The Skeletal System

The Rigid Framework of the Body
The Skeletal System

- The bones, joints, cartilage, and ligaments
- **The Skeleton**
 - Axial Skeleton
 - Skull, vertebrae, and ribs
 - Appendicular Skeleton
 - Shoulder girdle, pelvis, and extremities
Figure 10.1 The axial and appendicular skeletons together form the adult human skeleton.
Mechanical Function of the Skeletal System

- An arrangement of rigid links (bones) connected at joints to allow specific body movements
- Muscles attached to bones provide forces that may cause changes in the positions of bones relative to each other
 - The skeletal system provides the long levers that enable movement
Levers

- Bones are the levers of the human body
- All levers have an axis of rotation
- Three Types of Levers
 - 1st class lever
 - 2nd class lever
 - 3rd class lever
Relative locations of the applied force, the resistance, and the fulcrum, or axis of rotation, determine lever classifications.
Joints

- Definition
 - “Any place where two bones meet or join”

- Function
 - Keep bones together
 - control the motion allowed between bones
 - Act as axes of rotation for the lever system
 - transfer forces between bones
Synovial Joints

- Bones connected by ligaments
- Separated by a joint cavity that encloses the space between the bones
- Highly mobile joints
- Examples
 - Most of the joints of the appendicular skeleton
 - Wrist, elbow, shoulder, ankle, knee, and hip
Synovial Joints

- Six Subclassifications
 - Gliding
 - Hinge
 - Pivot
 - Ellipsoidal
 - Saddle, and
 - Ball and socket
Gliding Joints

- Articulations are flat and small
- Sliding planar movements (no rotations)
- Examples
 - intercarpal (wrist),
 - intertarsal (ankle), and
 - acromioclavicular (shoulder girdle)
Hinge Joints

- **Uniaxial**
 - Allow only one degree of freedom of movement

- **Movements**
 - Flexion/extension
 - Medial/Lateral Axis
 - Sagittal Plane

- **Examples**
 - humeroulnar (elbow)
 - tibiofemoral (knee)
 - talotibial and talofibular (ankle)
Pivot Joints

- **Uniaxial**
 - Allow only one degree of freedom of movement

- **Movements**
 - Pronation/Supination
 - Longitudinal axis
 - Transverse plane

- **Examples**
 - Radioulnar joints
 - Pronation/Supination
Ellipsoidal Joints

- **Biaxial**
 - Two degrees of freedom
- **Movements**
 - Flexion/extension
 - Medial/Lateral Axis
 - Sagittal Plane
 - Abduction/adduction
 - Anterior/Posterior Axis
 - Frontal Plane
- **Examples**
 - radiocarpal (wrist)
Saddle Joints

- Biaxial
 - Two degrees of freedom

- Movements
 - Flexion/extension
 - Medial/Lateral Axis
 - Sagittal Plane
 - Abduction/adduction
 - Anterior/Posterior Axis
 - Frontal Plane

- Example
 - First carpometacarpal joint (at the base of the thumb)
Ball and Socket Joints

- Triaxial
 - Three degrees of freedom
- Movements
 - Flexion/extension
 - Medial/Lateral Axis
 - Sagittal Plane
 - Abduction/adduction
 - Anterior/Posterior Axis
 - Frontal Plane
 - Internal/external rotation
 - Longitudinal axis
 - Transverse plane
- Examples
 - glenohumeral (shoulder)
 - hip joint
Synovial Joints

- Structure of Synovial Joints
 - Articular Capsule
 - Sleeve of ligamentous tissue
 - Forms a joint cavity
 - Synovial Membrane
 - Inner surface lining of the articular capsule
 - Secretes synovial fluid, which fills the joint cavity
Synovial Fluid

- **Lubricant**
 - reduces friction
- **Nutrient**
 - nourishes the articular cartilage which has no blood supply
- **Cleanser**
- **Hydrostatic shock absorber**
Synovial Joints

- Structure of Synovial Joints
 - Articular Cartilage
 - Two Types
 - Hyaline Cartilage and Fibrocartilage
 - Improve the bone-to-bone fit at the joint
 - increasing the joint's stability and
 - reducing pressure when the joint is loaded
 - Reduce friction and prevents wear
 - Provide some shock absorption
Articular Cartilage

- **Hyaline Cartilage**
 - Thin layer of cartilage that covers the articulating ends of the bones

- **Fibrocartilage**
 - Disc or partial disc of fibrocartilage that separates the articulating surfaces of the bones
 - The bearing surfaces between moving bones
Synovial Joints

- Instability of Synovial Joints
 - Definition of Instability
 - Rotations of the bones in planes other than those defined by the degrees of freedom of movement for the joint, or
 - Movement of the articulating surfaces away from each other through
 - shear dislocation (sliding laterally) or
 - traction dislocation (pulling apart)
Synovial Joints

- Reducing Instability of Synovial Joints
 - Increasing Shear Stability
 - Bone-on-Bone Compression
 - Increases friction
 - Reciprocal convex and concave shapes of the articulating ends of bones
 - Tighter the bone-to-bone fit and
 - Articular Cartilage
 - Improve Bone-to-Bone fit
 - Fibrocartilage
 - Produce convex regions to aid in resisting shear
Synovial Joints

- Reducing Instability of Synovial Joints
 - Increasing Tension Stability
 - Ligaments and tendons provide the tensile forces to resist traction dislocations
Synovial Joints

- Flexibility of Synovial Joints
 - The angular range of motion in the planes in which the joint is designed to move
- Factors that Limit Flexibility
 - Articulating Bones
 - The shapes of the articulating bones may limit range of motion
 - Example: Olecranon process
 - Ligaments
 - Shortening and/or twisting of ligaments can limit range of motion
Synovial (Diarthrodial) Joints

- Factors that Limit Flexibility
 - Bulkiness of Soft Tissues
 - Examples: a person with larger muscles or large amounts of fatty tissue
 - Friction within the Joint
 - Any wearing or damage to the articular cartilage increases joint friction
 - Example: arthritis