Introduction to the Mechatronic Engineering Laboratory Equipment

Purpose:

- To get familiar with some of the most commonly used features of the laboratory equipment.
- To learn how to build circuits using a solderless circuit board.

Components:

- One each of the following resistors: $100 \Omega, 2 \mathrm{k} \Omega, 5.1 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 100 \mathrm{k} \Omega$, and $1 \mathrm{M} \Omega$.
- Two $1 \mathrm{k} \Omega$ resistors.

Introduction: Each workstation consists of the equipment shown in Figure 1.

Figure 1 Laboratory equipment in the Mechatronic Engineering Laboratory. The multimeter, arbitrary waveform generator, and oscilloscope are connected to the computer via GP-IB.

The purpose of each of these instruments, briefly, is:

- The HP E3630A TRIPLE OUTPUT POWER SUPPLY will be used to supply the DC power needed to operate our circuits.
- The HP 34401A DIGITAL MULTIMETER (often referred to as the DMM) will be used to measure resistance, voltage, and current.
- The HP 33120A FUNCTION GENERATOR / ARBITRARY WAVEFORM GENERATOR will be used to provide various types of time-varying signals to our circuits.
- The HP 54603 OSCILLOSCOPE will be used mainly to display how circuit voltages vary with time.
- The HP COMPUTER will be used in conjunction with HP BenchLink ${ }^{\circledR}$ Software to communicate with the FUNCTION GENERATOR, DMM, and OSCILLOSCOPE.
- The HP DESKJET PRINTER will be used to obtain a hard copy of experimental results.

Procedure: On pages 2 through 22, you will find the basic operating instructions for each piece of equipment in the Mechatronics Lab. Also included are a number of exercises identified by a framed border on the page. These exercises will help you learn about the equipment and the types of
measurements you can make, so you will be prepared for the many interesting experiments that you will perform this semester.

Study these instructions and do each exercise when it is presented. Make any calculations at the time requested.

THE HP E3630A TRIPLE OUTPUT POWER SUPPLY

Figure 2 DC power supply. This is a triple-output power supply, which means it has three, independent outputs: $0-6 \mathrm{~V}, 0-20 \mathrm{~V}$, and $0-{ }^{+} 20 \mathrm{~V}$.

Figure 2 shows the front panel of the HP E3630A power supply.

Outputs

This DC power supply provides three separate outputs: a variable 0 to +20 V output rated at 0.5 amp, a variable 0 to -20 V output rated at 0.5 amp , and a variable 0 to +6 V output rated at 2.5 A . All three outputs share a single common (COM) connection. The COM is the low side of the positive supplies and the high side of the negative supply.

This common connection is referred to as common ground. It is the point from which the output voltages supplied by the $\mathbf{+ 6}, \mathbf{+ 2 0}$, and $\mathbf{- 2 0}$ terminals, are referenced. The COM output is to be connected to circuit ground, i.e., the ground symbols in the schematics for the experiments.

There is also an equipment ground provided. This is the terminal marked with the upside-down Tshaped symbol. As a safety feature, each piece of equipment in the lab is connected to earth through its 3-wire power cord. If for some reason a short circuit occurred to the case of the instrument, the ground wire would carry the short-circuit current to the earth, instead of you! For this reason, the equipment ground is more commonly referred to as earth ground. We will rarely (if ever) use the DC supply equipment ground.

Voltage and Current Displays

The three push button meter switches allow you to select one of the three outputs for display. The voltmeter and ammeter always monitor the selected supply.

Voltage Adjust

The +6 V control knob sets the 0 to +6 V output.

The $\pm 20 \mathrm{~V}$ control sets the 0 to +20 V and the 0 to -20 V outputs simultaneously. With the Tracking ratio control turned fully clockwise to its "fixed" position, the voltage of the negative supply tracks the positive supply within 1%, giving balanced positive and negative supplies.

Turning the Tracking ratio control clockwise out of its fixed position allows you to set the voltage of the -20 V supply to a fixed fraction (less than unity) of the +20 V supply. Once this ratio is set, the $\pm 20 \mathrm{~V}$ control still controls both outputs and maintains a constant ratio between their voltages.

Exercise 1. -- DC Supply

- Turn on the power supply by pressing the white LINE button. The red LED display will show the voltage output and current drawn for the output selected by one of the three meter pushbuttons.
- Turn the Tracking ratio control to its "fixed" position. Press the +20 V meter button (to display the +20 V output) and adjust the $\pm 20 \mathrm{~V}$ control knob to set the positive supply to +15 V . Press the -20 V meter button. The meter should read -15 V . The positive and negative supplies are balanced ($\pm 15 \mathrm{~V}$).
- Adjust the Tracking ratio control until the negative supply reads -5 V . The positive supply should read +15 V . Check that it does. You now have a tracking ratio of $\mathbf{3}(-5 \mathrm{~V}$ and $+15 \mathrm{~V})$.
- To see how tracking works, press the +20 V meter button and readjust the $\pm 20 \mathrm{~V}$ control knob to set the positive supply to +18 V .
- Finally, press the -20 V meter button. The negative supply should read -6 V , since the voltage ratio of $\mathbf{3}$ was not changed.
- Why might this tracking ratio be useful?

Overload Indicators

An overload LED will light when the DC supply output is connected to a load (circuit) that causes its current limit to be exceeded (0.5 A for the $\pm 20 \mathrm{~V}$ supplies, 2.5 A for the +6 V supply). The cause of the overload is usually faulty wiring or short-circuits. If you see an overload light, turn power off and double-check that your circuit is wired correctly.

THE HP 34401A DIGITAL MULTIMETER

The digital multimeter, or DMM as it is commonly called, is used to measure resistance, AC and DC voltage, AC and DC current, continuity, and frequency. We will not use most of the menu driven features offered; those we do need, will be discussed at a later time.

The Front Panel

As shown in Figure 3, the front panel has two rows of keys to select various functions. Most keys have a shifted function printed in blue above the key. To perform a shifted function, press the blue Shift key (the shift annunciator on the display will turn on). Then, press the key that has the desired label above it.

If you accidentally press Shift, just press it again to turn off the Shift annunciator.

Figure 3 Digital Multimeter (DMM). The DMM is used to measure resistance, voltage, and current.

RANGE / DIGIT Keys

You can let the multimeter automatically select the range using autoranging, or you can select a fixed range using manual ranging. Autoranging is automatically selected at power-on. To select a higher (less sensitive) range, press the \wedge key. To select a lower (more sensitive) range, press the \vee key. If the input signal is greater than the present range can measure, the multimeter will give an overload indication ("OVLD").

You can set the display resolution to $\mathbf{4 1}, \mathbf{5 1}$, or $\mathbf{6 1}$ digits to optimize either measurement speed or noise rejection. The leftmost digit on the display is referred to as the " 1 " digit, since it can only be a " 0 " or " 1 ." The resolution is set to 51 digits at power-on. You can also vary the number of digits displayed using the < and > arrow keys.

You can select ranging and resolution for each function independently. The multimeter remembers the range and resolution when you switch between functions.
The next few paragraphs define general procedures for measuring resistance, voltage, and current, which you will use in subsequent exercises. Familiarize yourself with them before attempting to make the measurements described in the exercise 2 later on.

To Measure Resistance

a. De-energize the circuit to be measured.
b. Connect leads to the HI and LO terminals marked $\mathbf{1 0 0 0}$ V Max (see Figure 4). It is best to measure resistance before placing the resistors in the circuit board (otherwise, you may be measuring the resistance of some parallel combination of elements).
c. Select $\boldsymbol{\Omega} \mathbf{2 W}$ (two-wire resistance measurement).
d. Leave the meter on autoranging or select manual ranges of $100 \Omega, 1 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 100 \mathrm{k} \Omega, 1$ $\mathrm{M} \Omega, 10 \mathrm{M} \Omega$, or $100 \mathrm{M} \Omega$. Manual range allows you to choose the range of the measurement, which might be helpful in certain situations.

Figure 4 Resistance measurement (two-wire). The probe leads are connected to the rightmost HI and LO terminals on the DMM.

To Measure Voltage

a. Connect leads to the HI and $\mathbf{L O}$ terminals marked $\mathbf{1 0 0 0}$ V Max (see Figure 5). Voltmeters are connected in parallel with the element. We do not need to modify the circuit when making voltage measurements. Since voltages are measured "across" an element, we simply place the leads across the two points in the circuit.
b. Select $\mathbf{D C} \mathbf{V}$ or $\mathbf{A C} \mathbf{V}$. In the AC volts function, the meter removes the DC component and measures the rms value of the AC component, only.
c. Leave the meter on autoranging or select manual ranges of $100 \mathrm{mV}, 1 \mathrm{~V}, 100 \mathrm{~V}$, or 1000 V (750 V AC).

Figure 5 Voltage measurement. Note the location of where the leads attach to the DMM.

To Measure Current

a. Use the I and LO terminals marked $\mathbf{3}$ A RMS (see Figure 6). Ammeters must be connected in series with the element so that the current flowing "through" the element will also flow through the ammeter. Therefore, it is necessary to break the circuit and connect the ammeter in series at the break. Note the lead polarity with respect to the current direction.
b. Select DC I or AC I (using the shift key). In the AC current function, the meter removes the DC component and measures the rms value of the AC component, only.
c. Leave the meter on autoranging or select manual ranges of 10 mA (dc only), 100 mA (dc only), 1 A , or 3 A .
d. Note that current must go through the meter in order to complete the electrical circuit.

Figure 6 Current measurement. Note where the probes connect to the DMM. Through which terminal does current flow into the DMM?

To Measure Frequency (or Period)

Use the HI and LO terminals marked $\mathbf{1 0 0 0} \mathbf{V}$ Max (as you would for voltage measurements -Figure 5). The meter can measure frequency from 3 Hz to 300 kHz (period from 0.33 sec to 3.3μ sec). For frequency and period measurements, ranging applies to the signal's input voltage, not its frequency.

CIRCUIT BOARD

The circuit board we will use in this lab is shown in Figure 7. Some common names for these boards are solderless circuit boards, proto-boards, and (more often) breadboards. Circuit components -- such as resistors, capacitors, op amps, relays, etc. -- simply plug into the holes in the breadboard. No soldering is needed.

Strips of metal inside the board connect the holes in groups (see Figure 8). There are 6 groups of fifty holes each, and 236 groups of five holes each.

Notice that there are three sets of red and blue lines running horizontally on the board. Between each set of these lines are two rows of fifty holes each. The fifty holes in each row are connected together. For example, if you apply 5 volts to a wire plugged into any hole between the red and blue lines, 5 volts will be available for another connection at any other hole along the same row. The remaining holes are connected in groups of five vertically (perpendicular to a channel).

Figure 7 Breadboard -- Top View. The fifty holes in each of the two rows between the red and blue lines are connected together internally. The remaining holes are connected together in groups of five vertically (perpendicular to a channel). Wires and components can be simply inserted into the holes. No soldering is needed to make connections.

Figure 8 Inside the breadboard. The strips show how the various hole sets are connected internally.

Exercise 2. -- Resistance measurements

Measure and record the actual resistance of each of the eight resistors listed in the components section (page $1: 100 \Omega, 2 \mathrm{k} \Omega, 5.1 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 100 \mathrm{k} \Omega$, and $1 \mathrm{M} \Omega$). Since the resistors used in this lab have 5% tolerance their measured value will be slightly different from their nominal value. For example, the 100Ω resistor will measure somewhere between 95Ω and 105Ω. Also note that the two $1 \mathrm{k} \Omega$ resistors will not have identical measured values.

Calculate the actual tolerance of each resistor using the formula

$$
\text { tolerance }=\frac{\text { measured }- \text { nominal }}{\text { nominal }} \times 100 \%
$$

Exercise 3. -- Voltage Measurements

Wire the circuit in Figure 9 (see Figure 10 for wiring example).
With your DMM connected as a voltmeter, measure the voltage drop across each resistor. Use voltage division to justify each of these values.

Figure 9: Circuit Diagram
(Continued on the next page)

Exercise 3. (continued)

Figure 10: Wiring Example

Exercise 4. -- Current Measurements

With your DMM connected as an ammeter, measure and record each current indicated in Figure 9. Use Ohm's Law to justify the value of $\mathbf{I}_{\mathbf{S}}$ (remember, $\mathrm{I}_{\mathrm{S}}=\mathrm{V}_{\mathrm{S}} / \mathrm{R}_{\text {total }}$). Use current division to justify the values of $\mathbf{I}_{\mathbf{a}}$ and $\mathbf{I}_{\mathbf{b}}$.

THE HP 33120A

FUNCTION GENERATOR / ARBITRARY WAVEFORM GENERATOR

Figure 11 Function Generator
The function generator can output five standard waveforms including sine, square, triangle, ramp, and noise. Each of these waveforms has zero average value, which means they are symmetrical above and below the 0 V reference line. You can also select one of five predefined arbitrary waveforms or download your own custom waveforms. You can internally modulate any of the standard waveforms (including arbitrary) using AM, FM, FSK, or burst modulation. Linear or logarithmic frequency sweeping is available for any of the standard waveforms (except noise) and arbitrary waveforms.

In the ME 106 lab, we will only be interested in the standard and arbitrary waveforms. We will not use either the modulation or frequency sweeping capabilities of the generator.
At power-on, the function generator outputs a sine wave at $1 \mathbf{k H z}$ with an amplitude of 100 mV peak-to-peak and a dc offset voltage of 0 volts (into a 50Ω termination).

The Front Panel

The front panel has two rows of keys to select various functions and operations. Most keys have a shifted function printed in blue above the key. To perform a shifted function, press the blue Shift key (the Shift annunciator on the display will turn on). Then, press the key that has the desired label above it. If you accidentally press Shift, just press it again to turn off the Shift annunciator.

Front-Panel Number Entry

You can enter numbers from the front panel (to change frequency, amplitude, dc offset, etc.) using one of three methods.

1. Use the "Enter Number" mode.

Most keys also have a number printed in green next to the key. To enable the number mode, press the Enter Number key (the Num annunciator on the display will turn
on). Then, press the keys that have the desired numbers printed next to them. For example, to select the number " 10 ", press Enter Number, then press the key with the $\mathbf{1}$ next to it, then press the key with the $\mathbf{0}$ next to it.
If you accidentally press Enter Number, just press Shift, then press Cancel to turn off the Num annunciator.

If the number requires units, press the appropriate arrow key. If the number does not require units, press the Enter key.
2. Note that one of the displayed numbers is flashing. You can use the arrow keys to edit the flashing digit.
\wedge Increments the flashing digit.
\checkmark Decrements the flashing digit.
$>$ Causes the next digit to the right to flash.
< Causes the next digit to the left to flash.
In this case, you are merely changing the value of the displayed number, and you do not need to enter the units.
3. You can also change the value of the flashing digit by turning the large knob.

Turning the knob clockwise will increment the flashing digit. (It will also cause digits to the left of the flashing digit to change if the knob is turned far enough.) Turning the knob counter clockwise will decrement the flashing digit. (It will also cause digits to the right of the flashing digit to change if the knob is turned far enough.) You can also use the knob along with the left/right arrow keys to modify the displayed number.

The Front-Panel Menu

The front-panel menu offers access to many more features and capabilities of this generator. Most of these features will not concern us in the ME 106 Lab. Only one of these features is of interest at this time. That feature is output termination.

Output Termination

The function generator has a 50Ω output impedance on the OUTPUT terminal. You can specify whether the load you are connecting is a 50Ω load or an open circuit. (Those are the only two choices.)

To select the output termination

1. Press the Shift key and the Menu On/Off key to turn on the menu.
2. Press the $>$ key three times to move across to the SYS MENU choice.
3. Press the \vee key to the OUT TERM command.
4. Press the \vee key.
5. Use the < and > keys to select between the $\mathbf{5 0} \Omega$ and $\mathbf{H I G H Z}$ choices.
6. Press Enter. This saves the change and turns off the menu.

The section on mismatched loads (page 23) discusses what happens when you do not terminate into a 50Ω load or an open circuits.

THE HP 54603 OSCILLOSCOPE

Figure 12 The oscilloscope. This device is used to measure dynamic signals, i.e., signals that change relatively quickly.

The front panel of the oscilloscope (the portion to the right of the display) has knobs, grey keys, and white keys. The knobs are used most often. The white keys are instant action keys and menus are not associated with them. The grey keys bring up softkey menus at the bottom of the display that allow you access to many of the oscilloscope features.
The softkeys (which are also grey) are located below the display. A softkey is a pushbutton switch that allows you to select from several possible functions. Each possible selection is displayed in sequence by repeatedly depressing the softkey. Leave the desired function visible on the display.

The status line, located at the top of the display, lets you quickly determine the setup of the oscilloscope.

Probes (Attention! The following is extremely important to understand!)

Oscilloscope leads are called probes. The low side of the probe (the alligator clip) is usually tied to the scope case which is connected to earth ground through its 3-wire power cord.
If you have connected the equipment ground from any other piece of equipment (i.e. the DC supply) to your circuit, then the low side of the probe must be connected to the same point in the circuit as the equipment ground. Connecting equipment ground restricts oscilloscope measurements to signals relative to earth ground.
Most of the circuits built in this lab, however, will have a common ground as discussed previously (in the Triple Output Power Supply section). When using common ground, the alligator clip can be connected anywhere in the circuit. The only restriction in this case is
that if you use two probes, both alligator clips MUST be connected to the SAME point in the circuit.

Probes are labeled with their attenuation factor -- either 100X, 10X or 1X. A 10X probe reduces the amplitude of the input signal to $1 / 10$ th of its actual value. A 100X probe reduces the amplitude of the input signal to $1 / 100$ th of its actual value. A 1 X probe does not attenuate the signal.

To set the probe attenuation factor for the probe connected to channel 1:
Press the $\mathbf{1}$ key (it is a grey front-panel key).
Next, toggle the Probe softkey to change the attenuation factor to 10 (since we have 10X probes in this lab).

To set the probe attenuation factor for the probe connected to channel 2:
Press the $\mathbf{2}$ key, then toggle the Probe softkey to set the correct attenuation factor.

Exercises

For exercises 5 through 11, you will be connecting the function generator directly to the oscilloscope. Since the oscilloscope has a very high input impedance (approximately 10 $\mathrm{M} \Omega$), you will need to set the output termination of your function generator to HIGH Z to match the impedance of the scope (see page 15).

After setting the HIGH Z termination, set the function generator to output an 8 V peak-topeak 500 Hz triangular wave with an offset of 2 Vdc . To do this:

1. Select the triangular waveshape.
2. To set the output frequency to 500 Hz :
a. Press the Freq key to enable the frequency modify mode.
b. Press the Enter Number key to enable the number mode. Notice that the Num annunciator turns on and "ENTER NUM" flashes on the display.
c. Press 5, then press 0 twice.
d. Press the $>$ to set the units to Hz .
3. To set the output amplitude to $8 \mathrm{Vp}-\mathrm{p}$:
a. Press the Ampl key to enable the amplitude modify mode.
b. Press the Enter Number key to enable the number mode.
c. Press 8.
d. Press the \wedge to set the units to Vp-p.

Note that if you had wanted an amplitude of $10 \mathrm{mVp}-\mathrm{p}$ you would need to press Shift before pressing the \wedge key since m is in blue.
4. To set the offset to 2 Vdc :
a. Press the Offset key to enable the offset modify mode.
b. Press the Enter Number key to enable the number mode
c. Press 2.
d. Press Enter. Since it is understood that the offset voltage is a dc voltage, no units are needed. The display will read Vdc. Note also that once you have set an offset voltage, the word "offset" is displayed (even if you go back and display the amplitude or frequency again).

Exercise 5. -- Displaying a signal automatically.

a. Connect the output of the function generator to channel 1 of the oscilloscope as shown in Figure 13.

Figure 13 Connecting the function generator to the oscilloscope
b. Press the Autoscale key (a white front-panel key). The oscilloscope automatically changes the front-panel setup to display the signal.

Notice that the ac signal is centered vertically on the oscilloscope screen. Notice, also, that the ground $(0 \mathrm{~V})$ reference symbol at the right side of the screen is one division down from the center of the screen.

Check the status line at the top of the screen. You should see the following:
a. At the left side, there should be a number $\mathbf{1}$ to indicate that channel 1 is on. The $\mathbf{1}$ is followed by the vertical scale sensitivity for channel 1 in volts per division (2 V in this case).
b. If no signals are connected to channel 2 or to the external jack, then the next thing you will see in the status line will be an arrow followed by $\mathbf{0 . 0 0}$ s to indicate that the time reference is located at the center of the screen.
c. The next item in the status line will be the time scale sensitivity in seconds per division ($500 \mu \mathrm{~s}$ in this case).
d. Next, there should be an up-arrow and the number 1. This tells us the scope is trigging on the positive slope of the signal applied to channel 1. (A down-arrow indicates that the scope is triggering on the negative slope.)
e. The last item in the status line is the word RUN, which tells us that the scope is continually acquiring data and displaying the most recent trace.

Before each of the next six exercises, press the Autoscale key so that the discussion matches what you see.

Exercise 6. Getting familiar with the vertical (voltage) controls.

a. The Position knob moves the signal vertically, and it is calibrated. As you turn the Position knob, notice that the ground symbol on the right side of the display moves in conjunction with the Position knob. Also, notice that as you turn the Position knob, a voltage value is displayed for a short time indicating how far the ground reference is located from the center of the screen. When the ground reference moves off screen, the ground symbol changes to an arrow and points in the direction (up or down) to give you some idea of where the ground reference is.
b. Change the vertical sensitivity with the Volts/Div knob. Notice that it causes the status line to change, and also changes the size (vertically) of the displayed waveform.
c. Press the $\mathbf{1}$ key, and a softkey menu appears. Toggle each of the softkeys and notice which keys cause the status line to change. Notice, also, which softkeys cause a change in the display and/or the position of the ground reference. Notice that when you change the input coupling from DC to AC , the signal moves vertically so that it is symmetrical above and below the reference line. This means that the DC component has been removed.
d. Channels 1 and 2 have a vernier softkey that allows the Volt/Div knob to change the vertical step size in smaller increments. These smaller increments are calibrated, which results in accurate measurements even with the vernier turned on.
e. To turn the channel off, either press the $\mathbf{1}$ key a second time or press the left-most softkey.

Exercise 7. -- Some of the horizontal (time base) controls

a. Turn the Time/Div knob. Notice the change it makes to the status line and to the displayed waveform. The Time/Div knob changes the sweep speed form 2 ns to 5 s in a 1-2-5 step sequence, and the value is displayed in the status line.
b. Pressing the Main/Delayed key brings up a softkey menu with six softkey choices. We will not discuss their functions at this time. Nor will we discuss the Delay knob.

Exercise 8. -- Some of the trigger controls.

a. Turn the trigger Level knob and notice the changes it makes to the display. In particular, notice that the waveform moves horizontally as the level changes. Also, notice that a voltage value is displayed (since, the trigger level is a voltage level). What happens if you move the trigger level above or below the displayed waveform? Try this for channel 1 input coupling set to ac and for channel 1 input coupling set to dc.
b. Pressing the Source key brings up a softkey menu. Toggle each of the softkeys and notice that each key causes the status line to change. Notice, also, what happens to the displayed waveform. Reset the source to $\mathbf{1}$ before going on to part c . We will not discuss these menus at this time

Exercise 9. -- Making frequency measurements automatically.

a. Press the Time key.
b. Toggle the Source softkey to select a channel for the frequency measurement (channel 1 in this case).
c. Press the Freq softkey. The oscilloscope automatically measures the frequency and displays the result on the lower line of the display. The number in parentheses after the word "Freq" is the number of the channel that the oscilloscope used for the measurement. The oscilloscope retains in memory and displays the three most current measurement results. If you make a fourth measurement, the left-most result is dropped.

Exercise 10. -- Making voltage measurements automatically.

You can measure the following voltage parameters automatically with the oscilloscope: peak-to-peak, average, rms, maximum, minimum, top, and base. Figure 14 and Figure 15, below, show pulses with some of the voltage measurement points labeled.

Figure 14 Pulse where top and bottom are well-defined.

Figure 15 Pulse where top and bottom are not well-defined.

To make voltage measurements automatically:

a. Press the Voltage key.

The Source softkey selects a channel for the voltage measurement.
The Voltage Measurement softkeys give you the choice of Vp-p, Vavg, and Vrms.
The Clear Meas softkey erases any measurement results from the display, and removes the horizontal and vertical cursors from the display.

The Next Menu softkey replaces the current softkey menu with six additional softkey choices.
b. Press Vp-p and Vavg.

These values should correspond to the voltages set on the function generator. (Remember, offset voltage and average voltage are the same thing.)
c. Press the Vrms softkey. The oscilloscope automatically measures the rms voltage of this DC coupled signal and displays the result. Next, change the input coupling to AC and try this measurement again. Note that the rms value is smaller. This is because the DC component has been blocked from the 'scope. Remember that the total rms voltage is:

$$
V_{r m s}=\sqrt{\left(V_{A C r m s}\right)^{2}+\left(V_{D C}\right)^{2}}
$$

Set the input coupling back to $\mathbf{D C}$ before proceeding to step c .

d. Press the Next Menu softkey.

The Show Meas softkey displays the horizontal and vertical cursors that show where the measurement was taken on the signal.
The Voltage Measurement softkeys give you the choice of Vmax, Vmin, Vtop, and Vbase.
The Previous Menu softkey return to the previous softkey menu.
e. Press Vmax, press Vmin, then press Show Meas.

Exercise 11. -- Changing output termination.

a. Refer to page 15 and set the output termination to $\mathbf{5 0} \Omega$.
b. Measure, again, Vp-p and Vavg. These values should now be twice the voltage values displayed on the function generator. By setting the output termination to 50Ω, you have told the generator to expect to see a 50Ω load. Instead, it sees a load of 10 $\mathrm{M} \Omega$. The section on mismatched loads will explain this discrepancy.

MISMATCHED LOADS

Question: What happens when the source and load impedances do not match? Answer: The voltage applied to the load will not match the voltage value displayed on the function generator (be it amplitude or offset voltage).

Recall (from page 15) that the function generator allows you to choose an output termination of either 50Ω or HIGH Z. In exercises 5 through 10 , we chose the HIGH Z output termination because the input impedance of the oscilloscope is approximately 10 $\mathrm{M} \Omega$ (practically an open circuit). In exercise 11 , we chose the 50Ω output termination and found a large discrepancy between the voltage displayed on the function generator and the voltage supplied to the 'scope.

The function generator (like any voltage supply) can be modeled (see Figure 16) as an ideal voltage source, $\mathrm{V}_{\text {gen }}$, in series with the generator's 50Ω output impedance. To
simplify the discussion, we will assume this impedance is purely resistive and label it as $\mathrm{R}_{\mathrm{gen}}$.

Figure 16 A model of the function generator.
The function generator is designed so that the voltage you set on the display is equal to $V_{\text {gen }}$ if HIGH Z is chosen, or is one-half $V_{\text {gen }}$ if 50Ω is chosen.

A passive load can be modeled as an impedance. Again, for simplicity, we will assume this load is purely resistive and label it as $\mathrm{R}_{\text {load }}$. As Figure 17 shows, the load is connected in series with the generator impedance. Therefore, the voltage supplied to the load, V_{s}, is (by voltage division) some fraction of $\mathrm{V}_{\mathrm{gen}}$.

Figure 17 Function generator with load.

$$
V_{s}=\frac{R_{\text {load }}}{R_{\text {gen }}+R_{\text {load }}} V_{\text {gen }}
$$

In exercises 5 through 10, we selected HIGH Z, and our load (the oscilloscope) was 10 $\mathrm{M} \Omega$. The voltage set on the function generator display was $8 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ plus $2 \mathrm{~V}_{\mathrm{dc}}$ offset. The voltage supplied to our load was

$$
V_{s}=\frac{10 \mathrm{M}}{50+10 \mathrm{M}} 8 \mathrm{~V}_{\mathrm{pp}}+\frac{10 \mathrm{M}}{50+10 \mathrm{M}} 2 \mathrm{~V}_{\mathrm{dc}} \cong 8 \mathrm{~V}_{\mathrm{pp}}+2 \mathrm{~V}_{\mathrm{dc}}
$$

The voltage supplied matched the voltage displayed on the function generator.
In exercise 11 , we chose an output termination of 50Ω. The voltage set on the generator's display was still 8 Vp -p plus 2 Vdc . Thus, Vgen was $16 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ plus
$4 \mathrm{~V}_{\mathrm{dc}}$, and the voltage supplied to the 'scope was twice the voltage displayed.

$$
V_{s}=\frac{10 M}{50+10 M} 16 V_{p p}+\frac{10 M}{50+10 M} 4 V_{d c} \cong 16 V_{p p}+4 V_{d c}
$$

If we had a 50Ω load, the voltage supplied would match the displayed voltage when 50 Ω termination is selected; and the voltage supplied would be one-half the displayed voltage when HIGH Z is selected.
When connecting the function generator to a circuit, the impedance the function generator sees is usually much smaller than $10 \mathrm{M} \Omega$, and is also usually much larger than 50Ω.
Therefore, we will usually see a discrepancy between the voltage supplied to the load and the voltage displayed on the function generator.
For example, if a circuit has an impedance of 250Ω and you set the function generator to 5 V (either amplitude or offset), then the voltage supplied to the load will be

$$
V_{s}=\frac{250}{50+250} 5 \mathrm{~V}=4.17 \mathrm{~V}
$$

if HIGH Z is selected, and

$$
V_{s}=\frac{250}{50+250} 10 \mathrm{~V}=8.33 \mathrm{~V}
$$

if 50Ω termination is selected.
Since there will usually be a discrepancy between the voltage displayed on the generator and the voltage supplied to the load, it is best to set the voltage to the desired value by placing the 'scope in parallel with the load and measuring the voltage supplied. (See Figure 18.)

Figure 18 Model showing 'scope used to measure supply voltage.

With the 'scope placed in parallel to the circuit, the total load the generator sees is the parallel combination of $\mathrm{R}_{\mathrm{ckt}}$ and $\mathrm{R}_{\text {load }}$, or 249.9Ω. Since the 'scope impedance is so high, it is effectively an open circuit and has little effect on the voltage being supplied to the circuit.

Exercise 12. -- AC Measurements

The circuit used in exercise 3 is shown again in Figure 19. This time, you will use your function generator to supply a 5 V peak-to-peak sinusoid with 2 Vdc offset.
Set this voltage using your oscilloscope to measure the peak-to-peak value and the average value. Record the values measured with your oscilloscope and the values displayed on your function generator. State whether you have selected HIGH Z or 50Ω termination of your function generator.

$$
\begin{aligned}
& \mathrm{R}_{1}=10 \mathrm{k} \Omega \\
& \mathrm{R}_{2}=2 \mathrm{k} \Omega \\
& \mathrm{R}_{3}=1 \mathrm{k} \Omega \\
& \mathrm{R}_{4}=5.1 \mathrm{k} \Omega \\
& \mathrm{~V}_{\mathrm{s}}=\begin{array}{c}
5 \mathrm{Vp}-\mathrm{p}+2 \mathrm{Vdc} \\
\text { sinusoid }
\end{array}
\end{aligned}
$$

Figure 19 Circuit from Exercise 3
Measure and record the voltage drop across each resistor using both your 'scope and your DMM. With the 'scope, your will measure Vp-p, Vrms, and Vavg. With the DMM, your will measure AC V (rms) and DC V.

With your DMM connected as an ammeter, measure and record each current indicated in Figure 19. You will need to measure both AC I (rms) and DC I. Current cannot be measured with the oscilloscope.

BenchLink © Software

HP's BenchLink ${ }^{\circledR}$ Software allows the personal computer (PC) to communicate with most of the test equipment at the workstation. With this software, you can read and print data from the oscilloscope or multimeter. Or, you may use the PC to create and edit a waveform, then have the waveform generator output that waveform.

The following exercises are just a quick look at a couple of BenchLink ${ }^{\circledR}$'s capabilities. More advanced features will be discussed when needed. It is assumed that you have some knowledge of Microsoft ${ }^{\circledR}$ Windows.

BenchLink ${ }^{\circledR}$ and the Oscilloscope

1. To start BenchLink ${ }^{\circledR} /$ Scope, open the BenchLink Suite window by double-clicking on its icon in Windows ${ }^{\circledR}$ Program Manager group.
2. Activate HP BenchLink/Scope by double-clicking on its icon.
3. Use the oscilloscope to view any waveform.
4. From the IMAGE menu, select NEW... , then click OK. After a few seconds, the image on the oscilloscope's display will appear on the PC's monitor.
5. To print: From the IMAGE menu, select UPDATE FROM INSTRUMENT 7... from the Menu Bar. (The oscilloscope is preset to be at address \#7.) Then click on the print icon on the Toolbar; or, from the File menu, select Print...

Note: BenchLink ${ }^{\circledR}$ will not print a NEW image, it will only print one that is an UPDATE.

BenchLink ${ }^{\circledR}$ and the Arbitrary Waveform Generator

1. To start BenchLink ${ }^{\circledR} /$ Arb, open the BenchLink Suite window by double-clicking on its icon in Windows ${ }^{\circledR}$ Program Manager group.
2. Activate HP BenchLink/Arb by double-clicking on its icon.

The gridded area in the center of the screen is called the "wave edit window." Here, you are able to create and edit the waveform before outputting it.
3. To create a waveform, pick a few of the waveshape icons from the Palette Bar. Then, from the MATH menu, select EXPAND TO FIT...
4. To output the waveform: From the I/O menu, select SEND WAVEFORM..., then click OK. The waveform should now be the output from your waveform generator. Use the oscilloscope to view this waveform.

