Science Matters Series

Lui Lam
Founder and Editor

Science Matters (SciMat) is the new discipline that treats all human-dependent matters as part of science, wherein, humans (the material system of *Homo sapiens*) are studied scientifically from the perspective of complex systems. That “Everything in Nature Is Part of Science” was well recognized by Aristotle and da Vinci and many others. Yet, it is only recently, with the advent of modern science and experiences gathered in the study of evolutionary and cognitive sciences, neuroscience, statistical physics, complex systems and other disciplines, that we know how the human-related disciplines can be studied scientifically. Science Matters Series covers new developments in all the topics in humanities and social sciences from the SciMat perspective, with emphasis on the humanities.

Books in Series

1. *Science Matters: Humanities as Complex Systems*
 M. Burguete & L. Lam, editors

2. *Arts: A Science Matter*
 M. Burguete & L. Lam, editors
Preface

Science Matters is the new discipline that treats all human-dependent matters as part of science, wherein, humans (the material system of Homo sapiens) are studied scientifically from the perspective of complex systems. That “everything in Nature is part of science” was well recognized by Aristotle and da Vinci and many others. Yet, it is only recently, with the advent of modern science and experiences gathered in the study of evolutionary and cognitive sciences, neuroscience, statistical physics, complex systems and other disciplines, that we know how the human-related disciplines can be studied scientifically.

Science Matters (SciMat) covers all the topics in humanities and social sciences, arts in particular. Arts here include visual arts, literature, film, music, architecture, performance arts, new media arts and so on.

This book treats arts as part of science, from the unified perspective of SciMat. It is probably the first and only book to which academic professionals and practicing artists contribute, as equals, on the common theme of creating and understanding arts. It contains 17 chapters, with 18 contributors who are prominent humanists, professional artists or scientists. It consists of three parts: Part I: Philosophy and History of Arts; Part II: Arts in Action; Part III: Understanding Arts. The book is aimed at both research scholars and laypeople. While the discussions presented in the chapters of this book are very general and definitely applicable to all kinds of arts, for practical reasons, specific examples are mostly confined to visual arts, literature and film. We hope to cover other parts of arts in the future.
Two other features of this book should be mentioned. First, arts studies, like in any other discipline, can be and are carried out with three different approaches: empirical, phenomenological and bottom-up. (For the humanities, with arts as a particular case, the bottom-up approach could be starting from the neuro or the genetic level.) All these three approached in arts studies are represented in this book. Second, the general nature and the origin of arts, an unsettled problem for 2,400 years since Plato’s time, are addressed in four chapters in this book. In particular, a plausible answer to this important problem is presented for the first time (Chapter 1).

It is our wish that this book will help to start a new trend in arts studies; that is, arts scholars and practicing artists work together, treating arts as part of science.

Rio Maior, Portugal Maria Burguete
San Jose, California Lui Lam
Contents Summary

Preface

1. Arts: A Science Matter
 L. Lam

PART I PHILOSOPHY AND HISTORY OF ARTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>The Latin “Artes” and the Origin of Modern “Arts”</td>
<td>B. Hoppe</td>
<td>35</td>
</tr>
<tr>
<td>3</td>
<td>Science and Art: A Philosophical Perspective</td>
<td>G.-S. Wu</td>
<td>69</td>
</tr>
<tr>
<td>4</td>
<td>Neuroarthistory: Reuniting Ancient Traditions in a New Scientific Approach to the Understanding of Art</td>
<td>J. Onians</td>
<td>78</td>
</tr>
<tr>
<td>5</td>
<td>Science and Art in China</td>
<td>B. Liu</td>
<td>99</td>
</tr>
<tr>
<td>6</td>
<td>The Development of Science Theaters</td>
<td>I. Schneider</td>
<td>120</td>
</tr>
</tbody>
</table>

PART II ARTS IN ACTION

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Silence in Art</td>
<td>C. Leiria</td>
<td>151</td>
</tr>
</tbody>
</table>
PART III UNDERSTANDING ARTS

13 On the Origin of Literary Narrative and Its Relation to Adaptation
 P. C. Hogan 267

14 Emotion, Cognition and Aesthetic Form in Vishal Bhardwaj’s Omkara and Shakespeare’s Othello
 L. P. Hogan 293

15 Tanbi Novels and Fujoshi: A New Romance for Young Chinese Women
 T.-T. Wang 317

16 Objects in Art and Science
 N. Sanitt 333

17 Su Dong-Po’s Bamboo and Cézanne’s Apple
 L. Lam and L.-M. Qiu 348

Acknowledgments 371

Contributors 373

Index 381
Contents

Preface

1 Arts: A Science Matter
Lui Lam

1.1 Introduction 1
1.2 Science and Science Matters 2
1.2.1 What Is Science? 2
1.2.2 Three Misconceptions about Science 3
1.2.3 Science Matters 5
1.3 Humans 5
1.4 Origin of Arts 8
1.5 Nature of Arts 12
1.5.1 Applied Arts 12
1.5.2 Pure Arts 12
1.6 Arts as a Science Matter 19
1.6.1 Three Lessons from Physics 19
1.6.2 Art Studies in Three Approaches 20
1.7 Art and “Science” 22
1.8 Discussion and Conclusion 25
References 29
PART I PHILOSOPHY AND HISTORY OF ARTS

2 The Latin “Artes” and the Origin of Modern “Arts”
Brigitte Hoppe

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Introduction</td>
<td>36</td>
</tr>
<tr>
<td>2.2 Meaning and Etymology of the Word “Art”</td>
<td>37</td>
</tr>
<tr>
<td>2.3 “Artes”—Fields of Knowledge</td>
<td>38</td>
</tr>
<tr>
<td>2.3.1 “Liberales Artes” as Basis of Education</td>
<td>39</td>
</tr>
<tr>
<td>2.3.2 The “Mechanical Arts”—Artes Mechanicae</td>
<td>40</td>
</tr>
<tr>
<td>2.4 Relationship between the Systems of “Artes” and “Arts”</td>
<td>42</td>
</tr>
<tr>
<td>2.5 A New Type of Artifact Collection: The Cabinet of Curiosities (14th to 18th Centuries)</td>
<td>43</td>
</tr>
<tr>
<td>2.6 The System of “Artes” as a Principle of Classification of the Cabinets of Curiosities</td>
<td>45</td>
</tr>
<tr>
<td>2.7 The “Artes” Concept Approved and Acquired by Artists and Craftsmen</td>
<td>48</td>
</tr>
<tr>
<td>2.8 Scientific Motifs in the Fine Arts</td>
<td>49</td>
</tr>
<tr>
<td>2.9 Turning Points in Arts and Sciences in Modern Times</td>
<td>56</td>
</tr>
<tr>
<td>2.9.1 Turning Point Following the Enlightenment Philosophy</td>
<td>56</td>
</tr>
<tr>
<td>2.9.2 Turning Point Based on Technical and Industrial Development, and Accompanied by Social and Political Changes</td>
<td>61</td>
</tr>
<tr>
<td>2.10 Summary</td>
<td>64</td>
</tr>
<tr>
<td>References</td>
<td>65</td>
</tr>
</tbody>
</table>

3 Science and Art: A Philosophical Perspective
Guo-Sheng Wu

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Introduction</td>
<td>69</td>
</tr>
<tr>
<td>3.2 Origin of “Science”</td>
<td>69</td>
</tr>
<tr>
<td>3.3 Origin of “Art”</td>
<td>72</td>
</tr>
</tbody>
</table>
4 Neuroarthistory: Reuniting Ancient Traditions in a New Scientific Approach to the Understanding of Art

John Onians

4.1 Introduction
4.1.1 A Long Tradition
4.1.2 Humanists Who Convert to Science

4.2 From Art History to Neuroarthistory
4.2.1 From Art History to World Art Studies
4.2.2 From the Conscious to the Unconscious
4.2.3 Advantages of a Scientific Approach

4.3 Neuroscientific Tools: Neural Plasticity and Neural Mirroring

4.4 Neuroarthistory and Its Applications: Selected Examples
4.4.1 Neuroscience Applied to History: Prehistoric Art
4.4.2 Neuroscience Applied to Geography: Japan and Europe
4.4.3 Neuroscience Applied to Geography: Athens and Rome
4.4.4 Neuroscience Applied: China and Europe

4.5 Conclusion

References

5 Science and Art in China

Bing Liu

5.1 Introduction
5.2 The Concept and Early History
5.3 The New Rising: Important Symposiums and Exhibitions

References
5.3.1 Symposiums Organized by Tsung-Dao Lee (Since 1987) 102
5.3.2 International Conferences and Exhibitions Organized by Tsinghua University (2001 and 2006) 105
5.3.3 The Science, Art (Aesthetics) and Innovation Forum (2007) 106
5.3.4 The Shanghai International Science and Art Exhibition (Since 2004) 107
5.3.5 The Beijing International Conference on Science and Arts (2010) 108
5.4 Publications on Science and Art 110
5.4.1 Books 110
5.4.2 Journals 113
5.4.3 Research Papers 114
5.5 Problems in Developing Science and Art in China 115
Appendix 5.1: Science-and-Art Theses in China 117
References 118

6 The Development of Science Theater 120
Ivo Schneider

6.1 What Is Science Theater? 120
6.3 Science Theater in German Speaking Countries 125
6.3.1 Brecht’s Life of Galileo 128
6.3.2 Dürrenmatt’s The Physicists 129
6.3.3 Kipphardt’s In the Matter of J. Robert Oppenheimer 131
6.3.4 Differences Concerning the Situation of Theaters in Germany and in Other Countries 132
6.4 The Most Successful Plays in the Last Decade: Copenhagen and Infinities 133
6.4.1 Frayn’s Copenhagen 134
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4.2 Barrow and Ranconi’s Infinities</td>
<td>137</td>
</tr>
<tr>
<td>6.5 France as an Example</td>
<td>142</td>
</tr>
<tr>
<td>6.6 Science Theater Plays Authored by Scientists and Historians of Science</td>
<td>144</td>
</tr>
<tr>
<td>6.7 Conclusion</td>
<td>147</td>
</tr>
<tr>
<td>References</td>
<td>148</td>
</tr>
</tbody>
</table>

PART II ARTS IN ACTION

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 Silence in Arts</td>
<td>151</td>
</tr>
<tr>
<td>Cristina Leiria</td>
<td></td>
</tr>
<tr>
<td>7.1 Introduction</td>
<td>151</td>
</tr>
<tr>
<td>7.2 Development of Sculpture Work</td>
<td>152</td>
</tr>
<tr>
<td>7.3 Creative Stages</td>
<td>157</td>
</tr>
<tr>
<td>7.4 Conclusion</td>
<td>168</td>
</tr>
<tr>
<td>8 Linsen’s Art</td>
<td>169</td>
</tr>
<tr>
<td>Linsen H. Ngai</td>
<td></td>
</tr>
<tr>
<td>8.1 My Background</td>
<td>169</td>
</tr>
<tr>
<td>8.2 Early Period</td>
<td>169</td>
</tr>
<tr>
<td>8.3 Later Period</td>
<td>170</td>
</tr>
<tr>
<td>8.4 Conclusion</td>
<td>178</td>
</tr>
<tr>
<td>9 From Curiosity to Creation: The Art of Holly Lane</td>
<td>180</td>
</tr>
<tr>
<td>Holly Lane</td>
<td></td>
</tr>
<tr>
<td>9.1 Introduction</td>
<td>180</td>
</tr>
<tr>
<td>9.2 Science and Art</td>
<td>181</td>
</tr>
<tr>
<td>9.3 Origins of Art</td>
<td>183</td>
</tr>
<tr>
<td>9.3.1 Archeological Evidence of Art</td>
<td>184</td>
</tr>
<tr>
<td>9.3.2 Tool Use and Aesthetic Awareness</td>
<td>185</td>
</tr>
<tr>
<td>9.4 Definitions of Art</td>
<td>187</td>
</tr>
<tr>
<td>9.4.1 Philosophical Definitions of Art</td>
<td>187</td>
</tr>
</tbody>
</table>
9.4.2 Art as a Cluster Concept 189
9.5 On Thinking about Art 191
9.6 The Art of Holly Lane 192
9.7 Conclusion 201
References 202

10 Making Movies and Making Physics 204
Hark Tsui and Lui Lam

10.1 Introduction 204
10.2 Our Background 205
10.3 What Are Movies? What Is Physics? 211
10.4 Picking a Project 212
10.5 Executing the Project 215
10.6 Creativity and Innovation 218
10.7 The Joy of Making Movies and Making Physics 219
10.8 Conclusion 220
References 221

11 A Journey along the Borderland: A Critical Approach to Artificial Intelligence-Based Art and Literary Practices 222
Jichen Zhu and D. Fox Harnell

11.1 Introduction 222
11.2 Integrating the Two Cultures 224
11.2.1 “Duchamp-Land” and “Turing-Land” 225
11.2.2 The Borderland of Critical Computing 227
11.3 Artificial Intelligence, Cognitive Science and Stream of Consciousness 229
11.3.1 Stream of Consciousness Literature and Artificial Intelligence 230
11.3.2 Stream of Consciousness Literature and Cognitive Linguistics 232
11.3.3 Benefits and Challenges 232
11.4 Memory, Reverie Machine 234
13.2.3	Literature and Emotion	278
13.2.4	Explaining Aversive Imagination	279
13.2.5	Explaining Literary Emotion	280
13.2.6	Literary Narrative Beyond Imagination: Explaining Discourse	282
13.3	Literary Narrative and Ancillary Adaptation	283
13.4	Productivity and Eudaimonia: On the Obsession with Literary Adaptation	286
13.5	Conclusion	290
References		291

| 14 | Emotion, Cognition and Aesthetic Form in Vishal Bhardwaj’s Omkara and Shakespeare’s Othello | 293 |
| Lalita P. Hogan | |

<p>| 14.1 | Reading Love and Anger | 294 |
| 14.1.1 | Imagination and Emotion | 294 |
| 14.1.2 | Matital Infidelity and Manly Anger: Varying Norms | 295 |
| 14.1.3 | How Reading Is Influenced by Private “Stories” | 296 |
| 14.2 | Laws of Emotion, Appraisal and Imagination | 299 |
| 14.2.1 | Relation between Appraisal and Laws of Emotion | 299 |
| 14.2.2 | Basics of Appraisal and Early Modern Theory of Humors | 301 |
| 14.3 | Othello and Omkara: The Main Storyline | 302 |
| 14.3.1 | Make-Believe Reality and Emotion in Othello and Omkara | 303 |
| 14.3.2 | Metaphor, and Appraisal of Women as Objects | 303 |
| 14.4 | The Law of Situational Meaning: The Foul Thief in Othello and Omkara | 304 |
| 14.4.1 | Romantic Love as a Figure for Democracy | 305 |</p>
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.4.2</td>
<td>Appraising Love as Possession and Its Loss as Theft</td>
<td>305</td>
</tr>
<tr>
<td>14.4.3</td>
<td>Malevolence: Stealing the Gift of Love</td>
<td>308</td>
</tr>
<tr>
<td>14.5</td>
<td>Appraisal and the Law of Apparent Reality</td>
<td>309</td>
</tr>
<tr>
<td>14.5.1</td>
<td>Theft and Its Imagined Appraisal in Othello and Omkara</td>
<td>309</td>
</tr>
<tr>
<td>14.5.2</td>
<td>Discourse of Slander, Appraisal, and Emotion</td>
<td>310</td>
</tr>
<tr>
<td>14.5.3</td>
<td>Discursive Circulation: The Stolen Gift of Love</td>
<td>311</td>
</tr>
<tr>
<td>14.6</td>
<td>The Law of Closure: Putting out the Light</td>
<td>313</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>315</td>
</tr>
</tbody>
</table>

15 *Tanbi* Novels and *Fujoshi*: A New Romance for Young Chinese Women
Ting-Ting Wang

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1</td>
<td>Introduction</td>
<td>317</td>
</tr>
<tr>
<td>15.2</td>
<td>History of Tanbi Subculture in Japan</td>
<td>319</td>
</tr>
<tr>
<td>15.3</td>
<td>Two Types of Tanbi Stories and the Binary Opposition of Seme and Uke</td>
<td>321</td>
</tr>
<tr>
<td>15.4</td>
<td>Texts about Gays as a Global Fashion</td>
<td>323</td>
</tr>
<tr>
<td>15.5</td>
<td>New Young Women in China and their Desire</td>
<td>325</td>
</tr>
<tr>
<td>15.6</td>
<td>Fatherly Love in the New Romance</td>
<td>327</td>
</tr>
<tr>
<td>15.7</td>
<td>Tanbi Novels in China: Writing and Publishing</td>
<td>329</td>
</tr>
<tr>
<td>15.8</td>
<td>Conclusion</td>
<td>331</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>332</td>
</tr>
</tbody>
</table>

16 Objects in Art and Science
Nigel Sanitt

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.1</td>
<td>Introduction</td>
<td>333</td>
</tr>
<tr>
<td>16.2</td>
<td>Mimesis in Science</td>
<td>334</td>
</tr>
<tr>
<td>16.3</td>
<td>Time and Language</td>
<td>338</td>
</tr>
<tr>
<td>16.4</td>
<td>Science Questions</td>
<td>339</td>
</tr>
<tr>
<td>16.5</td>
<td>Science and Truth</td>
<td>343</td>
</tr>
</tbody>
</table>
Arts: A Science Matter

Lui Lam

The nature and origin of arts, and its relationship to “science” have been under much debate since Plato about 2,400 years ago. Here, a new perspective on these issues is presented. Science is to understand how nature works, while nature consists of (human and nonhuman) living systems and nonliving systems. Consequently all human-dependent matters are part of science—the premise underlying the new discipline called Science Matters (SciMat), which covers all topics in humanities and social sciences, arts in particular. (Arts here refer to visual arts, literature, film, performance arts, music, architecture, new media arts and so on.) In fact, arts are a subset of humans’ creative activities that aim to excite the receiver’s neurons in a certain manner, through that person’s senses, with or without significant consequences. The usual kind of “science” is to understand mostly inanimate, simple systems and how the world/universe works; it is part of science in general. Arts as a science matter is to find out everything about arts, including arts’ origin and nature, and how and why arts work at both ends of the creator and the receiver. Like physics and any other discipline, arts can be classified into two types—pure arts and applied arts. Some arts, such as drawing and performance art, could start a million years ago. All arts evolved over time and space, and the contents kept on changing as humans invented language and writing and as they migrated out of Africa and spread over the world; arts contain both global universal elements and local features. Here, all these issues as well as how arts as a science matter could be studied are elaborated, after a brief introduction to SciMat and humans’ development history and inheritance mechanism (genes and epigenes) is given.

1.1 Introduction

Arts in this chapter refer to visual arts, literature, film, performance arts, music, architecture, new media arts and so on. The origin and nature of
PART I

Philosophy and History of Arts
The Latin “Artes” and the Origin of Modern “Arts”

Brigitte Hoppe

This chapter will analyze the range of attitudes held by scientists and artists observing and presenting natural phenomena at various periods of time. It will explain the meaning and significance of the principal fields of education called the “liberal arts” and the “mechanical arts” since the Late Antiquity. Both areas comprised no less than seven disciplines including sciences, mathematics, artistic and technical skills. In the European civilization, these were the essential elements of education and learning until the 18th century. Certain interrelations between sciences and arts can be better understood by examining particular early collections of artifacts produced in Early Modern Times (16th–17th centuries). Sciences and arts began to deviate from one another in the course of growing specialization and changing societies in the modern world. In Antiquity (4th BC–5th centuries AD) and from the Late Middle Ages (15th century) on, artists and scientists became eminent observers of natural objects such as plants, animals, minerals, the stars in the sky, and the topography of special regions, e.g., the Netherlands coastal areas with its sailing ships, and the tropical forests of Brazil. Portraits of scientists often include typical objects such as a skull representing the field of anatomy, or an armillary sphere for astronomy. Since the 17th century we find critical discussions of scientific life, work, and the impact they made: the focused concentration of an alchemist and the social impact of scientific innovations. The discussion of the relationship between technical inventions, e.g., the steam engine, cars on a highway, multi-storey buildings in a small city street, and the bare necessities of human life furthered the development of a critical worldview in fine arts. In abstract sculptures and paintings, in particular in the style of “concrete art”, geometric figures and spectral colors recur, but their meaning in an individual composition is different from a direct representation; artists of our time are able to present a unique interpretation of the world around them in their works of individual imagination.
Science and Art: A Philosophical Perspective

Guo-Sheng Wu

The original source of modern science is Greek liberal humanities. Modern art is something called fine art which is the heritance and development of ancient ideal of free arts. Freedom is the common essence of both science and art. As soon as their Greek mind emerged, the two immediately recognized each other as brothers who were separated from and lose touch with each other for a long time. This is why science and art know each other very well while they are two different departments of human culture.

3.1 Introduction

The distinction between science and art is clear. However, there are also many famous scientists, artists and humanists who emphasize the similarities between science and art and their internal intrinsic association. Science and art have great differences, since the creation of aesthetic object is the aim of Art but the object of science is not created by Science. Yet, many scientists emphasize much on the role of aesthetics in scientific research. Thus it raises a question: What kind of interrelationship it is that is between science and art?

3.2 Origin of “Science”

Here, the origin of the word “science” is discussed. To modern people, the main difference between science and art appears to be that the two
There is a long tradition of using neuroscience to understand art. From Aristotle to Baxandall scholars who we might think of as humanists have turned to science for help. This, however, became unfashionable at the end of the twentieth century and the practice is only now being revived, reuniting ancient traditions. This chapter presents some of the latest knowledge of the brain that is revolutionizing the field and illustrates its application. It also argues that the issue of whether humanistic and scientific traditions can be reunited is crucial to the future of intellectual enquiry.

4.1 Introduction

Art as part of science has a long tradition, dating back at least to Aristotle, one which unfortunately was broken after the Roman Empire. However, today the importance of the link between the fields is recognized by more and more humanists.

4.1.1 A Long Tradition

Two and a half thousand years ago in ancient Greece Lui Lam’s vision of the arts as an aspect of science [Lam, 2011] would have been normal. This was especially true in the school of Aristotle, who was happy, unlike Plato, to consider humans as just another type of animal, and who wrote studies of politics and drama, for example the Politics, which are in many ways as scientific as his studies of biology, such as the Parts of
Science and Art in China

Bing Liu

Although the idea of Science and Art (S&A) has been suggested for quite a long time, the real concern for this topic in China was raised only in the last 15 years or so. Since then, many research papers and dissertations have been published in this field. In this chapter, the brief history and status quo of the studies on S&A in China are reviewed, including, e.g., the important events, conferences, exhibitions, and publications. Works on S&A from China are classified into four categories with different depth levels. Existing problems in the development of S&A in China are summarized and discussed.

5.1 Introduction

Science and Art (S&A for short; or, as referred by others, Art and Science) is a rather vague and ill-defined area. It includes many contents and research works that are directly or indirectly related to S&A. It also covers some relevant activities of art creation and scientific research, and even some social activities on this theme. Here, the word science can be broadly understood to include technology.

This chapter provides a brief overview of the development of S&A in mainland China (early period in Section 5.2; later period since 1987 in Sections 5.3 and 5.4). In particular, Section 5.3 covers important conferences and exhibitions, while publications—books, journals, and research papers—on S&A are summarized in Section 5.4, wherein, research works are classified into four categories. Existing problems in
This chapter on science theater deals with those plays on stage in which science plays an important role. Science theater connects scientific activity and scientific results with the emotional and social realm of human life. Its roots can be seen in the dialogues of Galilei, de Fontenelle or Algarotti in the 17th and 18th century, albeit these dialogues could well have but never did enter the stage. Since the beginning of the 17th century, the spectrum of science theater has ranged from unreserved approval combined with the conviction that an improvement of social and economical conditions can only be achieved by scientific progress to fear and refusal of science. Different from other countries science theater in Germany could never claim any status except for a short period, during which it pointed mainly to the negative aspects of scientific activity. The reason behind this unique phenomenon is explored and explained as due to the persistence of the Bildungsbürgertum mentality in Germany. Presented also in this chapter is a long discussion of the science theaters staged around 2000 in New York and London, those in German speaking countries (Life of Galileo, The Physicists, and In the Matter of J. Robert Oppenheimer), the two most successful science theaters of recent years (Copenhagen and Infinities) as well as science theaters authored by scientists (e.g., Carl Djerassi) and historians of science (e.g., Marc Friedman). France is discussed as an example for a nearly continuous development of science theater from the 17th century.

6.1 What Is Science Theater?

Science theater has different connotations. In today’s science centers some of them claim a science theater. This holds for the Phaeno in Wolfsburg or the new science center in Hamburg, which will be finished
PART II

Arts in Action
Silence in Arts

Cristina Leiria

In silence many things I have been finding and most of them are subjective, therefore resulting from my own experience. On those bases through the development of work started as an architect I have reached the sculpture world where I was given the opportunity to share an immensity of feelings related not only with the silence but also with light and peace. Through several stages of creativity we can be transported to new worlds.

7.1 Introduction

I, Cristina Rocha Leiria, architect specialized in Development Planning, has been working in sculpture and ceramics since 1993. My work is a form of art open to love and beauty, or at least it is my spirituality that enables me to conceive and produce this kind of art.

In this chapter, we can learn more about my experience as an artist through the presentation of my work, so we can realize the meaning of this message—Silence in Art.

Starting my professional life as an architect, I am now an architect with a sculptural approach and in recent years I have been devoting my work mostly to monument building and public art, trying to achieve my main purpose: the re-harmonization of the human spaces, both public and private.
Linsen’s Art

Linsen H. Ngai

Linsen Hsia Ngai was a professional chemical physicist before becoming a self-taught watercolor painter about 25 years ago. Her selected artworks are presented here, in a chronological order.

8.1 My Background

I obtained a B.S. degree in Chemistry from the University of California, Berkeley, and my M.S. and Ph.D. degrees from University of Chicago majoring in Chemical Physics. After retiring from scientific research I became a watercolorist. I am a self-taught artist. I started out doing black and white paintings on Chinese paper and using Chinese ink. As I evolved as an artist, I began to use more color and less ink and eventually not using Chinese ink at all. I am still doing watercolor paintings on Chinese paper. My subject matter includes birds, animals, flowers, plants, landscapes, and figures and portraits. I want to show through my paintings the beauty of nature and to pass it on to future generations to enjoy.

8.2 Early Period

As a beginner in art my very first attempt was learning how to paint bamboo by using various shades of Chinese black ink and doing different
9

From Curiosity to Creation: The Art of Holly Lane

Holly Lane

For the last several centuries specialization has caused science and art to diverge so as to seemingly have little in common. However, a basis of commonality between art and science is the trait of curiosity, and both disciplines teach us to look attentively. The benefits science has bestowed upon the arts and humanity are acknowledged, and in turn the benefits the arts offer are cited. Reflections on the various definitions of art and speculations on the origin of art are offered from the perspective of an exhibiting artist. Some of the ways artists think about and approach, diverse kinds of art and the creative process will be discussed. Concluding, the artist’s own work will be presented and prefaced by some of the concepts that shape the artwork.

9.1 Introduction

In the beginning, of human life, there was curiosity. In the beginning of each individual human life there is curiosity. Children are not embarrassed to ask questions, all kinds of questions. Even pre-articulate babies are curious; curious about balls of lint, noses, and the activity of the family dog. As individuals we are fortunate if, as we mature, curiosity is not squelched by fear, peer pressure, and inhibitions. If humankind was not curious we would probably not have science, art, philosophy, myths, poetry, books, electricity, medical cures, space exploration, zippers, and cheesecake, to name just a handful. Since there is so much to be curious about, to explore, individuals generally pick one category in college (or equivalent) that ideally, in alignment with
Making Movies and Making Physics

Hark Tsui and Lui Lam

The characteristics and experiences of making movies and making physics are discussed, respectively, by a movie director/producer and a physicist. Similarities and differences between the making of movies and the making of physics are presented. Discussions on the nature of movies and physics, on creativity and innovation as well as on the joy of making movies and making physics are provided.

10.1 Introduction

Making movies is a creative process that involves several operational stages: (1) conception of the project, (2) lining up the funding, (3) finding coworkers, (4) shooting the movie, (5) post-shooting work, and (6) marketing and distributing the movie.

Making physics means creating new physics—doing physics, or physics research, at its best. It is also a creative process and, like making movies, involves the same six stages in its operation, from the beginning to finish. The exception is that when doing pure theory or simple experiments, stages (2) and (3) may be absent.

Hark Tsui has been directing and producing movies since 1979 [Ho & Ho, 2002; Morton, 2001] and Lui Lam published his first physics paper in 1968 [McMillan et al, 1968]. Presently, Tsui has directed/produced over 70 movies and Lam has published over 170 research papers and 12 books. The two knew each other since 1975 when both were doing community work in the New York Chinatown, in lower Manhattan.
Digital media open up opportunities for new integrations of art and science. However, the close contact between the multiple cultures in either tradition also unveils fundamental value differences that impose considerable difficulties in performing interdisciplinary work. In this chapter, we identify a new form of this cultural divide in the context of computer art and digital media practices. Next, we identify a growing number of practices that engage the capacity of the computer to abstractly represent data and to process it algorithmically in order to serve expressive, critical, and generalizable purposes. In particular, we explore artificial intelligence-based art and literary practices that actively negotiate the hidden assumptions and push the disciplinary boundaries of both art and science. Finally, we present our AI-based interactive narrative work Memory, Reverie Machine, which engages literature, cognitive science, and AI. It illustrates our perspective and strategy of combining art and science practices synergistically, as part of a growing community for which the exploring of the borderland between art and science can transform not only particular technologies or how they are perceived, but also end goals and values.

11.1 Introduction

Half a century ago, British scientist and novelist C. P. Snow [1964] delivered a now notorious talk on the increasing gap between the two cultures of the sciences and the humanities [Lam, 2008]. Reflecting on
ChemArt and BioArt: Art-Science Interactions

Maria Burguete

The development of science is a time evolving process; so is Art. However Art began earlier and so far they still do not have a methodology the same way science has. Why does this happen? For a scientist truth results from the scientific methodology; for an artist truth comes from revelation plus inspiration. The structural unity of art can be seen as an expression, in the sense of an iconographic translation of the cosmic universe. Art deals with symbolism based on a platform that can move frontiers by overcoming the limits of common perception. Art is a place where new worlds are invented, and also where art itself is continuously being created. ChemArt refers to those artworks that use images or concepts from chemistry as the central theme, and occasionally, chemicals as a medium; similarly for BioArt, except that chemicals are replaced by biological materials. Considering ChemArt as the interaction between Chemistry and Art, we can say that flexibility of nature enhanced the emergence of both chemistry and art; Chemistry allows us to understand diversity and beauty of nature at the molecular level, and awakens our curiosity about its “modus operandi”; Art, through the interaction of human beings with the environment, induces an expressive reaction by contemporary artists. ChemArt naturally leads us to BioArt, the same way that yesterday’s chemistry leads us to the modern chemistry of living organisms or biochemistry. BioArt is the new challenge the contemporary world is facing now: a crossroad between artistic culture and scientific culture. A major question dealing with science and art is concerned with the incorporation of biological and biomedical tools in the performance of artistic works, and the use of living tissues as an art medium. This new approach strongly appeals to a straight cooperation and collaboration among artistic production and scientific practices. The ultimate aim of science is to look for a single unifying “theory of everything.” Art does the same from an iconographic point of view, and includes spirituality.
PART III

Understanding Arts
On the Origin of Literary Narrative and Its Relation to Adaptation

Patrick Colm Hogan

This chapter takes up the relation of literary narrative to adaptation. Due to the species-wide nature of most biological adaptations, this involves a particular focus on the universal features of narratives. The first section defines several senses in which we may say that a complex practice, such as literary narrative, is “adaptive.” Subsequent sections have two goals. The first is negative. Literary narrative does not appear to be an adaptation in the strict sense, though there is some, very limited evidence that it may have “ancillary” adaptive value. The second, positive goal is to indicate how we may, in part, understand the origin of literary narrative—or, more precisely, the sources of many universal properties of literary narrative—as a complex result of the interaction of various evolved systems and processes. Both arguments suggest that the term “by-product” might best be reserved for a particular type of biological phenomenon such that literary narrative is more appropriately categorized as (in part) “adaptation-derived” rather than as a by-product. The final section considers what consequences this analysis has for assessing the value of literature and the arts. This arises as an issue since many advocates of the arts and humanities seem to view claims of adaptive advantage as crucial for establishing the worth of art. This section concludes with an argument that seeking the value of art in adaptation is misguided.

13.1 On Literature and Adaptation

In the last decade or so, there has been a good deal of debate over the origin of the arts, particularly the degree to which the arts may
Emotion, Cognition and Aesthetic Form in Vishal Bhardwaj’s Omkara and Shakespeare’s Othello

Lalita P. Hogan

Discussion in this chapter uses insights drawn from cognitive theories of emotion to illuminate aspects of Shakespeare’s Othello in relation to its 2006 Hindi film adaptation, Omkara, by Vishal Bhardwaj. The first section draws attention to the common motif of sexual jealousy and domestic violence, contextualizing it broadly, by drawing attention to how readers read stories in relation to their own private “stories,” and Martha Nussbaum’s notion that literary sensibility cultivates compassionate imagination. This context is central to considering the role of emotion in literature and film. The second section provides a brief introduction to the Appraisal Theory of emotion, explaining how emotions are elicited in relation to various types of cognitive evaluation of events and environmental factors, as to their desirability and undesirability, emphasizing the central role played by imagination. It is in this way that representational reality can have real emotional impact, even though the people and the situations are unreal. The third section provides details about plotlines of Othello and Omkara, highlighting main characters, events and relationship configurations. The fourth section takes up a discussion of the law of situational meaning, comparing the film and the play, with focus on the central conceptual metaphor of stealing and thievery used in connection with socially prohibited marriage. The fifth section focuses on the role played by visualization of the object, the gift of love, the loss and recovery of which aligns aesthetic form to the law of apparent reality. The sixth and final section, appropriately, shows how the emotion law of closure organizes stage, screen and story time, leading inexorably to the tragic denouement in the play and the film.
Tanbi Novels and Fujoshi: A New Romance for Young Chinese Women

Ting-Ting Wang

In the 1960s, tanbi comics and novels which focused on boy’s love came into being in Japan and was popular among young women. They, both readers and writers of tanbi, were women and called themselves fujoshi. At the late 1980s, Japanese tanbi comics but not novels became available in China. It was not until the end of the 1990s that tanbi novels with Chinese authors appeared in novel websites in China. Between 2005 and 2006, it became a main style of net novels in China. In this chapter, we first introduce the history of tanbi subculture in Japan, the two main types of tanbi texts, and the writing and publishing of tanbi novels in China. We then address the questions on why tanbi subculture is well accepted in China, what desires of young women are reflected in it, and how it challenges the mainstream culture.

15.1 Introduction

In the 1960s, tanbi comic came into being in Japan, the subject of which is boy’s love. Handsome young men and boys, beautiful love and hot sex are universal elements in tanbi comics and novels. Most of he readers and writers of tanbi are young women with ages from 15 to 30; they call themselves fujoshi. After the introduction of tanbi comics to China in the late 1980s, tanbi novels written by Chinese started to appear in novel websites in China at the end of the 1990s. In the subsequent several years, they have only a small
Objects in Art and Science

Nigel Sanitt

Up to the nineteenth century western art was dominated by the idea that art (paintings in particular) represented objects. This view termed mimesis assumed that (1) the world exists before and independent of the work of art; (2) the medium is a neutral means of representing objects. Mimesis today is only a small part of art theory, with representation of the world in art being seen as culturally and historically variable. The mimetic view of science (if I can refer to it as such) is that there is a world independent of the scientist and that science is neutral and objective. This is the dominant view of science today. In spite of enormous technological and theoretical progress in science during the last hundred years, it seems to me quite surprising that this mimetic view of science still holds sway and that in the sense I have described it, scientists do not seem to have caught up with the art theorists.

16.1 Introduction

This chapter is not about art theory (and I apologize to art theorists who think that I have inaccurately simplified their subject). My aim is to look at objects in science and use images (paintings and photographs) as a metaphor to highlight problems in interpreting scientific theories and the objects they claim to create.

As an alternative to the conventional view of scientific thinking, I describe a scheme which has as its starting point the idea that questioning is at the root of science (Problematology) and rejects an object-oriented mimetic view of science.
Su Dong-Po’s Bamboo and Paul Cézanne’s Apple

Lui Lam and Li-Meng Qiu

Su Dong-Po (1037-1101) of the Song Dynasty is arguably the most well-known poet and writer in China. He is also a distinguished painter; he liked to paint bamboos and rocks. Unlike his contemporaries and painters before him, the leaves in Su’s bamboo painting are not necessarily attached to the stem. Paul Cézanne (1839-1906), a French post-impressionist, is recognized by Picasso, Matisse and many others as the father of modern art. He went beyond impressionism and painted many things including apples. Both these two artists tried to go beyond the appearance and show the essence of the objects they painted, in their own new ways. It was not by accident that these two painters—one from the East and the other from the West, separated from each other by about 800 years—had the same idea about painting. There must be something basic behind this. As shown in this chapter, the mechanism behind their techniques is based on how we see things, the cognitive science of vision in the human brain. The fact that Su’s style was not adopted as mainstream, unlike that of Cézanne, is discussed; it is related to the unique nature of China’s ultra-stable feudal system in the past, in which science and technology are implicitly or explicitly discouraged. Finally, the possible origin of Dong-Po Pork, for which Su is also famous for, is presented in an appendix.

17.1 Introduction

Su Dong-Po (1037-1101) from China and Paul Cézanne (1839-1906) from France (Fig. 17.1) lived about 800 years apart from each other, in two different continents. Both are pioneering painters. While Su is primarily a poet and writer, Cézanne is shy in writing [Cézanne, 1995, p. 9].
Acknowledgments

About two thirds of the chapters in this book are expanded, written versions of selected invited talks presented at the Second International Conference on Science Matters, *Arts & Science*, held in Estoril, Portugal, October 5-7, 2009, and co-chaired by Maria Burguete and Lui Lam. The rest of the chapters are invited contributions specifically for this book after the conference.

The Local Scientific Committee of this conference consists of João Calvão, Roberto Carneiro, Bernardo Herold, Luis Portela, Claudina Rodrigues-Pousada and Fernando Ramôa Ribeiro. The Advisors are Paul Caro, Brigitte Hoppe, Maurizio Salvi, Michael Shermer and Edward O. Wilson. The sponsors are Fundação Luso-Americana, Fundação para a Ciência e Tecnologia, Fundação Calouste Gulbenkian, Câmara Municipal de Cascais, Casino Estoril, Centro dos Congressos Estoril and Instituto Rocha Cabral. And the conference was under the auspices of the International Science Matters Committee, members of which are: Maria Burguete (Portugal), Paul Caro (France), Patrick Hogan (USA), Brigitte Hoppe (Germany), Lui Lam (USA), Bing Liu (China), Dun Liu (China), John Onians (UK), Nigel Sanitt (UK), Ivo Schneider (Germany) and Michael Shermer (USA).

We are much grateful to all the individuals and organizations mentioned above that guaranteed the success of this second SciMat conference. We thank our personal friend, Lucinda Moraes, for assistance before and during the conference. Apart from these efforts,
this book would not be possible without the cooperation and patience of the contributors. Furthermore, we heartily thank K. K. Phua, the Chairman and Chief Editor of World Scientific, for his wise decision in establishing this new book series, Science Matters Series, at the early development stage of this new discipline, which takes real insight and courage; and Kim Tan, the editor from WS overseeing the publication of the books in this series, for her unfailing support and superb efficiency.
Contributors

Maria Burguete received her Ph.D. in History of Science (contemporary chemistry) from Ludwig Maximilians University at Munich, Germany (2000). She was the very first biochemist to graduate from the Faculty of Sciences in Lisbon (1982), after completing a Bachelor’s Degree in Chemical Engineering (1979) at the Lisbon Higher Institute of Engineering (ISEL). She is a scientist and a university lecturer with teaching and research experience in a wide variety of scientific fields. Burguete is now a scientific researcher at Scientific Research Institute Bento da Rocha Cabral in Lisbon, Portugal, and a Correspondent Member of European Academy of Sciences, Arts and Letters. She has published five books in the scientific field (and eight books of poetry) and over 30 scientific papers. Email: mariaburguete@gmail.com.

D. Fox Harrell is a researcher exploring the relationship between imaginative cognition and computation. He is an Assistant Professor of Digital Media at the Georgia Institute of Technology. He directs the Imagination, Computation, and Expression [ICE] Lab/Studio (icelab.lcc.gatech.edu) in developing new forms of computational narrative, gaming, social networking, and related technical-cultural media based in computer science, cognitive science, and digital media arts. The National Science Foundation has recognized Harrell with an NSF CAREER Award for his project “Computing for Advanced Identity Representation.” Harrell holds a Ph.D. in Computer Science and Cognitive Science from the University of California, San Diego. He also earned a B.F.A. in Art, a B.S. in Logic and Computation, and minor in Computer Science at Carnegie Mellon University, each with highest
honors. He has worked as an interactive television producer and as a game designer. Email: fox.harrell@lcc.gatech.edu.

Lalita Pandit Hogan received her M.A. and Ph.D. in English from the State University of New York at Buffalo, New York. She is a professor of English at the University of Wisconsin-La Crosse, where she teaches Shakespeare, Critical Theory and World Literature. She has published articles and book chapters on Shakespeare, Tagore, Goethe, Comparative Aesthetics and Indian Cinema. She is co-editor of three books and three special issues, which include *Rabindranath Tagore: Universality and Tradition* (2003); *Cognitive Shakespeare: Criticism and Theory in the Age of Neuroscience* (Winter 2006) and *Hindi Cinema*, special issue of *Projections: Journal of Movies and the Mind* (Winter 2009). Email: hogan.lali@uwlax.edu.

Patrick Colm Hogan received his B.A. in Philosophy from the University of Santa Clara, his M.A. in Philosophy from the University of Chicago, and his Ph.D. in English from the State University of New York at Buffalo. He is a professor in the Department of English as well as the Program in Comparative Literature and Cultural Studies and the Program in Cognitive Science at the University of Connecticut. He is the author of 12 books—including *The Mind and Its Stories: Narrative Universals and Human Emotion* and *Cognitive Science, Literature, and the Arts: A Guide for Humanists*—and over 100 professional articles. He is currently completing work as editor of *The Cambridge Encyclopedia of the Language Sciences*. Email: Patrick.Hogan@uconn.edu.

Brigitte Hoppe obtained her state diploma in pharmaceutical sciences from the University of Freiburg (Breisgau, Germany); she earned a Ph.D. in the History of Science from the University of Frankfurt (Main) in 1964. Her research on epistemological changes in life sciences during Early Modern Times was the basis of the post-doctoral thesis (habilitation) at the University of Munich in 1972, where she became Associate Professor in 1980. She pursued research (partially sponsored by research foundations) in national and international archives and is a member of national and international learned societies. Hoppe has
Lui Lam obtained his B.Sc. (with First Class Honors) from the University of Hong Kong, M.Sc. from University of British Columbia, and Ph.D. from Columbia University. He is Professor of Physics at San Jose State University, California and Adjunct Professor at both the Chinese Academy of Sciences and the China Association for Science and Technology. Lam invented bowlics (1982), one of three existing types of liquid crystals in the world; active walks (1992), a new paradigm in complex systems; and a new discipline called histophysics (2002). He published 12 books and over 170 scientific papers. He is the founder of the International Liquid Crystal Society (1990); cofounder of the Chinese Liquid Crystal Society (1980); founder and editor of two book series, Science Matters and Partially Ordered Systems. His current research is in science matters, histophysics and complex systems. Email: lui2002lam@yahoo.com.

Holly Lane earned her B.F.A. in Art, with Great Distinction (1986) and her M.F.A. in Art—Pictorial Art (1988) from San Jose State University. Painter and sculptor, Lane has had 18 solo exhibitions at galleries and museums, and been included in 86 group exhibitions including an influential exhibition at the Whitney Museum of American Art at Champion. Her work is in 80 private collections and 10 public collections. Over 40 reviews and articles on her work have been published by magazines and newspapers: The New York Times, The New Yorker, Art News and Art in America, to name a few. The art history textbook by Terence Grieder, Artist and Audience (1996), highlights her work. Lane is currently preparing for her tenth solo show in New York City. Email: hlane42@comcast.net.

Cristina Leiria studied at the Graduate School of Fine Arts, Lisbon and Development Planning Unit, University College London. She was an architect in United Kingdom, Mozambique, Zimbabwe, South Africa, Portugal and Macao. From a young age she has spontaneously
sculptured, and in 1992-1994, aside from architecture, started to develop this ability finding in the world of silence a new dimension of life. After 1999, trying to infuse urban life with hope and peace through the joining of spiritual, social and architectonic domains, her work focuses on Public Art such as the Kun Iam Ecumenical Center (1999), 22 m bronze statue at Lotus Flower Building, Macau, China; Kun Iam and Lotus Flower (2002), 2.7 m bronze, Lisbon; Loving Birth (2003), 3 m white-sea stone, Cascais; Sailing the Wind (2003), 12 m, Tavira; Sailing (2007), 3 m bronze, Cascais. Email: crisrochele@gmail.com.

Bing Liu obtained his B.Sc. from Peking University (physics department) and M.Sc. from Graduate School of Chinese Academy of Sciences. He is now a professor of history of science at Tsinghua University, vice director of the Center for Science Communication and Popularization of CAST and Tsinghua University, and Guest Professor at several universities in China including Shanghai Jiaotong University. He published 17 books (also translated 7 books and edited more than 30 books) and over 200 academic papers. Liu’s research fields currently include history of physics, historiography of science, philosophy of science, and science communication. His Blog: http://blog.sina.com.cn/liubing1958. Email: liubing@tsinghua.edu.cn.

Linsen Hsia Ngai was born in China and grew up in the United States. She earned her B.S. in Chemistry from the University of California, Berkeley, and her M.S. and Ph.D. from University of Chicago majoring in Chemical Physics. She was a postdoctoral researcher at Northwestern University and Boston University before doing laser research experiments at Naval Research Laboratory. After retiring from scientific research she became a watercolorist. Her subject matters include animals, birds, wild lives, flowers and plants, landscapes, human figures and portraits. She is a member of the Mclean Art Society, Vienna Art Society, Potomac Valley Watercolorist, and the McLean Project for the Arts. Her arts are in display in many local shows and juried shows. Some of her arts were honored with awards and recognitions. Her artworks could be viewed at website: www.LStudios.org. Email: sauhaar@yahoo.com.
John Onians obtained his B.A. from Cambridge University and his Ph.D. from London University. From 1971 to 2007 he taught at the University of East Anglia, where he is now Emeritus Professor. He has also taught at several universities in the United States, at the Universities of Amsterdam and Leiden in the Netherlands and elsewhere. He has held fellowships at the Warburg Institute, London; the Centre for Advanced Research in the Visual Arts, Washington DC; the Getty Research Institute, Los Angeles; the Clark Art Institute, Williamstown and the Wissenschaftskolleg, Berlin. His books include Art and Thought in the Hellenistic Age (1979), Bearers of Meaning (1988) and Neuroarthistory (2007). He was founder editor of the journal Art History and edited the first Atlas of World Art (2004). He is now writing a neuroarthistory of Europe. Email: j.onians@uea.ac.uk.

Li-Meng Qiu obtained her B.A., M.A. and Ph.D. from Renmin University of China. She is assistant professor of Chinese Language at Zhejiang University, China. Qiu published 3 papers on simplified Chinese characters and traditional characters, prepositions of ancient Chinese language and excavated texts research. She taught Chinese Culture in the Confucius Institute at the University of Rhode Island (2009). Her current research is in teaching Chinese as a foreign language, ancient Chinese grammar and Chinese culture. Email: qiulimeng202@yahoo.com.cn.

Nigel Sanitt obtained his B.Sc. in Physics from Imperial College, London and Part III of the Mathematics Tripos and Ph.D. from Cambridge University, where he trained as an astrophysicist at the Institute of Astronomy. He is founder and editor of The Pantaneto Forum, a journal which aims to promote debate on how scientists communicate, with particular emphasis on how such communication and research skills can be improved through a better philosophical understanding of science. His book Science as a Questioning Process was published in 1996, and he has edited a collection of articles from the first five years of The Pantaneto Forum under the title: Motivating Science. Email: nigel@pantaneto.co.uk.
Ivo Schneider is Professor emeritus for the history of science of the Universität der Bundeswehr München. He was professor and visiting professor at the universities of Munich, Princeton, Bielefeld, the university of Minnesota in Minneapolis and the technical university of Budapest, from which he got the degree of a Doctor honoris causa in 2004. Special research interests concern the history of classical probability theory, mathematical practitioners and reckoningmasters, scientific instruments in the 17th and 18th centuries, biographies of scientists, science theater and the origins of Bavarian optical industry. His books comprise a source book of the history of probability theory and biographies of Archimedes, Johannes Faulhaber and Isaac Newton. He is a member of different national and international societies for the history of science and ever since 1995 membre effectif of the Académie Internationale d'Histoire des Sciences. Email: ivo.schneider@unibw.de.

Hark Tsui was born in China, grew up in Vietnam and received secondary education in Hong Kong. He studied film at University of Texas, Austin, and earned a B.A. degree; then went to live and work in New York Chinatown from 1975-1977. Subsequently, he went back to Hong Kong and directed his first feature film The Butterfly Murders in 1979, ushering in the New Wave. Tsui has directed and produced over 70 movies, including A Better Tomorrow (1986), A Chinese Ghost Story (1987), Swordsman (1990), Once Upon a Time in China (1991), A Chinese Ghost Story: The Tsui Hark Animation (1997), Seven Swords (2005) and All about Women (2008). He was honored with, among others, the Golden Horse Award (1981), Hong Kong Film Award (1987, 1992) and the Outstanding Contribution to Asian Cinema Award (2009). Website: filmworkshop.net. Email: fws@netvigator.com.

Ting-Ting Wang obtained both her B.A. and M.A. in Chinese Literature from Renmin University of China. She has published research papers in journals, translated books and wrote novels. Her current interest is in film and mass culture studies. Email: wtingting_fish@yahoo.com.cn.

Guo-Sheng Wu obtained his B.Sc. and M.Sc. from Peking University, and Ph.D. from Graduate School of Chinese Academy of Social
Sciences. He is Professor of History and Philosophy of Science, and director of Center for Social Study of Sciences at Peking University. He published more than 20 books and over 100 scientific papers. His current research is in phenomenological philosophy of science and technology, early modern history of mathematical physical sciences, and science communication. Email: wugshpku@gmail.com.

Jichen Zhu is an assistant professor of Digital Media in School of Visual Arts and Design at University of Central Florida, where she is the director of the Procedural Expression Lab. Her work focuses on developing humanistic and interpretive theoretical framework of computational technology, particularly artificial intelligence (AI), and constructing AI-based cultural artifacts. Her current research areas include digital humanities, software studies, computational narrative, and serious games. Zhu received a Ph.D. in Digital Media and a M.S. in Computer Science from Georgia Institution of Technology. She also holds a Master of Entertainment Technology from Carnegie Mellon University and a B.S. in Architecture from McGill University in Montreal, Canada. Email: jzh@mail.ucf.edu.
Index

A

A Blue Waltzed Embrace, 153
A Single Man, 323
Absence of irrelevant matter, 354
Acoustics, 41
Active walk, 5, 217
Actor, 147
Adams, Laurie Schneider, 21
Adaptation, 267, 272
ancillary, 272-274, 283
literary, 286
strict, 272, 274, 275
Adaptation-derived, 267, 270, 278
Aesthetics, 15, 69, 72, 73, 106, 107, 185, 262, 263
The Aesthetics of Environment, 112
Affective Narratology, 275
After Dormancy, 196
Aggagio, Nicole, 250, 254, 255
Agre, Philip, 227, 243
Agriculture, 39, 41
Alberti, Leon Battista, 41, 56, 62
Albrecht V, 45, 46
Aldrovandi, Ulisse, 44, 57
Aleph II, 261
Algarotti, Francesco, 120, 142
Aliens in the Attic, 22
All about Women, 209
Ambras, 44
American Physical Society, 19, 211
An Immaculate Misconception, 145
Analogy, 248, 252

Anatomy, 35, 49
And So It Began, 199
Anderson, Joseph, 21
Andraud, Antoine, 144
Angel of Light, 162
Answer/question, 340
Anti-mathematical attitude, 128
Anti-Semitism, 128
Antwerp, 210
Apple, 348
Appraisal, 299, 303, 309, 310
Archimedes oder der Moment der Physik, 132
Architect, 151
sculptural approach, 151
Architectural conception, 161
goal, 161
Architecture, 1, 38, 41, 42, 93, 260
Aristotle, 37, 38, 71, 78
Arithmetic, 40, 42
Ars, 74
Ars Electronica, 225, 257
Art, 11, 37, 78, 191, 247, 333, 352
abstract, 251
animation, 106
cave, 8, 9, 21
cluster concept, 189, 190
concrete, 35, 63
defining, 19, 187
digital, 223
design, 105
fine, 11, 69, 76, 106
free, 77
geographic, 14
history, 81, 97
origins, 183
performance, 10
photographic, 14
practice, 222
prehistoric, 21, 87
public, 151, 165
Renaissance, 82
virtual-reality, 106
Web, 106
Art and Physics, 112
Art and science, 333
paradigm shift, 259
Art and “science”, 22
Art Education in China, 107
Art medium, 247
Art studies, 20
world, 81
Artes, 36, 37, 42, 46, 48, 56, 64
liberals, 39, 41, 45, 47, 72
mechanicae, 40-42, 47
Artifact collection, 43
Artificial intelligence, 222, 229, 230
Artisan, 38, 40, 42
Artist, 11, 14, 15, 20, 22-28, 35-38, 48, 49, 52, 54, 56, 57, 59, 61-64, 69, 70, 72, 75, 77, 105, 247, 249
Chinese, 94
European, 94
visual, 248
Artistic
analogy, 250
cultural, 247
production, 247, 256
purpose, 258
science, 248, 250, 252
work, 247, 256
Arts, 1, 35-37, 40, 42, 46, 62, 64
applied, 11, 12, 25
creative, 251
fine, 35-37, 40-42, 49, 52, 57, 59, 64, 72-74
free, 69
healing effect, 25
liberal, 72, 74-76
mechanical, 40, 73-75
nature, 12
new media, 1
origin, 8, 267
performance, 1
plastic, 41, 42, 59, 62, 64
pure, 11, 12, 25
silence in, 151
science matter, as, 19
visual, 1
Arts: A Science Matter, 22
Artwork, 6, 15, 17, 22, 23, 26-28, 180, 181, 192, 247, 250, 362
neurological basis, 362
Assisted-reproductive method, 145
AstroArt, 337
Astronomer, 50
Astronomy, 35, 40, 41, 51
Atelier, 256
Athens, 93
Atomic Energy Commission, 131
Attenborough, David, 87
Attention, 280
Attentional focus, 298
Aubum, David, 123
Augustan age, 143
Aurettta, Christopher, 263
Autumn Tea, 175
Aviation, 144
B
Bacon, F., 56
Bacon, Roger, 41
Batik, 178
Bauhaus, 62, 63
Balloon
hot air, 57, 58, 143
Bamboo, 169, 348
Bamboo, 170
Baodiao Movement, 209
Barrow, John, 137
Batteux, Abbe Charles, 73, 76
Baumeister, Willi, 62
Baxandall, Michael, 78
Bavaria, 43, 44, 46
Beauty, 24, 77, 262
The Beauty of Environment, 112
Beauty and Revolution in Science, 112
Beckmann, Max, 60
Bednarik, Robert, 184
Beijing, 27, 108, 109, 113
Being, 154
Being of Light, 155
Belgium, 210
Bell, Alexander Graham, 214
Bell Laboratories, 209, 210, 214
Berliant, Arnold, 112
Beyond, 154
Bhardwaj, Vishal, 293, 299
Bildungsbürgertum, 120, 125, 127
Bill, Max, 63
Binary opposition, 321
BioArt, 106, 247, 248, 256, 262, 263
Biochemistry, 247
Biological
form, 250
material, 247
species, 168
Biology practice, 256
Biotechnology, 258
Bird, 170
Bird in Flight, 19
Black and White, 172
Bleakney, Sherman, 186
Blow-Up, 80
The Blue Waltz, 176
Boëthius, Anicius Manlius Severinus, 39
Boardman, John, 79, 80
Boat, 176
Body and soul, 152
Bogost, Ian, 229
Bohr, Margrethe, 135
Bohr, Niels, 122, 134
Bonaparte, Napoleon, 13
Bosschaert, Ambrosius, 54
Botticelli, 346
Bottom-up, 20, 21, 28
Braque, Georges, 251
Branda, 158
Brain, 6, 12, 15, 22-24, 26, 28, 83
lobe, 362
Brecht, Bertold, 128
Breughel the elder, Jan, 48
Breughel the younger, Jan, 55
Broadway, 121

Brokeback Mountain, 323
Brighter than a Thousand Suns, 134
Bringsjord, Selmer, 235
Bryson, Norman, 80, 81
Buddhism, 165, 351
Butterflies, 172
Butterfly, 256-258
The Butterfly Murders, 208
By-product, 267, 270
Byron, Lord, 123

C

C₆₀ Soccer Ball Molecule, 254
Cabinet of curiosities, 36, 37, 43, 44, 48
classification, 45-47
Cacti of Tucson, Arizona, 177
Cai, Yuan-Pei, 100
Calculus, 146
California, 219
Calvino, Italo, 235
Canada, 209
Canonical variables, 136
Cantor, Georg, 140
Capella, Martianus, 39, 72
Carroll, Joseph, 21
Carroll, Noël, 19
Cartesian system of the world, 143
Cassiodorus, Flavius Magnus Aurelius, 39, 40
Cassirer, Ernst, 76
Causality
efficient, 269
final, 269
Cave
Chauvet, 87-89, 94
La Ferrassie, 184
Lascaux, 9, 87, 184
Cell, 5
Cellular Division, 255
Cent Mille Milliards de Poèmes, 235
Ceramic, 151
Cézanne, Paul, 22, 348, 349
apple painting, 360
art view, 358
career, 355
life, 355
Chamberoque, Charles, 110
Chaos, 5
Charles, Jacques Alexandre, 143
ChemArt, 247, 248, 251
Chemical
education, 250, 252
mechanism, 251
medium, as, 247
reaction, 252
research, 250
revolution, 145
Chemistry, 42, 247
biological, 262
modern, 247, 256
Chen, Jia-Qi, 326
Chen, Wang-Heng, 112
Childhood development, 275
China, 93, 99, 208, 325, 329, 348, 364
mainland, 208
publishing, 330
China Center of Advanced Science and Technology, 103
China Daily News, 209
China Stamp Company, 103
Chinatown Food Coop, 209
Chinese Academy of Sciences, 103, 210
Chinese Society of Dialectics of Nature, 106, 110
Chinese women, 317
Chongqing, 106, 107
Civilization, 28
European, 35, 36, 38, 52, 64
City, 35, 61
City College, 210
City University of New York, 127, 210
Cladis, George, 25
Clusius, Carolus, 44, 54
Cognition, 293
Cognitive
linguistics, 232
science. see Science
Complexity, 259
Conceiving Ada, 123
Copenhagen, 120, 134
stage direction, 137
Cold War, 121, 228, 324, 331
Color and texture, 158
Colorful Mix, 174
Columbia University, 102, 209
Collaboration, 144
College, Mary, 325
Comedy, 130
Commercial Press, 111
Common sense, 28
Communism, 131
Complementarity, 136
Complementary Principle, 122
Complete Works of Su Shi, 364
Complex system, 19, 210, 211, 275
Computer, 222-228, 235-237, 240, 242, 252, 262
Concept, 247
Conceptual blending theory, 236
Confucianism, 165, 351, 364
Consciousness, 232
Constant
form, 354, 355
principle, 355
Contemporary world, 247, 256
Contraceptive pill, 145
Copernicus, Nicolaus, 129
Corriere della Sera, 141
Cosmos, 76
The Crazannes Quarries, 112
Critical computing, 227
Critical technical practice, 228
Creation, 180
Critical Art Ensemble, 258
Creative process, 204
Creativity, 12, 28, 180, 218, 219, 262
stages, 151, 157
Crossroad, 256
Cubism, 361
Cultural
divide, 222
imperialism, 224, 226
Revolution, 210
Culture, 133
artistic, 247, 256
scientific, 247, 256
Curiosity, 26, 180-182, 201, 202, 341, 342
The Curve of Life, 112
Curving surface, 153
Cybernetics and Ghosts, 235
D
Da Castelfranco, Giorgio, 50
Da Silva, Vieira, 260, 261
Da Vinci, Leonardo, 12, 27, 41, 57, 62, 75, 79, 87, 254, 360
Dai, Jin-Hua, 324
Dai, Wu-San, 113
Daily Telegraph, 135
Darwin, Charles, 7, 21, 93, 270, 363
Daudel, Raymond, 254
The Dawn, 331
De Fermat, Pierre, 124
De Fontenelle, Bernard le Bovier, 120, 142
De Goya y Lucientes, Francisco José, 58
De Menezes, Marta, 256, 257
De Réaumur, R. A. F., 57
De Stijl, 62
Degas, Edgar, 250, 253
Delaunay, Robert, 60
Denmark, 134
Deresiewicz, William, 287
Derrida, Jacques, 81
Descartes, R., 56, 143
Design, 257
Detective Dee and the Mystery of the Phantom Flame, 209
Dewy, John, 189
Development planning, 151, 159
Dialectical goal, 144
Dialectics of nature, 101
Diao, 209
Diao, 209
Diderot, Denis, 56
Diehl, P., 252
Diegesis, 294
Difference, 220, 260
Digital media, 222, 224
Direction, 260
Discorsi, 129
Discourse, 282, 310
Discovery, 146
Disneyland, 219
Dissanayake, Ellen, 21
Diversity, 247, 251
Djerassi, Carl, 120, 145
DNA, 6, 8, 185, 205, 212, 250, 289
DNA Helix, 255
Doesburg, Theo van, 62
Dong-Po Pork, 348, 364, 365
cooking recipe, 368
ingredients, 367
Dopamine, 84
Double agent, 132
Doujin, 321
Doujin’s onna, 321
Doxa, 71
Driving, 26
Drama, 130
Drama Desk Award, 134
Dramatic character, 138
Dreams of Butterflies, 171
Preface, 172
Du Tezay, Bodard, 144
Dualism, 250, 263
Duchamp, Marcel, 13, 15, 16
Duchamp-Land, 225, 235, 242
Dürer, Albrecht, 36, 41, 56, 75
Dürrenmatt, Friedrich, 129
Dutch West Indian Company, 53

E
Eckhout, Albert, 53
Ecosystem, 263
Ectopy, 256
Econophysics, 19, 211
Education, 35-39, 42, 43, 47, 64
university, 56
Edward, David, 24
Einstein, Albert, 24, 128, 360
Eisenberger, Peter, 209
Elan de Mâle, 158
Electromagnetic energy, 161
Electron, 136
Electronic literary, 235
Éléments de la Philosophie de Newton, 143
Elk, 175
Elsheimer, Adam, 51, 52
Embedding, 284
Emblem of hermit, 354
Emblems of Mind, 112
Emotion, 278, 293, 310
Function, 269
Functional approximation, 270

G
Galileo Galilei, 51, 120
Galvani, 144
Gamblen, Phil, 258
Gamerin, Jacques, 144
Garden, 161
Gardner, Martin, 344
Gays, 323
Gell-Mann, Murray, 209
Gene, 8, 268
Genetic mutation, 268, 269
Geneva, 147
Genre, 276
 cross-cultural, 281
Geometry, 40, 41, 52, 90, 93
 Geometria, 45
 Geometry, 40, 42
German theater
 public support, 125
Germany, 44, 52, 58, 61, 62, 64, 120,
 121, 125, 127, 128, 132-135, 147,
 210
Gessner, Conrad, 44
Gimpel the Fool, 296, 297
Giorgione, 50, 51
Giron, Arthur, 122
God and Stephen Hawking, 124
Goddess of Love, Compassion
 and Mercy, 155
 Gölde, Escher, Bach, 110, 111
 Godzilla Attacking Tokyo, 205
Gombrich, Ernst, 72, 74, 79
 Good Will Hunting, 123
Gottschall, Jonathan, 21
Goudt, Hendrik, 52
Gould, Stephen Jay, 269
Graduate University of Chinese
 Academy of Sciences, 108
Graph theory, 345
Groff, Rinne, 123
Grosz, George, 60, 62
Group dynamics, 275
Grünes Gewölbe, 44
Guann Yin, 155

Gulbenkian Institute of Science, 256
Gundissalinus, Dominicus, 41
Guru and the Little Woman, 18

H
Hahn, Otto, 146
The Hand, 185
Handicraft, 42
Harrenszoon van Rijn, Rembrandt.
 See Rembrandt
Harmony, 154
Harmony and wisdom, 165
Harrell, D. Fox, 229
Harrell, Megan, 325
Harris, Roy, 339
Hartman, Charles, 236
Hawdon, Robin, 124
Hawking, Stephen, 124
Heisenberg, Werner, 122
 biography, 138
Heliocentric system, 128
Herbal plant, 173
High Perch, 173
Hilbert’s hotel, 138, 139
Hiroshima, 128
Hispalensis, Isidorus, 39
Histophysics, 19, 211
History, 87
 natural, 42
History of Ideas on Aesthetics of
 Science, 101, 102
Hoeñagel, Joris, 45
Hoffmann, Roald, 145, 251
Hofstadter, Douglas, 110, 111
Hollywood, 208
Homo erectus, 184
Homo sapiens, 6, 7, 83, 96
Homosexuality, 323
Hong Kong, 206-209
Honnecourt, Villard de, 41
Horticulture, 39, 41, 54
Human
 development, 6
 migration, 7
 spirit, 165
Human life
 social realm, 120
L

La Composition, 261
La République des Abeilles, 144
Labbé, Françoise, 261
Laboratory, 256, 256
work, 145
Labyrinth, 261
Lacan, Jacques, 326
Lakoff, George, 232
Lam, Charlene, 15, 17
Lam, Lui, 78, 110, 204, 216
background, 205
Lamarck, Jean-Baptiste, 7
L’amour Physicien ou l’Origine des Ballons, 143
Landau, Tina, 122
Landscape, 36, 48, 50, 52, 53, 57-59, 160
Lane, Holly, 180, 192
Language, 338
Laughton, Charles, 129
Large Hadron Collider, 334
Lavoisier, Antoine Laurent, 145
Law of
apparent reality, 299, 309
closure, 299, 313
situational meaning, 299
Lax, Melvin, 210
Le cas de Sophie K, 142
Le Rond d’Alembert, J., 56
Learning, 35, 36, 40, 44
process, 140
Lèchec et Mat, 261
Leclerc Comte de Buffon, G. L., 57
Lee, Tsung-Dao, 102, 103
Léger, Fernand, 62
Leibniz, G. W., 56, 146, 259
Leiria, Cristina Rocha, 151
Leroi-Gourhan, André, 21
Le Ballon ou la Physicomanie, 144
The Legend of Zu, 216
Les Six Parties du Monde, Denis Papin, 144
Les Variations Darwin, 142
Lessner, Joanne Sydney, 124
Letters Concerning the English Nation, 143
Li, Da-Guang, 108
Li, Yin-He, 326
Li, Yu-Chun, 326
Library of Babel, 140
Life and love, 153
Life of Galileo, 120, 128
Light, 151, 152
Lin, Yu-Tang, 353
Line Revisited, 25, 132
Lisbon, 256
Literary
Darwinist, 287, 289
practice, 222
Literature, 1, 42, 274, 276, 278
value of, 267
Liu, Ying, 108
Living
material, 250
tissue, 256
Locality, 136
The Long Awaited Day Finally Came, 198
Lotus Flower Building, 164
Louvre, 17, 29
Love, 327
Lovelace, Ada, 123
Loving Birth, 162, 167
Luxe, 324

M

Macau, 161
Madam X, 334
Male symbol, 154
Manhattan, 204
Manhattan Project, 122
Manovich, Lev, 225
Marquet, Albert, 60
Marxism, 101
Massacre, 3
Mateas, Michael, 229, 231
Material world, 262
Mathematics, 35, 41, 64, 122
discrete, 64
language of, 126
Matisse, Henri, 348, 358
Matlin, Marlee, 250
Maurits of Nassau-Siegen, Johan, 53
Rodin, Auguste, 338
Rome, 93
Roman Empire, 78, 79
Romance, 317, 327
Ronconi, Luca, 138
The Root Seeker, 200
Rosenblum, Joshua, 124
Rotational isomers, 252
Rubens, P. P., 48
Rudolph II, 44
Ryoko, Aoki, 92

S
Saarbrücken, 210
Saikaku, Ihara, 322
Sail in the Wind, 167
Sailing Boat, 153, 167
Saint Anthony, 157
Saint Anthony and Baby Jesus, 166
Saint Anthony’s Tree, 157
Salat, Serge, 261
Salon, 357
Samos, Aristarchus of, 50
San Jose State University, 210
Sanitt, Nigel, 345
Sargeant, John Singer, 334
SARS, 208
Schank, Roger, 296
Schawlow, Arthur, 211
Schecle, Carl Wilhelm, 145
Schlemmer, Oskar, 62
Schneider, Ivo, 124
Scholar Painting, 352, 353
Science, 2, 3, 35, 36, 64, 247, 251, 333
cognitive, 22, 229, 232
communication, 256
creative, 251
definition, 2
development, 26, 247
fear of, 147
free, 71, 72, 76, 77
historian of, 144
history, 146
misconceptions, 3
movie, 148
natural, 2, 64
“physical”, 2
prejudices against, 133
progress of, 127
questions, 339
representation, 256
refusal of, 147
society, 148
social, 2
sociology of, 218
television, 148
three approaches, 20
tree levels of study, 20
“Science”, 2, 22
Science and Art, 5, 22, 69, 75-77, 99, 181
books, 110
concept, 100
dissertation, 114, 117
exhibition, 105, 107
in China, 99, 115
journal, 113
publications, 110
research paper, 114
symposium, 102-110
Science and Art, 104, 113
Science and Society, 5
Science center, 120
Science Matters, 1, 2, 5, 19, 211
Science on Stage, 124
Science theater, 120
in Germany, 120
Scientia, 41, 70
Scientific
art, 248, 250, 254
article, 262
concept, 248, 250
inquiry, 256
laboratory, 256
motif, 49
practice, 247, 256
Scientist, 72, 105, 144, 178, 247, 249
experimental, 178, 248
The Scream, 16
Sculpture, 37, 38, 42, 43, 47, 49, 151, 260
symbolic, 157
Searching for Food, 170
Seated Dancer Adjusting Her Shoes, 253
Taiwan, 209
Tale-Spin, 235
Tanbi, 319
comic, 317
literature, 319
novel, 317, 329
story, 321
Tang Dynasty, 352
Tanizaki, Junichiro, 319
Tao, 352
Taoism, 165, 351
Tapestry, 47
Taylor, Richard, 21
Tarantula, Niccolo, 41
Technics, 72
Technique
biological, 251
medical, 251
Technology, 23, 26, 59, 64, 65
Telescope, 51, 52, 60
Tesla coil, 338
Theater, 41
documentary, 131
public support, 133
Theater of
actors, 121
actresses, 121
directors, 121
plays, 121
playwrights, 121
Theatricality, 125
Theory of everything, 247, 344
Tianshan Red Flower, 207
Time, 141, 338
travel, 141
Times, 285
Togetherness: I, 173
Tolstoy, Leo, 189
Tony Award, 123
Tool
biological, 247, 256
biomedical, 247, 256
use, 185
Tournant autour de Galilée, 142
Trade, 41, 43, 54, 55
Tragedy, 130
Trembley, A., 57
Tree, 157
Trivium, 40, 42, 72
Truth, 24, 77, 220, 343
Truth and Beauty, 112
Tsinghua University, 105, 106, 113, 116
Tsinghua University Press, 110
Tsui, Hark, 204, 216
background, 205
Tulip, 54
mania, 54, 55
Turnbull, Nick, 339
Turner, Mark, 232
Turing-Land, 225, 242
TV, 13, 125, 148, 326
film, 208
Two Cardinals, 171
Two cultures, 79, 121, 224, 226
U
Uke, 321
Uncertainty Principle, 122, 138
Underdeveloped country, 158
Unifying conception, 353
United States, 206, 220
Universal
literary, 275
narrative, 275
Universality, 153
Universe, 1, 2, 51, 260
University, 39, 46
University of British Columbia, 209
University of Hong Kong, 209
Urania, 121
Urban net, 158
Uranmaschine, 135
Utrillo, Maurice, 60
V
Value system, 145
Van Sant, Gus, 123
Vancouver, 209
Varro, Marcus Terentius, 38, 71
Vasari, Giorgio, 76
Venice, 51
Venus of Laussel, 91
Venus of Willendorf, 181, 185
Verrechnet, 146
Victor, Hugh of Saint, 40
Vietnam, 215
Vinci, 74
Virtue, 24
Voltaire, 137, 143
Von Goethe, Johann Wolfgang, 126
Von Helmholtz, Hermann, 127
Von Siemens, Werner, 127
Voyages of discovery, 52

W
Wahlverwandtschaften, 126
Wang, An-Shi, 352
Wang, Wei, 352
Wardrip-Fruin, Noah, 229
Wave, 136
Wave-particle concept, 250
Weaving, 41
Weimar Republic, 128
The Well-Traveled Mind, 195
Wellmann, Mac, 122
What the Bleep Do We Know?, 248
Whewell, William, 70, 72
Whirlpool Galaxy (M51), 336

Whispering Whites, 175
Wilhelm Meisters Lehrjahre, 126
Wilson, Frank, 185
Wittgenstein, Ludwig, 81
Wolff, C. F., 57
Women, 26, 317
Woolf, Virginia, 229, 233, 284
The World of Ancient Art, 80
World War II, 17, 128
Worldview, 35

X
Xichang, 110

Y
Yamagishi, Ryouko, 319
Yanhuang Art Gallery, 103, 105
Yaoi, 321
Yin-yang, 21

Z
Zhao, Ling-Li, 107
Zhao, Xin-Shan, 101
Zhu, Jichen, 229
Zhuang, Wei-Jia, 18
Zhuang Zi, 352
Science Matters is the new discipline that treats all human-dependent matters as part of science, wherein, humans (the material system of Homo sapiens) are studied scientifically from the perspective of complex systems. That “everything in Nature is part of science” was well recognized by Aristotle and da Vinci and many others. Yet, it is only recently, with the advent of modern science and experiences gathered in the study of evolutionary and cognitive sciences, neuroscience, statistical physics, complex systems and other disciplines, that we know how the human-related disciplines can be studied scientifically.

Science Matters (SciMat) covers all the topics in humanities and social sciences, arts in particular. Arts here include visual arts, literature, film, music, architecture, performance arts, new media arts and so on.

This book Arts: A Science Matter treats arts as part of science, from the unified perspective of SciMat. It is probably the first and only book to which academic professionals and practicing artists contribute, as equals, on the common theme of creating and understanding arts. It contains 17 chapters, with 18 contributors who are prominent humanists, professional artists or scientists. It consists of three parts: Part I: Philosophy and History of Arts; Part II: Arts in Action; Part III: Understanding Arts. The book is aimed at both research scholars and laypeople.

Maria Burguete is a scientist at Scientific Research Institute Bento da Rocha Cabral in Portugal. She has published five scientific books, five poetry books, and over 20 scientific papers mostly in history and philosophy of science.

Lui Lam is Professor of Physics at San Jose State University, California. He invented bowlic liquid crystals (1982), active walks (1992) and histophysics (2002). He is the founder and editor of two book series, Science Matters and Partially Ordered Systems; the editor of Introduction to Nonlinear Physics and Nonlinear Physics for Beginners; and the author of This Pale Blue Dot.