Properties of polymer liquid crystals: choosing molecular structures and blending

Witold Brostow*

Center for Materials Characterization and Department of Chemistry, University of North Texas, Denton, TX 76203-5371, USA and Department of Materials Engineering, Drexel University, Philadelphia, PA 19104, USA

(Received 26 June 1989; revised 9 August 1989; accepted 9 September 1989)

Class ω, conic molecules

Classes α–ψ could be planar, or nearly two-dimensional. Networks are typically three-dimensional, but a planar class σ molecule is possible, at least in principle. By contrast, molecules in Class ω must be three-dimensional. Their existence was predicted by Lin84 in 1982 but confirmed experimentally several years later85,86. Names pyramidal or bowlic were proposed, but I eventually decided to adopt the name conic. Lin predicts87 that these materials should have interesting electric properties.

POLYMER, 1990, Vol 31, June 983

86 Maltbete, J. and Collet, A. Nouv. J. Chimie 1985, 9, 151

POLYMER, 1990, Vol 31, June 993
Rigid Bowlic Liquid Crystals Based on Tungsten-Oxo CaliM41arenes: Host-Guest Effects and Head-to-Tail Organization

Bing Xu and Timothy M. Swager**
Department of Chemistry
University of Pennsylvania
Philadelphia, Pennsylvania 19104-6323
Received September 15, 1992