- 110A, HW12: Due Thursday 12/8 in class.
- 1. A hollow sphere of radius R is given a uniform surface charge density σ . It is centered on the origin. Then it is rotated around the z axis at a constant angular velocity of ω .
- A) Find the total magnetic dipole moment. (Hint: think of the sphere as a bunch of small ribbons of current. Careful: The area of each ribbon is easiest to find in Cartesian coordinates, but the current of each ribbon is easiest to find in spherical coordinates. Choose one!)
- B) Find an **approximate** expression for the magnetic field at large distances from the sphere, in spherical coordinates.
- 2) Problem 6.16 (the coaxial cable, with the return current.) Don't forget to check that your bound currents generate the correct B-field!
- 3) Problem 6.7. (The magnetized cylinder.) Hint: First find the bound currents!
- 4) Consider the last midterm problem: A long cylinder of radius R is given a uniform charge density ρ and spun on its axis at a constant angular velocity of ω . If the cylinder is made out of a paramagnetic material with χ_m =+0.2, find the magnetic field at a radius "s" inside the spinning cylinder.