ME 285 Fundamentals of Mechatronics

Hw #2: Diodes and Transistors (Due 2/7/01)

- 1. Find the current through the diode, supposing V=10 V, R_1 =1 k Ω , and:
 - a. The diode is a 1N4148
 - b. The diode is an LED

- 2. Given the schematic shown to the right:
 - a. If $V_i = 5 \text{ V}$ (and cannot supply more than 4 mA) and $R_C = 200 \Omega$, what is the largest value of R_B you would choose to make sure that the transistor is saturated? Assume that $V_{ce_{sat}} = 0.4 \text{ V}$ and

 $h_{fe_{min}} = 100$. What base current will result from your choice of

R_B? Show how you arrive at your answers.

Check out a data sheet for the transistor. One source is STMicroelectronics (<u>http://us.st.com/stonline/</u>) Is h_{fe} a constant? Is the assumption of h_{fe} =100 a good one? Please comment on your answer.

- b. When the transistor is saturated, what is:
 - 1). The collector current?
 - 2). The power dissipated by R_C ?
 - 3). The power dissipated by the transistor?
- 3. Look at the data sheet for the ULN2803A Darlington array. Show how you might use it to drive a small motor (Radio Shack catalog no. 273-223) from a logic level source (0 or 5 V with about 1 mA drive capability). Will it work?