Consider a function $f(x,y)$ at a point (a,b).

- f has a local maximum at (a,b) if $f(x,y) \leq f(a,b)$ for all (x,y) in some disk around (a,b). Call $f(a,b)$ a local maximum value.

- f has a local minimum at (a,b) if $f(x,y) \geq f(a,b)$ for all (x,y) in some disk around (a,b). Call $f(a,b)$ a local minimum value.

- f has an absolute maximum at (a,b) if $f(x,y) \leq f(a,b)$ for all (x,y) in the domain of f. Call $f(a,b)$ the absolute maximum value of f.

- Similarly for absolute minimum.
Graph of $z = f(x, y)$.

- Absolute maximum
- Local maximum
- Absolute minimum
- Local minimum

Also a local maximum for this graph.
Fact

If \(f(x, y) \) has a local max or local min at \((a, b) \),
then \(f_x(a, b) = 0 \) and \(f_y(a, b) = 0 \) (if they exist),
and the tangent plane to the graph \(z = f(x, y) \)
at \((a, b) \) is horizontal.

Critical Points

A point \((a, b) \) is called a critical point
(or stationary point) if \(f_x(a, b) = f_y(a, b) = 0 \)
or if one or both of \(f_x(a, b) \) and \(f_y(a, b) \)
does not exist.

Restatement of Fact:

If \(f(x, y) \) has a local max or min at \((a, b) \),
then \((a, b) \) is a critical point.

The reverse is not necessarily true.
If \((a, b) \) is a critical point, then \((a, b) \)
may be a local max, a local min, or neither.

Example

Consider \(f(x, y) = y^2 - x^2 \).

Have \(f_x = -2x \) and \(f_y = 2y \).

Critical Points: \(f_x \) and \(f_y \) exist everywhere
(since no critical points from non-existence of derivatives)
Set \(0 = f_x \) and \(0 = f_y \)
\(0 = -2x \) and \(0 = 2y \)
\(\therefore (x, y) = (0, 0) \) is a critical point.
Consider \(f(x,y) = y^2 - x^2 \)

Have \(f_x = -2x \) and \(f_y = 2y \)

Critical Points:

- Points where \(f_x(a,b) \) or \(f_y(a,b) \) does not exist?
 - \(f_x \) and \(f_y \) exist everywhere

- Points where \(f_x(a,b) = f_y(a,b) = 0 \)?
 - Set \(0 = f_x \) and \(0 = f_y \)
 - \(0 = -2x \) and \(0 = 2y \)
 - \((x,y) = (0,0)\) is a critical point

Is \((0,0)\) a local max, local min, or something else?

Note that for points \((x,y)\) near \((0,0)\) on the x-axis \((y = 0)\) we have

\[f(x,y) = -x^2 < 0 = f(0,0) \]

Note that for points \((x,y)\) near \((0,0)\) on the y-axis \((x = 0)\) we have

\[f(x,y) = y^2 > 0 = f(0,0) \]

So every disk around \((0,0)\) contains points where \(f(x,y) > f(0,0) \) and where \(f(x,y) < f(0,0) \)

So \((0,0)\) is not a local max and not a local min. The point \((0,0)\) is called a saddle point of \(f \).

See the graph on the next page.
$z = f(x, y) = y^2 - x^2$
Classifying Critical Points

Second Derivative Test
Suppose \(f_x(a,b) = f_y(a,b) = 0 \) and \(f_x, f_y \) are continuous in some disk around \((a,b)\).
Let
\[
D = D(a,b) = f_{xx}(a,b)f_{yy}(a,b) - (f_{xy}(a,b))^2
\]
Then
(a) If \(D > 0 \) and \(f_{xx}(a,b) > 0 \), then \((a,b)\) is a local min
(b) If \(D > 0 \) and \(f_{xx}(a,b) < 0 \), then \((a,b)\) is a local max
(c) If \(D < 0 \), then \((a,b)\) is a saddle point
 (hence neither a local max or local min)
(d) If \(D = 0 \), the test gives no information
 (it could have a local max, local min, saddle point or neither at \((a,b)\))

Note
\[
D = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{vmatrix} = f_{xx}f_{yy} - (f_{xy})^2.
\]
Find the local max values, local min values, and saddle points of
\[f(x, y) = x^4 + y^4 - 4xy + 1 \]

Solution: Start with critical points.
\[f_x = 4x^3 - 4y \quad f_y = 4y^3 - 4x \]

Note \(f_x, f_y \) exist everywhere.

Set \(f_x = f_y = 0 \).
\[
\begin{align*}
0 &= f_x & 0 &= f_y \\
0 &= 4x^3 - 4y & 0 &= 4y^3 - 4x \\
0 &= x^3 - y & 0 &= y^3 - x \\
y &= x^3 \\
x &= y^3
\end{align*}
\]

Substitute first equation into the second:
\[
\begin{align*}
x &= (x^3)^3 \\
x &= x^9 \\
0 &= x^9 - x \\
0 &= x(x^8 - 1) \\
0 &= x(x^4 - 1)(x^4 + 1) \quad [a^2 - b^2 = (a-b)(a+b)] \\
0 &= x(x^2 - 1)(x^2 + 1)(x^4 + 1) \\
0 &= x(x - 1)(x + 1)(x^2 + 1)(x^4 + 1)
\end{align*}
\]

\(\therefore \) \(x = 0, 1, -1 \)

Now recall \(y = x^3 \)
\[
\begin{align*}
x = 0 & \implies y = (0)^3 = 0 \\
x = 1 & \implies y = (1)^3 = 1 \\
x = -1 & \implies y = (-1)^3 = -1
\end{align*}
\]

Critical Points: \((0, 0), (1, 1), (-1, -1)\)
Now use 2nd Deriv. Test

Compute
\[f_{xx} = 12x^2 \]
\[f_{yy} = 12y^2 \]
\[f_{xy} = -4 \]
\[D = f_{xx}f_{yy} - (f_{xy})^2 \]
\[= (12x^2)(12y^2) - (-4)^2 \]
\[= 144x^2y^2 - 16 \]

Recall:
\[f(x,y) = x^4 + y^4 - 4xy + 1 \]
\[f_x = 4x^3 - 4y \]
\[f_y = 4y^3 - 4x \]

(0,0): \[D(0,0) = -16 < 0 \]
\[\therefore (0,0) \text{ is a saddle point of } f \]

(1,1): \[D(1,1) = 144 - 16 > 0 \]
\[f_{xx}(1,1) = 12 > 0 \]
\[\therefore f \text{ has a local min at } (1,1) \]
\[f(1,1) = (1)^4 + (1)^4 - 4(1)(1) + 1 = -1 \]
\[\text{is a local minimum value of } F. \]

(-1,-1): \[D(-1,-1) = 144 - 16 > 0 \]
\[f_{xx}(-1,-1) = 12(-1)^2 = 12 > 0 \]
\[\therefore f \text{ has a local min at } (-1,-1) \]
\[f(-1,-1) = (-1)^4 + (-1)^4 - 4(-1)(-1) + 1 = -1 \]
\[\text{is a local minimum value of } F. \]
Finding Absolute Maximum and Absolute Minimum Values

1D: \(f(x) \) defined on \([a, b]\)

Step 1: Find the values of \(f \) at the critical points in \((a,b)\).

Step 2: Find the values of \(f \) at the endpoints of \([a, b]\).

Step 3: The largest value from Steps 1 and 2 is the absolute maximum value of \(f \) on \([a, b]\). The smallest value is the absolute minimum value.

2D: \(f(x,y) \) defined on a closed and bounded set \(D \) in \(\mathbb{R}^2 \)

Step 0: Draw \(D \) and determine its boundary.

Step 1: Find the values of \(f \) at the critical points inside \(D \).

Step 2: Find the maximum and minimum values of \(f \) on the boundary of \(D \).

Step 3: The largest value from Steps 1 and 2 is the absolute maximum value of \(f \) on \(D \). The smallest value is the absolute minimum.

Examples of sets \(D \) in \(\mathbb{R}^2 \):

- \(\{(x,y) : x^2 + y^2 \leq 1\} \): Closed, Bounded
- \(\{(x,y) : -4 \leq x \leq 2, 1 \leq y \leq 3\} \): Closed, Bounded
- \(\{(x,y) : x^2 + y^2 < 1\} \): Bounded, Not Closed
Ex. Find the absolute max and absolute min values of
\[f(x, y) = x^4 - 8x^2 - 8y^2 + 100 \]
on the region
\[D = \{(x, y) : x^2 + y^2 \leq 2 \} \]

Step 0: Draw the region and determine its boundary

\[
\begin{align*}
(0, \sqrt{2}) \\
(0, -\sqrt{2}) \\
(-\sqrt{2}, 0) \\
(\sqrt{2}, 0)
\end{align*}
\]

Boundary: \(x^2 + y^2 = 2 \)

Step 1: Find the values of \(f \) at the critical points inside \(D \).

\[f_x = 4x^3 - 16x \]
\[0 = 4x^3 - 16x \]
\[0 = x^3 - 4x \]
\[0 = x(x^2 - 4) \]
\[0 = x(x-2)(x+2) \]
\[x = 0 \text{ or } x = 2 \text{ or } x = -2 \]

\[f_y = -16y \]
\[0 = -16y \]
\[y = 0 \]

Critical Points: \((0, 0), (2, 0), (-2, 0) \)

Are they inside \(D \)? \(\Rightarrow \) Based on the drawing above, no.

Check \(x^2 + y^2 < 2 \)

\((0, 0) : (0)^2 + (0)^2 < 2 \)
\[\therefore (0, 0) \text{ inside } D \]

\((2, 0) : (2)^2 + (0)^2 = 4 > 2 \)
\[\therefore (2, 0) \text{ not inside } D \]

\((-2, 0) : (-2)^2 + (0)^2 = 4 > 2 \)
\[\therefore (-2, 0) \text{ not inside } D \]

Can also check algebraically.
Critical Points in \(D \): \((0,0)\).

Evaluate \(f \) at critical points in \(D \):

\[
f(0,0) = (0)^4 - 8(0)^2 - 8(0)^2 + 100 = 100
\]

\[
f(0,0) = 100
\]

Step 2: Find the maximum and minimum values of \(f \) on the boundary of \(D \).

\[
f(x,y) = x^4 - 8x^2 - 8y^2 + 100.
\]

Boundary of \(D \):

\[
x^2 + y^2 = 2
\]

\[
y^2 = 2 - x^2
\]

Substitute into formula for \(f(x,y) \):

\[
f(x,y) = x^4 - 8x^2 - 8(2 - x^2) + 100
\]

\[
= x^4 - 16 + 100
\]

\[
= x^4 + 84
\]

\[
F(x) = x^4 + 84
\]

On the boundary of \(D \), \(x^2 + y^2 = 2 \), \(x \) varies from \(-\sqrt{2}\) to \(\sqrt{2}\).

\[
\therefore \text{Need to find absolute max and min of } f(x) = x^4 + 84 \text{ on } [-\sqrt{2}, \sqrt{2}].
\]

For this particular function, calculus is not needed.

Abs. Max of \(F \) at \(x = \pm \sqrt{2} \):

\[
F(\pm \sqrt{2}) = (\pm \sqrt{2})^4 + 84 = 88
\]

At \(x = \pm \sqrt{2} \), using \(x^2 + y^2 = 2 \) gives \(y = 0 \).

Points: \((-\sqrt{2},0), (\sqrt{2},0)\)

\[
F(\pm \sqrt{2},0) = F(\pm \sqrt{2}) = 88
\]

Abs. Min of \(F \) at \(x = 0 \):

\[
F(0) = (0)^4 + 84 = 84
\]

At \(x = 0 \), using \(x^2 + y^2 = 2 \) gives \(y = \pm \sqrt{2} \).

Points: \((0,-\sqrt{2}), (0,\sqrt{2})\)

\[
F(0,\pm \sqrt{2}) = F(0) = 84
\]
Step 3: Largest f value above is absolute max.
Smallest f value above is absolute min.

Absolute Max = $f(0, 0) = 100$
Absolute Min = $f(0, 12) = 84$
Find the absolute maximum and minimum values of
\[f(x, y) = x^2 - 4xy + 8y \]
on the closed triangular region with vertices
(0,0), (3,3), (3,0).

Solution:

Step 0:

Critical Points: (2,1)

Is it inside the region? Yes (see the diagram above).

\[f(2,1) = (2)^2 - 4(2)(1) + 8(1) = 4 \]

Step 2:

Boundary consists of line segments \(L_1, L_2, L_3 \)

\[L_1: \quad y = 0, \quad 0 \leq x \leq 3 \]
\[F(x) = f(x, 0) = x^2 \]
\[\text{Max: } f(3,0) = 9 \]
\[\text{Min: } f(0,0) = 0 \]

\[L_2: \quad x = 3, \quad 0 \leq y \leq 3 \]
\[F(y) = f(3, y) = 9 - 4y \]
\[\text{Max: } f(3,0) = 9 \]
\[\text{Min: } f(3,3) = -3 \]

\[L_3: \quad x = y, \quad 0 \leq x \leq 3 \]
\[F(x) = f(x, x) = x^2 - 4x^2 + 8x \]
\[\text{Max: } f(3,3) = -3 \]
\[\text{Min: } f(3,3) = -3 \]

Endpoints:
\[f(0,0) = 0 \]
\[f(3,3) = -3 \]
Step 3:
Abs. Max: \(f(3,0) = 9 \)
Abs. Min: \(f(3,3) = -3 \)