Principles of X-ray Crystallography

Advisor: Raymond Kwok, Ph.D.
Coadvisor: Sotoudeh Hamedi-Hagh, Ph.D.
Committee Member: Masoud Mostafavi, Ph.D.
Supervisor: Tri Caohuu, Ph.D.

Luke Snow
58 Mount Hermon Rd
Scotts Valley, CA 95066
(831) 440-9170
LukeSnow@Gmail.com
Abstract

• The goal of this paper is to verify the principles of crystallography at radio-frequencies, and then use the principles to design an antenna.
Outline

• Motivation and Introduction
• Verify Principles
 – Bragg’s Law
 – Scherrer Law
• Experimental Verification
• Switched beam design
• Conclusion and Further Work
The Classic Experimental Setup

- X-ray source
- Incident Beam
- Sample
- Diffracted Beam
- Detector
- 2θ
Some Typical Data...
Some Typical Data…
Principles of X-ray Diffraction

• Bragg’s Law
• The Scherrer Equation
• The Reciprocal Lattice
• The Ewald Sphere
• The Scattering Factor
Motivation and Methodology

- To apply the concepts verified to design an antenna.
- To verify the concepts, the flow chart at right was used.
Motivation and Methodology

• The concepts verified were employed to design an antenna, shown in the flow chart.
Background

- X-ray Crystallography is a well established field.
- Born with the Discovery of Bragg’s Law, in 1912.
- Basic principles are used to determine crystal structure, size, and defects.
Photonic Crystals

- Pioneered by E. Yablonovitch in 1987.
- Most applications employ the band stop and band pass properties of photonic crystals
 - Beam focusing antenna substrate
 - Tunable 4-port switch
 - Band pass or band block filters
Antenna

• The design can be thought of as an antenna array.
• The design presented, and the analysis behind it, appear to be unique.
Direction of Main Lobe

- The direction of the main lobe of the antenna is determined by Bragg’s Law:
 \[\lambda = 2d \sin \theta \]
Sample Level View

k → Crystal → k'

θ → 2θ → 0
Bragg’s Law Verified
Experimental Setup

Top View

Skewed View
Results
Summary – Peak Locations

<table>
<thead>
<tr>
<th>Predicted</th>
<th>Observed</th>
<th>Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ</td>
<td>$\phi - 90)/2$</td>
<td>Δ</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>0.00%</td>
</tr>
<tr>
<td>24</td>
<td>24.25</td>
<td>0.40%</td>
</tr>
<tr>
<td>26</td>
<td>25.75</td>
<td>0.40%</td>
</tr>
<tr>
<td>28</td>
<td>27.75</td>
<td>0.30%</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>0.00%</td>
</tr>
<tr>
<td>32</td>
<td>32.25</td>
<td>0.30%</td>
</tr>
<tr>
<td>34</td>
<td>34.5</td>
<td>0.60%</td>
</tr>
<tr>
<td>36</td>
<td>37.25</td>
<td>1.50%</td>
</tr>
<tr>
<td>38</td>
<td>39</td>
<td>1.20%</td>
</tr>
<tr>
<td>40</td>
<td>41</td>
<td>1.20%</td>
</tr>
<tr>
<td>42</td>
<td>44.25</td>
<td>2.60%</td>
</tr>
<tr>
<td>44</td>
<td>44.5</td>
<td>0.60%</td>
</tr>
<tr>
<td>45</td>
<td>46</td>
<td>1.10%</td>
</tr>
<tr>
<td>46</td>
<td>46.75</td>
<td>0.80%</td>
</tr>
<tr>
<td>Avg:</td>
<td></td>
<td>0.80%</td>
</tr>
<tr>
<td>RSD</td>
<td></td>
<td>0.87</td>
</tr>
</tbody>
</table>
Beam Width

- The beam width (FWHM) is given by the Scherrer Law:
 \[B(2\theta) = \frac{K\lambda}{(Na \cos \theta)} \]
- K - shape factor
- N - size of the crystal in unit cells
- a - unit cell length for a square crystal
- \(\lambda \) - Wavelength
- \(\theta \) - Bragg angle
Verification

• The Scherrer law is verified in two ways
 – By varying N, holding all other quantities constant. Expect a 1/N dependence, and values of K on the order of unity.
 – Vary θ and a together; Use Bragg’s Law to substitute for a in the Scherrer equation:
 $B(2\theta) = 2K \tan \theta / N$
Results

K = 1.02 Gave Best Fit
Results

Effect of Angle On Peak Width

K = 0.90 Gave Best Fit
Experimental

• An antenna was constructed to verify Bragg’s law.
• The antenna consisted of a waveguide, horn, and a parallel plate/crystal section.
• The antenna was designed to operate in the 6GHz region.
Experimental

• Data was taken in a Compact Antenna Test Range (CATR).
• A VNA with 0-40GHz capability was used to take data.
• A WR137 waveguide to coax adapter was used for the detector.
• Two WR137 waveguides were used for a reference.
• Far Field for this design was 12 ft.
• Data was taken at approximately 14ft, for an angular resolution of 0.5 deg.
Waveguide section

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>OD</td>
<td>1.5" x 1.0"</td>
</tr>
<tr>
<td>ID</td>
<td>1.25" x 0.75"</td>
</tr>
<tr>
<td>f_{c10}</td>
<td>4.72 GHz</td>
</tr>
<tr>
<td>f_{c11}</td>
<td>9.17 GHz</td>
</tr>
<tr>
<td>Length</td>
<td>12"</td>
</tr>
</tbody>
</table>
Horn Section

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_1</td>
<td>12"</td>
</tr>
<tr>
<td>a</td>
<td>1"</td>
</tr>
<tr>
<td>ρ_1</td>
<td>18"</td>
</tr>
</tbody>
</table>
Parallel Plate Section

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>1"</td>
</tr>
<tr>
<td>f_{c00}</td>
<td>0 GHz</td>
</tr>
<tr>
<td>f_{c10}</td>
<td>6 GHz</td>
</tr>
<tr>
<td>Post Diam</td>
<td>1/8"</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td>θ</td>
<td>30°</td>
</tr>
<tr>
<td>λ</td>
<td>2"</td>
</tr>
</tbody>
</table>

Crystal Section

![Crystal Section Diagram]

- Post Diam: 1/8"
- θ: 30°
- λ: 2"
- 12 in x 12 in
- 30deg
- 1 in
- 2 in
- 12 in
Results

• Return Loss was better than –20dB at 5.9GHz, and was about –10dB at 6.223GHz
• 5.9GHz corresponds to a wavelength of 2in, but the best performance was obtained at 6.223GHz, with a gain over WR137 of 8dB
Results

Transmission, 5.9GHz

HFSS Data, 6GHz
The best radiation pattern obtained

30 degree incidence
A polar plot
Results

Transmission, 6.223 GHz
Frequency of Max transmission at 150 deg.

Best Performance
Conclusions and Observations

• Design could be improved with:
 – Better grounding
 – Higher quality plane wave.
 – Larger diameter posts
 – Longer interaction length
Switched Beam Antenna

- Each Crystal has an associated “reciprocal space” – a lattice of points related to those of the direct space crystal.
- The units of this space are inverse length.
- For a direct space rectangular lattice of dimensions a and b, the reciprocal lattice is of rectangular, of length $\frac{1}{a}$, $\frac{1}{b}$.
- The “Ewald Circle” may be drawn in reciprocal space to describe an X-ray diffraction experiment, the circle having radius $\frac{1}{\lambda}$
- When the circle intersects two or more reciprocal lattice points, one or more reflections are created.
For the given diagram, there are two 45 degree reflections. If $a = b = 0.5\text{in}$, then $\lambda = 0.707\text{in}$
The reciprocal lattice has been altered by doubling the length of the basis vector in the vertical direction, corresponding to halving the direct-space lattice basis vector.
The two models
The two radiation patterns

RectCryst2Lobes

<table>
<thead>
<tr>
<th>Name</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>m1</td>
<td>182.0000</td>
<td>33.6675</td>
</tr>
<tr>
<td>m2</td>
<td>358.0000</td>
<td>33.3849</td>
</tr>
<tr>
<td>m3</td>
<td>126.0000</td>
<td>0.7572</td>
</tr>
</tbody>
</table>

RectCryst1Lobe

<table>
<thead>
<tr>
<th>Name</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>m1</td>
<td>190.5000</td>
<td>59.4786</td>
</tr>
<tr>
<td>m2</td>
<td>126.0000</td>
<td>33.7840</td>
</tr>
</tbody>
</table>
Conclusion

• Various concepts of crystallography have been verified.
• Fruitful parallels between X-ray diffraction and photonic crystals exist, with potential to illuminate ideas in both fields.
• More work to be done before the design is admitted to practical application.
 – Additional Measurements with the improved model
 – Switched beam measurement
Pattern after Improvement
References

- Data Taken in Upper Division Physics Lab, University of California, Santa Cruz, 2001
Acknowledgements

- My advisor, Dr. Ray Kwok
- Bill Shull of Zygo corporation, for helping with the construction of the antenna, and use of his Machine Shop,
- My Supervisor and co-workers at Space Systems Loral, for providing facilities and assistance to make the measurements.
- My Wife and family, for their patience with my seemingly endless project.
Questions?
The effect of Post Diameter

Effect of Post Size

- Diffracted Beam Peak
- Straight Through Beam

Intensity of Peak (mV) vs. Post Diameter (cm)
Model Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate Thickness - Top</td>
<td>0.1cm</td>
</tr>
<tr>
<td>Plate Thickness - Bottom</td>
<td>0.1cm</td>
</tr>
<tr>
<td>Plate Spacing</td>
<td>1.25cm</td>
</tr>
<tr>
<td>Crystal Size</td>
<td>8x8</td>
</tr>
<tr>
<td>Post Spacing</td>
<td>$\lambda/(2 \sin \theta)$</td>
</tr>
<tr>
<td>Post Radius</td>
<td>0.1cm</td>
</tr>
<tr>
<td>Angle of Incidence</td>
<td>22°-46°, 2° steps; 45°</td>
</tr>
<tr>
<td>Solution Frequency</td>
<td>24GHz</td>
</tr>
<tr>
<td>Max. ΔS</td>
<td>0.01</td>
</tr>
</tbody>
</table>