122 seconds of each other.

The NATCAR project was a comprehensive project that included skills of all the

members in the group, which included analog and digital design, system integration, and

testing. We had to work together to get all of our components integrated successfully in

order to build a successful car. The car uses inductive sensors to follow a wire with a

100mA and 75 kHz signal. A microcontroller controls the wheel speed and steering angle

of the car. We were able to complete the car successfully whit the analog sensing portion

of the car on a breadboard.

Analog Design

Power Supply

The NATCAR rules specify that the car must run off of one 7.2V NiCAD battery to

supply the power for both the RC car and the digital and analog circuits added. In order to

adequately power the analog and digital circuitry a +5V and -5V rail must be established.

The positive and negative power supplies were chosen to conserve overall power

consumption for the circuits. Since the induced RMS voltage of the signal varies the

power consumption of the sensors will end up being equal to,

PSENSOR=(VRMS
2)/RLOAD

Whereas, if we chose a 0 to 10V power supply, the sensor would have to bias the signal

with +5V to keep it from being clipped by the power rails. In that scenario the power

being consumed will end up being,

PSENSOR=(VRMS
2)/RLOAD+(52)/RLOAD

Since the battery’s voltage will change as it goes from being fully charged to being empty

a solution was needed to provide a consistent 5V source to the rest of the circuit. A Low

Drop Out regulator or commonly referred to as “LDO” was used as it will step down the

battery’s voltage and regulate it to a desired 5V. The LDO will be more than sufficient to

power the circuits given that it outputs a maximum 200mA. In the event that circuits

require more current 200mA multiple LDOs can be connected to supply the required

current.

To generate the -5V supply, a charge pump was used to convert the +5V output of the

LDO and invert it to a -5V supply. A charge pump works by utilizing strategically placed

switches to steer the charging and discharging of a capacitor to obtain the desired output.

In order to maintain the charge over the capacitors, the switches must be constantly

turned on and off with an internal oscillator. Since the oscillation frequency may

introduce noise or EMI to the rest of the circuit, charge pumps are available at different

switching frequency. In our application the MAX889T inverting charge pump was

chosen since its frequency of oscillation is 2 Megahertz, given that our sensor/filter

networks cutoff frequency is at 100kHz, it will reasonably attenuate any noise from the

charge pump itself.

With the +5V and -5V power supplies established, the NATCAR motor will be driven

directly off the battery given that it requires about 10-20A to operate given the load

applied to it. The microcontroller will also be driven directly off the battery, because the

microcontroller has a built in voltage regulator. The microcontroller will be supplying

power to the servo.

Sensor and Filter Network

The designing of the input sensors is crucial to the success of the NATCAR. The track

consists of a wire carrying a sinusoidal 100mARMS signal at 75 kHz, covered in white

tape. The designer can choose to sense the track either optically or inductively.

Our group chose to sense the track inductively primarily for two reasons. The first being

that since we know the frequency of the signal is 75 kHz we can filter out unwanted

noise. Second, is if the car veers off the track, it can still sense the signal and return to the

track.

The design begins with the selection of a good inductor to sense the track. A cylindrical

inductor with a strong ferrite core is best suited for this application. Toroidal and air core

inductors should be avoided, as they are not suitable for this application. For our

application a 1mH RF choke with a ferrite core was chosen. This inductor provided very

good results in sensing the signal as with a 3M ohm shunt resistor, the inductor was able

to pick up the signal with a magnitude around the order of 100mVp-p.

However, the inductor was also picking up other high frequency components. Originally

intended as a quick fix, a RC lowpass filter was added in parallel to the RL network to

filter out the high frequency noise, the RC components of R=1kOhm and C=1.5nF would

exhibit a -3dB roll off at approximately 106k. We ended up utilizing this design as we

realized this network creates a 2nd order bandpass filter, and through simple testing of this

sensor in the lab, it was able to filter out high frequency component. This network was

not analyzed other than to obtain the order of the circuit, since modeling is quite

complex, being that the inductor both represents the source and frequency component in

this circuit.

With the sensor and filter circuit design, the signal was then amplified with an op amp

utilizing a non-inverting configuration. Due to mismatches in the components, R1 was

chosen as a potentiometer so that the sensors could be calibrated to match each other. R2

was chosen to be 100k ohm, so that by tuning the inductor we can achieve a gain of

approximately 25-40(V/V), which works out well with our filters since it is know that a

2nd order filter attenuates on the order of 40dB in the stopband region. The schematic of

the filter is shown below.

Figure 1: Sensor/Filter Design

H-Bridge Design

The expected current draw for the selected motor was around 30 Amps. The H-Bridge

components have a maximum power handling capability of 60 Amps. Figure 2 is a

diagram of the H-bridge. The optoisolators were added to protect the microcontroller

from kickback voltage from the H-Bridge.

Figure 2: H-Bridge Schematic

Figure 3: Actual H-Bridge Circuit

Digital Design

For our project we decided to use the CEREBOT microcontroller from DIGILENT, INC.

We chose this microcontroller because it required low operating power and it had servo

headers with supply power. Initially working with the microcontroller was very difficult,

because we had to learn every aspect of how the programming operates with it, which

took a great deal of time to learn. Attached is a copy of the program written using the C

language.

ADC Interfacing

In order to convert the signals from the inductors, a multi-channel bidirectional analog to

digital converter was used to digitize the analog signals from the inductors for the

microcontroller. We chose to use a parallel output bidirectional Maxim MAX196A ADC.

The sampling rate for this ADC is 100ksps. In order to use this ADC we needed to

control the write and read signals being sent to the ADC. In addition we needed to

monitor the interrupt signal from the ADC, which would allow us to read the converted

data. In order to select each channel to be converted from the ADC, a control byte was

sent to the ADC via the bidirectional bus. Once the data was read from the ADC it was

stored in a variable to be used later for the servo and motor control. The schematic for the

ADC is attached in the report.

Servo Control

Once the signals from the ADC were converted their values were compared to identify

which inductor had a greater signal. Depending on which inductor signal was greater it

would cause the wheels on that side to turn. Next, the differences between the signals

were calculated. This value was used to create a range of values which would determine

the angle for which the servo would turn. We determined if the difference between the

signals was less than .2V then the wheels should be center, which was a 1.5ms pulse to

the servo. If the difference between the signals was greater than 2.25V the wheels need to

be turned approximately 90°. We also determined the ranges needed to turn the servo for

15°, 30°, 45°, 60°, and 75°. With this range of values it would allow for very precise

turning for the wheels.

Another issue for controlling the servo motor was determining a method of creating the

pulse-width modulation. The microcontroller had libraries with pulse-width modulation

programs already written but they only used one of the timers, and we needed multiple

timers to create multiple PWM signals for both the servo and to the H-bridge. Therefore,

we created the pulse-width modulation from a timer on the microcontroller. By

modifying the timer control settings we were able to create the pulse-width modulation

needed for the servo motor. The period needed for the servo motor was 20ms or a

frequency of 50Hz. A 1.5ms pulse to the servo would cause the wheels to be centered, a

1.1ms pulse would make the wheels turn to the left, and a 1.9ms pulse would make the

wheels turn to the right.

Motor Control

To control the motor, the same methodology was used that we implemented to control the

servo motor. We created the pulse width modulation in the same manner as we did for the

servo motor, by modifying a different timer on the microcontroller. However, this timer

allowed us to create two different duty cycles for the same period. This allowed us to

control the forward and reverse motion of the motor with the two duty cycles. The

frequency used was 1KHz. Due to the H-Bridge Circuitry, a short duty cycle (20%)

would cause the motor to go fast, a 50% duty cycle would cause the motor to go at a

moderate speed, and a long duty cycle (80%) would make the motor go slow. Another

issue, with the circuitry was that one of the duty cycles must always be at 100%

otherwise it would cause the H-Bridge Circuit to fail.

We utilized the same control logic to determine the duty cycle for the motor control.

When the difference between the signals between the inductors was small, we would send

a short pulse, which would cause the motor to go fast. If the difference were large then

we would send a long pulse to cause the motor to slow down.

Outcome

This project was a good experience and a challenge to work on. We are happy that the

racecar works with the sensor circuit built on a breadboard. In the future, we would like

to improve the sensor circuit by adding a buffer on the output of the sensors; this would

increase the current that is coming out of the sensors and give more sensitivity. In

addition, we would include more gain stages instead of just one gain stage. This would

reduce the overall power through each individual op-amp and causing them not to burn

out. In addition, we would adjust the programming to obtain the best performance,

currently this is not possible due to the short lifespan of the amplifiers in the sensor

section. An additional improvement would be to include a feedback control system for

wheel speed. Currently the cars speed needs to stay slow so it stays on the track, since

the car has no idea what speed it is going we have to set the wheel speed to work for the

worst possible turning radius.

Figure 4: Components Integrated

References

Kachroo, Pushkin & Mellodge, Patricia. (2005). Mobile Robotic Car Design. New York:

McGraw-Hill.

Pardue, J. (2005). C Programming for Microcontrollers. Smiley Micros.

Programmers Notepad - final.c

//---//
//------------Program For NATCAR---------------------------//
//---//
#include <avr/io.h> // include I/O definitions (port names, pin names, etc)
#include <avr/signal.h> // include "signal" names (interrupt names)
#include <avr/delay.h>
#include <avr/interrupt.h> // include interrupt support
#include "global.h" // include our global settings
#include "timer.h" // include timer function library (timing, PWM, etc)
#include "pulse.h" // include pulse output support

void pulsefunc(u08 A, u08 B, u08 W, u08 X, u08 Y, u08 Z);
u08 ADC1return (void);
u08 ADC2return (void);
u08 ADCfuncA(u08 ADC1, u08 ADC2);
u08 ADCfuncB(u08 ADC1, u08 ADC2);
u08 ADC1greaterA(u08 ADC0);
u08 ADC1greaterB(u08 ADC0);
u08 ADC2greaterA(u08 ADC0);
u08 ADC2greaterB(u08 ADC0);

int main(void)
{

u08 W=0x03; //Controls OC3A --99% duty cycle
u08 X=0xE7; //Controls OC3A --99% duty cycle
u08 Y=0x01; //Controls OC3B --75% duty cycle
u08 Z=0xF4; //Controls OC3B --75% duty cycle
u08 ADC1temp, ADC2temp, ADC1, ADC2;
u32 i,k;

while (1)
{

ADC1 = 0b00000000; //Initialize signal
from left inductor to zero

ADC2 = 0b00000000; //Initialize signal
from right inductor to zero

for(i = 0; i < 50; i++)
{
ADC1temp = ADC1return(); //Assign signal

from left inductor to a variable
ADC2temp = ADC2return(); //Assign signal

from right inductor to a variable

if (ADC1temp > ADC1 && ADC1temp <= 0b01111111) //Compare ADC
signals to make sure the signal is positive

{
ADC1 = ADC1temp;
}

if (ADC2temp > ADC2 && ADC2temp <= 0b01111111)
{
ADC2 = ADC2temp;
}

}

Page 1, 8/14/2006 - 9:41:52 PM

Programmers Notepad - final.c

pulsefunc(ADCfuncA(ADC1, ADC2), ADCfuncB(ADC1, ADC2), W, X, Y, Z);

for(k =0; k<4000000000; k++) //Delay
Function for pulses to servo motor to work

{
_delay_loop_2(1000000000000000);
}

}
return 0;
}

void pulsefunc(u08 A, u08 B, u08 W, u08 X, u08 Y, u08 Z) //SERVO PWM
Control
{

u32 i;

#if 0
// OC1B DDR- make servo output
DDRB = (1<<PB6);

// Timer/Counter 1 initialization
// Clear on compare, Mode 14, /8 prescaler to make 1MHz timer
TCCR1A = (1<<COM1A1) | (1<<COM1B1) | (1<<WGM11);
TCCR1B = (1<<WGM13) | (1<<WGM12) | (1<<CS11);

ICR1 = 0x4E20; // 20ms Duty
Cycle

OCR1B = A&B; // Changes size
of PWM depending on signals from ADCs
#else

// Port B initialization-Make servo an output
PORTB=0x00;
DDRB=0x40;

// Timer/Counter 1 initialization
TCCR1A=0xA2;
TCCR1B=0x1A;
TCNT1H=0x00;
TCNT1L=0x00;
ICR1H=0x4E; // 20ms Duty

Cycle (high byte signal)
ICR1L=0x20; // 20ms Duty

Cycle (low byte signal)

OCR1BH=A; // Size of PWM
(high byte)

OCR1BL=B; // Size of PWM
(low byte)
#endif

#if 0 //MOTOR PWM
Control

// OC3A & OC3B DDR-Make signals for h-bridge, one signal for forward one
for reverse

DDRE = (1<<PE3)|(1<<PE4);

Page 2, 8/14/2006 - 9:41:52 PM

Programmers Notepad - final.c

// Timer/Counter 3 initialization
// /8 prescaler to make 1MHz timer
TCCR3A = (1<<COM3A1) | (1<<COM3B1) | (1<<WGM31);
TCCR3B = (1<<WGM33) | (1<<WGM32) | (1<<CS31);

ICR3 = 0x03E8; // divide by 1000
to get 1kHz

OCR3A = W&X; // Pulse to one
side of h-bridge(forward) - OC3A

OCR3B = Y&Z; // Pulse to other
side of h-bridge(reverse)-OC3B

#else
// Port E initialization
PORTE=(0<<PE3)|(0<<PE4);
DDRE=(1<<PE3)|(1<<PE4); // Makes pins PE4

and PE5 outputs for motor

// Timer/Counter 1 initialization
TCCR3A=0xA2;
TCCR3B=0x1A;
TCNT3H=0x00;
TCNT3L=0x00;
ICR3H=0x03; // 1 ms duty cycle

for motor (high byte signal)
ICR3L=0xE8; // 1 ms duty cycle

for motor (low byte signal)

OCR3AH=W; // length of PWM
for motor for forward (high byte)

OCR3AL=X; // length of PWM
for motor for forward (low byte)

OCR3BH=Y; // length of PWM
for motor for reverse (high byte)

OCR3BL=Z; // length of PWM
for motor for reverse (low byte)

#endif

for (i = 0; i<5; i++) // Delay loop for
pulses to motor and servo

{
return 0;
}

}

u08 ADC1return (void) //Control ADC chip for writing
signal to select CH0 and reading data from CH0
{

u08 data1;
u08 ADC1temp;

Page 3, 8/14/2006 - 9:41:52 PM

Programmers Notepad - final.c

DDRE = (1<<PE0) | (1<<PE1) | (0<<PE2); //Direction
of RD and WR as outputs & INT as input

PORTE = (1<<PE0) | (1<<PE1); //READ
= 1 and WRITE = 1

DDRF = 0xFF; //Set
Port F to all outputs (D11-D4)

DDRD = (1<<PD0) | (1<<PD1) | (1<<PD2) | (1<<PD3); //Set
PD0-PD3 as outputs (D3-D0)

PORTF = (0<<PF3) | (1<<PF2) | (0<<PF1) | (0<<PF0); //WRITE
Control Byte for CHANNEL 0

PORTD = (1<<PD3) | (0<<PD2) | (0<<PD1) | (0<<PD0); //WRITE
Control Byte for CHANNEL 0

cbi(PORTE, 1); //WRITE
= 0 (write pulse)

sbi(PORTE, 1); //WRITE
= 1

DDRD = (0<<PD0) | (0<<PD1) | (0<<PD2) | (0<<PD3); //Set
PD0-PD3 as inputs (D3-D0)

DDRF = 0x00; //Set
Port F to all inputs (D11-D4)

do //A
loop for the INT signal to wait until the INT signal

{ // to
go low to get the data from the ADC CH0

}
while (PINE & 0X04);

cbi(PORTE, 0); //READ
= 0 (read pulse and read data)

data1 = (PIND && 0x0F); // Takes
the lower 4 bits of the ADC CH0

ADC1temp = PINF; //
Takes the upper 8 bits of the ADC CH0

sbi(PORTE, 0); //READ
= 1

return (ADC1temp);

}

u08 ADC2return (void) //Control ADC chip for writing signal to
select CH1 and reading data from CH1
{

u08 data2;
u08 ADC2temp;
DDRE = (1<<PE0) | (1<<PE1) | (0<<PE2); //Direction of

RD and WR as outputs & INT as input
PORTE = (1<<PE0) | (1<<PE1); //READ = 1

and WRITE = 1

Page 4, 8/14/2006 - 9:41:52 PM

Programmers Notepad - final.c

DDRF = 0xFF; //Set Port
F to all outputs (D11-D4)

DDRD = (1<<PD0) | (1<<PD1) | (1<<PD2) | (1<<PD3); //Set
PD0-PD3 as outputs (D3-D0)

PORTF = (0<<PF3) | (1<<PF2) | (0<<PF1) | (0<<PF0); //WRITE Control
Byte for CHANNEL 1

PORTD = (1<<PD3) | (0<<PD2) | (0<<PD1) | (1<<PD0); //WRITE Control
Byte for CHANNEL 1

cbi(PORTE, 1); //WRITE = 0
(write pulse)

sbi(PORTE, 1); //WRITE = 1

DDRD = (0<<PD0) | (0<<PD1) | (0<<PD2) | (0<<PD3); //Set
PD0-PD3 as inputs (D3-D0)

DDRF = 0x00; //Set Port
F to all inputs (D11-D4)

do //A loop
for the INT signal to wait until the INT signal

{ // to go
low to get the data from the ADC CH1

}
while (PINE & 0X04);

cbi(PORTE, 0); //READ = 0
(read pulse and read data)

data2 = (PIND && 0x0F); //Takes the
lower 4 bits of the ADC CH1

ADC2temp = PINF; // Takes
the upper 8 bits of the ADC CH1

sbi(PORTE, 0); //READ = 1

return (ADC2temp);
}

u08 ADCfuncA(u08 ADC1, u08 ADC2) //COMPARES ADC values to determine
A, the length of the pulse needed (high byte)
{

u08 A;
u08 ADC0;

if (ADC1 > ADC2) //Determines if signal from
left inductor is greater than right inductor

{
ADC0 = ADC1 - ADC2; // Calculates the difference

between the signals of the inductors
A = ADC1greaterA(ADC0); // "A" Determines the high byte

for the PWM when ADC1 is greater
return (A);

}
else if (ADC1 < ADC2) //Determines if signal from

right inductor is greater than left inductor

Page 5, 8/14/2006 - 9:41:52 PM

Programmers Notepad - final.c

{
ADC0 = ADC2 - ADC1; // Calculates the difference

between the signals of the inductors
A = ADC2greaterA(ADC0); // "A" Determines the high byte

for the PWM when ADC2 is greater
return (A);

}
else if (ADC1 == ADC2) // When signals are equal make

the servo sent to center
{

// ADC = 0;
A = 0x05; //SET sERvO CENTER at 1.5ms

pulse (high byte for pulse)
// B = 0xDC; // (low byte)

return (A);
}
else return (0);

}

u08 ADCfuncB(u08 ADC1, u08 ADC2) //COMPARES ADC values to
determine B, the length of the pulse needed (low byte)
{

u08 B;
u08 ADC0;

if (ADC1 > ADC2) //Determines if signal from
left inductor is greater than right inductor

{
ADC0 = ADC1 - ADC2; // Calculates the difference

between the signals of the inductors
B = ADC1greaterB(ADC0); // "B" Determines the high byte

for the PWM when ADC1 is greater
return (B);

}
else if (ADC1 < ADC2) //Determines if signal from

right inductor is greater than left inductor
{

ADC0 = ADC2 - ADC1; // Calculates the difference
between the signals of the inductors

B = ADC2greaterB(ADC0); // "B" Determines the high byte
for the PWM when ADC2 is greater

return (B);
}
else if (ADC1 == ADC2)
{

// ADC0 = 0;
// A = 0x05; //SET sERvO CENTER at 1.5ms pulse

B = 0xDC; // (high byte)
return (B);

}
else return (0);

}

u08 ADC1greaterA(u08 ADC0) // If ADC1 > ADC2 values for pulse
length (A-high byte) is calculate from range

Page 6, 8/14/2006 - 9:41:52 PM

Programmers Notepad - final.c

{
u08 A;
u08 LastA;

if (ADC0 >= 0b00000001 && ADC0 < 0b00000101) // 0
degrees (1.5ms pulse)

{ //ADC0
greater than 0 & less than .2V

A = 0x05;
// B = 0xDC;

LastA = A;
return (A);

}
else if (ADC0 >= 0b00000101 && ADC0 < 0b00001100) // -15

degrees (1.44ms pulse)
{ //ADC0

greater than .2V & less than .5V
A = 0x05;

// B = 0xA0;
LastA = A;
return (A);

}
else if (ADC0 >= 0b00001100 && ADC0 < 0b00011001) // -30

degrees (1.38ms pulse)
{ // ADC0

greater than .5V & less than 1V
A = 0x05;

// B = 0x64;
LastA = A;
return (A);

}
else if (ADC0 >= 0b00011001 && ADC0 < 0b00100101) // -45

degrees (1.3ms pulse)
{ // ADC0

greater than 1V & less than 1.45V
A = 0x05;

// B = 0x14;
LastA = A;
return (A);

}
else if (ADC0 >= 0b00100101 && ADC0 < 0b00110011) // -60

degrees (1.24ms pulse)
{ // ADC0

greater than 1.45V & less than 2V
A = 0x04;

// B = 0xD8;
LastA = A;
return (A);

}
else if (ADC0 >= 0b00110011 && ADC0 < 0b00111001) // -75

degrees (1.18ms pulse)
{ // ADC0

greater than 2V & less than 2.25V
A = 0x04;

// B = 0x9C;
LastA = A;
return (A);

Page 7, 8/14/2006 - 9:41:52 PM

Programmers Notepad - final.c

}
else if (ADC0 >= 0b00111001 && ADC0 <= 0b01111111) // -90 degrees

(min pulse 1.1ms)
{ // ADC0

greater than 2.25V & less than 5V
A = 0x04;

// B = 0x4C;
LastA = A;
return (A);

}
else // return

last A calculated to keep the same pulse applied
{

return (LastA);
}

}

u08 ADC1greaterB(u08 ADC0) //If ADC1 > ADC2 values for pulse length
(B-low byte) is calculate from range
{

u08 B;
u08 LastB;

if (ADC0 >= 0b00000001 && ADC0 < 0b00000101) // 0
degrees (1.5ms pulse)

{
// A = 0x05;

B = 0xDC;
LastB = B;
return (B);

}
else if (ADC0 >= 0b00000101 && ADC0 < 0b00001100) // -15

degrees (1.44ms pulse)
{

// A = 0x05;
B = 0xA0;
LastB = B;
return (B);

}
else if (ADC0 >= 0b00001100 && ADC0 < 0b00011001) // -30

degrees (1.38ms pulse)
{

// A = 0x05;
B = 0x64;
LastB = B;
return (B);

}
else if (ADC0 >= 0b00011001 && ADC0 < 0b00100101) // -45

degrees (1.3ms pulse)
{

// A = 0x05;
B = 0x14;
LastB = B;
return (B);

}
else if (ADC0 >= 0b00100101 && ADC0 < 0b00110011) // -60

degrees (1.24ms pulse)

Page 8, 8/14/2006 - 9:41:52 PM

Programmers Notepad - final.c

{
// A = 0x04;

B = 0xD8;
LastB = B;
return (B);

}
else if (ADC0 >= 0b00110011 && ADC0 < 0b00111001) // -75

degrees (1.18ms pulse)
{

// A = 0x04;
B = 0x9C;
LastB = B;
return (B);

}
else if (ADC0 >= 0b00111001 && ADC0 <= 0b01111111) // -90 degrees

(min 1.1ms pulse)
{

// A = 0x04;
B = 0x4C;
LastB = B;
return (B);

}
else //

return last B
{

return (LastB);
}

}

u08 ADC2greaterA(u08 ADC0) //If ADC1 > ADC2 values for pulse length
(A-high byte) is calculate from range
{

u08 A;
u08 LastA;

if (ADC0 >= 0b00000001 && ADC0 < 0b00000101) // 0
degrees (1.5ms pulse)

{
A = 0x05;

// B = 0xDC;
LastA = A;
return (A);

}
else if (ADC0 >= 0b00000101 && ADC0 < 0b00001100) // 15

degrees (1.56ms pulse)
{

A = 0x06;
// B = 0x18;

LastA = A;
return (A);

}
else if (ADC0 >= 0b00001100 && ADC0 < 0b00011001) // 30

degrees (1.62ms pulse)
{

A = 0x06;
// B = 0x54;

LastA = A;

Page 9, 8/14/2006 - 9:41:52 PM

Programmers Notepad - final.c

return (A);
}

else if (ADC0 >= 0b00011001 && ADC0 < 0b00100101) // 45
degrees (1.7ms pulse)

{
A = 0x06;

// B = 0xA4;
LastA = A;
return (A);

}
else if (ADC0 >= 0b00100101 && ADC0 < 0b00110011) // 60

degrees (1.76ms pulse)
{

A = 0x06;
// B = 0xE0;

LastA = A;
return (A);

}
else if (ADC0 >= 0b00110011 && ADC0 < 0b00111001) // 75

degrees (1.82ms pulse)
{

A = 0x07;
// B = 0x1C;

LastA = A;
return (A);

}
else if (ADC0 >= 0b00111001 && ADC0 <= 0b01111111) // 90 degrees

(max pulse 1.9ms pulse)
{

A = 0x07;
// B = 0x6C;

LastA = A;
return (A);

}
else //

return last A
{

return (LastA);
}

}

u08 ADC2greaterB(u08 ADC0) //If ADC1 > ADC2 values for pulse length
(B-low byte) is calculate from range
{

u08 B;
u08 LastB;

if (ADC0 >= 0b00000001 && ADC0 < 0b00000101) // 0
degrees (1.5ms pulse)

{
// A = 0x05;

B = 0xDC;
LastB = B;
return (B);

}
else if (ADC0 >= 0b00000101 && ADC0 < 0b00001100) // 15

degrees (1.56ms pulse)

Page 10, 8/14/2006 - 9:41:52 PM

Programmers Notepad - final.c

{
// A = 0x06;

B = 0x18;
LastB = B;
return (B);

}
else if (ADC0 >= 0b00001100 && ADC0 < 0b00011001) // 30

degrees (1.62ms pulse)
{

// A = 0x06;
B = 0x54;
LastB = B;
return (B);

}
else if (ADC0 >= 0b00011001 && ADC0 < 0b00100101) // 45

degrees (1.7ms pulse)
{

// A = 0x06;
B = 0xA4;
LastB = B;
return (B);

}
else if (ADC0 >= 0b00100101 && ADC0 < 0b00110011) // 60

degrees (1.76ms pulse)
{

// A = 0x06;
B = 0xE0;
LastB = B;
return (B);

}
else if (ADC0 >= 0b00110011 && ADC0 < 0b00111001) // 75

degrees (1.82ms pulse)
{

// A = 0x07;
B = 0x1C;
LastB = B;
return (B);

}
else if (ADC0 >= 0b00111001 && ADC0 <= 0b01111111) // 90 degrees

(max pulse 1.9ms pulse)
{

// A = 0x07;
B = 0x6C;
LastB = B;
return (B);

}
else //

return last B
{

return (LastB);
}

}

Page 11, 8/14/2006 - 9:41:52 PM

	NATCAR
	Amir Sepahmansour
	Maryam Sotoodeh
	May 16, 2006
	I. Summary …………………………….…………………………….3
	Analog Design
	Power Supply
	Sensor and Filter Network

	H-Bridge Design
	Outcome
	References

