ME 285 Mechatronic System Design

Homework \# 8: Combinational Logic, Line ar Motors, and Inertia

 Calculation1. For the combinational logic circuit shown below:
a. Write down the truth table for this circuit.
b. Derive the Boolean expressions for C and S in terms of A and B .
c. Simplify you expressions, if necessary, using the theorems and postulates for Boolean algebra.

Copyright 1999-2000, J. Kelly Flanagan. Permission is granted to copy this work for non-profit educational and research use only provided this copyright notice remains intact. All other rights reserved.
2. Visit http://www.compumotor.com/products.htm Explain under what circumstances and why you might want to choose a linear motor over the traditional leadscrew/linear guide approach (like the one you sized the motor for in class).
3. Derive the formula for $\mathrm{J}_{\text {Load }}$ for a gear driven load from page 6 of the Compumotor Engineering Reference (http://www.compumotor.com/literature/pdf/pg223_engrg_mtrsz.pdf)
4. Find the total inertia of the drive system reflected to the motor, which consists of the two pulleys, the belt, the leadscrew, and the object to be positioned.
Pulley 1: $\mathrm{W}_{1}=0.16 \mathrm{lb}$
algebra.Pulley 2: $\mathrm{W}_{2}=0.35 \mathrm{lb}$
Object: $\mathrm{W}_{3}=10 \mathrm{lb}$
Weight of belt $=0.1 \mathrm{lb}$.
Dia. of pulley $1=2 \mathrm{in}$.
Dia. of pulley $2=4 \mathrm{in}$.
Leadscrew length $=1 \mathrm{ft}$.
Leadscrew diameter $=0.5$ in

Leadscrew material is steel
Leadscrew pitch $=5$ threads/in. (ACME thread form)
What should the inertia of the motor armature be?

