Parallelism in Data Analytics

Swathi Pai
Computer Science Department
San Jose State University
San Jose, CA 95192
408-924-1000
swathi.pai@sjsu.edu

ABSTRACT
The term paper will be focused on how parallelism can be used in Data Analysis. We have already entered into an era, where large number of data is generated by machines: software logs, cameras, microphones, RFIDs, etc. The production rate of these data will grow exponentially with Moore’s Law. Storing this data is cheap and using some parallel processing techniques, the data can also be analyzed and mined effectively.

As a result, the paper intends to discuss about parallel programming techniques used in Data Analysis and Data Mining. The main reason for this parallelism is to make analysis faster. This is normally achieved by using multiple processors or multiple computers, performing different aspects of data analysis or mining, executing the tasks concurrently and later consolidating the data into a single report.
1. INTRODUCTION

Data Analysis involves inspecting, cleaning, transforming, and modeling data with the aim of identifying useful information, suggesting conclusions, and supporting decision making. It also involves the process of systematically applying statistical and/or logical techniques to describe, illustrate, and evaluate data. Data analysis has many aspects and approaches. One of the popular approaches is Data Mining.

2. DATA MINING

2.1 What is Data Mining?
Data mining, or knowledge discovery, is the computer-assisted process of digging through and analyzing enormous sets of data and then extracting the meaning of the data. It is a particular data analysis technique which focuses on modeling and knowledge discovery for predictive rather than purely descriptive purposes. As a result, data mining is also sometimes referred as Knowledge Discovery in Databases (KDD).

Traditional methods of data analysis, based mainly on a person dealing directly with the data, do not scale to voluminous data sets. While database technology has provided us with the basic tools for the efficient storage and lookup of large data sets, the issue of how to help humans analyze and understand large bodies of data remains a difficult and unsolved problem. The emerging field of data mining promises to provide new techniques and intelligent tools to encounter the challenge.

Data mining tools predict behaviors and future trends, allowing businesses to make proactive, knowledge-driven decisions. It can answer business questions that traditionally were too time-consuming to resolve. They scour databases for hidden patterns, finding predictive information that experts may miss because it lies outside their expectations.
2.2 Why Parallel Data Mining?
Volumes of data are exploding in both scientific and commercial domains. There is a substantial commercial interest in developing and improving data mining applications in order to extract useful information in the form of patterns. Computer systems have been storing a great deal of information involving credit card transactions; loyalty reward systems record our shopping habits; CCTV cameras, GPS systems embedded in our smartphones and navigation systems record our movement and whereabouts. In the business area large and complex databases are reported, for example Amazon’s two largest databases combine 42 terabytes of data and AT&T’s largest database comprises 312 terabytes. Facebook warehouse has an incoming daily rate of about 600 TB. In the last year, the warehouse has seen a 3x growth in the amount of data stored. It has been predicted that in the year 2020, the size of our digital universe will be 44 times as big as it was in the year 2009. Advances in storage technology make it possible to store all these data volumes at a very low cost, hence the universal challenge in data mining is the scalability of data mining techniques to these large data volumes.

Data mining techniques that aim at extracting patterns and information from this large amount of data are gaining popularity in many applications. Data mining algorithms are developed to analyze these volumes of data automatically and provide users with the inherent knowledge in these data without any manual efforts. As the data volume has been increasing from gigabytes to terabytes or even larger, sequential data mining algorithms may fail in delivering the results in reasonable amount of time. Also, the limited memory in a single processor can limit the data that can be held, thereby resulting in substantial slowing down of the process. However, using parallel environment, the processes can very well exploit vast aggregate memory and processing power of parallel processors. As a result, the issues related to execution time and memory requirements encountered in sequential processing can be well addressed.

However, trying to achieve good performance and scalability to large volume of data is a very difficult task. First, it is important to employ a good data organization strategy and decomposition strategy so that the workload is consistently partitioned among all processes with minimal data dependence. Second, reducing synchronization and communication overhead is important in order for parallel algorithms to scale well.

3. PARALLEL DATA MINING APPROCHES AND FRAMEWORKS
Parallel Data Mining refers to executing data mining tasks concurrently. The parallelization of a data mining task often follows a data parallel approach as the computational workload of data mining tasks is usually directly dependent on the amount of data that needs to be processed. In data parallelization, the data is partitioned into smaller subsets and distributed to multiple processors on which the data mining tasks are executed concurrently.

3.1 Multiprocessor Computer Architectures
A multiprocessor architecture is needed for executing data parallel algorithms. The main idea in data parallelism is to divide the workload and assign it to several processing units. There are two relevant multiprocessor architectures, tightly-coupled architectures and loosely-coupled architectures. Hybrids between the two architectures are possible.
a. A loosely-coupled architecture comprises multiple standalone computers. Each computer has one processing unit and its local private memory. This architecture requires data distribution and accumulation mechanisms, and a communication network. An implementation of this architecture is also often referred to as ‘Massively Parallel Processors’ (MPP).

 [image: image16.emf]Frequent Itemset Support

{Shoes} 75%

{Shirt} 50%

{Jacket} 50%

{Shoes, Jacket} 50%

Figure 1. Loosely-Coupled Architecture

b. A tightly-coupled architecture consists of multiple processors that share a common memory using a shared bus system. No data distribution is required as the processors do not have a private memory. An implementation of this architecture is also often referred to as ‘Shared memory Multiprocessor machines’.

 [image: image2.emf]
Figure 2. Tightly-Coupled Architecture
Advantages of loosely-coupled architecture

· There is no bottleneck as the processors do not share system bus.

· This architecture is more robust to hardware failures as the processors are hosted on different computers over the network.

· A loosely-coupled system can be upgraded gradually by simply replacing old workstations with newer ones.

Disadvantage of loosely-coupled architecture

· It requires communication and collaboration between its computing nodes which introduces an additional overhead for the application.

Advantage of tightly-coupled architecture

· It is usually more efficient at processing data as it avoids data replication and does not need to transfer information between processing units.

Disadvantage of tightly-coupled architecture

· There is a bottleneck with the number of processors the system can support in the context of data mining applications.

· Upgrading the system requires it to be replaced entirely.

3.2 MapReduce Paradigm for Parallel Data Mining
Google’s MapReduce is a programming model for processing large amounts of data in a parallel and distributed fashion. It provides means to simplify the development of parallel data mining techniques offering load balancing and fault tolerance. Data mining applications parallelized using MapReduce make use of the Google File System (GFS) which provides a means of storing data in a distributed manner and redundantly over a network of commodity workstations. Google’s MapReduce is proprietary software. However, Hadoop provides an open source implementation of Google’s MapReduce paradigm based on its Hadoop Distributed File System (HDFS) which is Hadoop’s implementation of GFS.
A Google’s MapReduce job has three stages: map, shuffle and reduce. It is necessary that each stage be completed in sequence before starting the next stage. A data flow diagram for MapReduce is as follows:

[image: image3.png]Map
Input [—(Reader)|

ﬁ;p\;_
Results;

Shuffle

W’
Results]

Reduce
(Writer)

Figure 3. Data-flow diagram for MapReduce
3.2.1 Map
MapReduce splits an application into smaller parts called Mappers. Each mapper can be processed by any of the workstations in the nodes in the cluster. The map function is implemented based on requirements of the application. The output of map function is key-value pairs that serve as inputs to shuffle stage. For example, let’s consider a database of dogs containing their license id, breed, and name.

	04877 poodle muffy
88390 beagle dotty
73205 collie pancakes
95782 beagle esther
77865 collie lassie
75093 poodle albert
24798 poodle muffy
13334 collie lassie

A MapReduce job that finds the most popular name for the breed has the output of the map function as follows:

[image: image1.emf]
A high reliability of the application is provided by the framework’s ability to recover a failed mapper. Intermediate results produced by these mappers are then combined by one or more Reducer nodes.

3.2.2 Shuffle
The shuffle stage groups all the names together for each breed and then outputs a single list containing all the values.

[image: image13.emf]Transaction ID Items Bought

1 Shoes, Shirt, Jacket

2 Shoes,Jacket

3 Shoes, Jeans

4 Shirt, Sweatshirt

[image: image14.emf]Frequent Itemset Support

{Shoes} 75%

{Shirt} 50%

{Jacket} 50%

{Shoes, Jacket} 50%

[image: image15.emf]Transaction ID Items Bought

1 Shoes, Shirt, Jacket

2 Shoes,Jacket

3 Shoes, Jeans

4 Shirt, Sweatshirt

3.2.3 Reduce
A reduce stage uses reduce() function that has to be implemented by the programmer. The reduce() function takes the shuffled intermediate results to output the results. In above example, the reduce() function will take the input:

3.2.4 Sharding:

Sharding divides the input of a stage into multiple data sets (shards) that are processed in parallel. At any point in the sequence, all the shards in a stage must be completed before executing the shards for next stage. The input data is divided into shards and assigned to the Mapper class. The output of the map function is then handled by shuffle stage that shards its input and assigns the shards to reduce stage. The number of shards used in each stage can be different.

[image: image4.png]Map
(Reader)|

Map
(Reader)|

Reduce

(Writer)

Map
(Reader)|

Input

Shuffle Results

Reduce

(Writer)

Figure 4. Sharding
MapReduce’s relevance in the data mining community has been demonstrated in countless projects. For example, Google reported having utilized MapReduce in at least 900 projects. However, this was in 2008 and it is very likely that there are many more projects by now.

3.3 Parallelism in Decision tree induction algorithms

Decision tree builds classification in the form of a tree structure. It breaks down a dataset into smaller subsets and at the same time develops an associated decision tree incrementally. The final result is a tree with decision nodes and leaf nodes. A decision node has two or more branches based on the decision. Leaf node represents a classification. The root decision node denotes the best predictor. An example of decision tree is shown below:

There are two principal ways of parallelizing decision tree classifiers: the synchronous tree construction approach and the partitioned tree construction approach.

[image: image5.png]HEHHEBEEHHHE H
FEARHEHAHE 8
3| HEHEHHH H

HHHHHHE i

[image: image6.png]

Figure 5. An Example of creating Decision Tree from the Dataset.
3.3.1 Synchronous tree construction approach

In the synchronous tree construction, the training dataset is distributed between N processors. As a result, each processor holds an exact copy of the tree in its memory during tree induction. The processors expand the same tree node by gathering statistics of their local data and then sharing these statistics by communicating with other processors. Eventually each processor will perform the same tree node expansion independently on their copy of the tree.
[image: image7.emf]
Figure 6. Synchronous Tree Construction Approach

Advantage:

· There is no communication of training data.

Disadvantage:

· The communication of statistics increases as the tree grows.

· The workload between the processors is changing during the tree induction and may cause workload imbalances.

3.3.2 Partitioned Tree Construction approach

In Partitioned Tree Construction, different processors work on different parts of the tree and the training data. In this case, the root node is assigned to a single processor. The child nodes are then distributed to different processor. Each processor expands the subtree of its child node independently. This is repeatedly recursively until all processors have been allocated to different subtrees.
[image: image8.emf]
Figure 7. Partitioned Tree Construction Approach

Advantage:

· Each processor works independently no communication is needed.

Disadvantage:

· A single processor has the entire workload initially.

3.3.3 Hybrid Approach

A hybrid approach in this takes the advantages of both the approaches. The hybrid approach initially starts with synchronous tree construction approach. When the communication overhead increases substantially, then the approach switches to Partitioned Tree Construction, thereby working independently.
3.4 Parallel Apriori-based Algorithm

Apriori algorithm is the most popular and useful algorithm of Association Rule Mining of Data Mining. Association rules are "if-then rules" with two measures which quantify the support and confidence of the rule for a given data set. Having their origin in market basked analysis, association rules are now one of the most popular tools in data mining.

Examples of learning association rules:

· Wal-Mart studied their data and found that on Friday afternoon young American males who buy diapers also tend to buy beer. So Wal-Mart placed beer next to diapers and the beer-sales went up. This is famous because no one would have predicted such a result and that’s the power of data mining.

· Amazon uses use association mining to recommend you the items based on the current item you are browsing/buying.

· Google auto-complete searches frequently associated words that user type after that particular word.

There are two key terms associated with Apriori algorithm: support and confidence. The support is defined as the proportion of transactions in the data set which contains the itemset. The confidence is defined as a conditional probability Confidence (X=>Y). Below is an example of working of apriori algorithm.

If the minimum confidence is 50%, then the only two rules generated from this 2-itemset, that have confidence greater than 50%, are:

Shoes (Jacket
 Support=50%, Confidence=66%

Jacket (Shoes Support=50%, Confidence=100%

A more realistic example of apriori can be seen in the example below:

[image: image9.png]Database D

Figure 8. An Example of Apriori-based Algorithm

3.4.1 Parallelism in Apriori Algorithm

Most of the parallel ARM algorithms are based on parallelization of apriori that iteratively generates and tests candidate itemsets from length 1 to length k until no more frequent itemsets are found. One of the methods that can be used to parallelize apriori is Count Distribution method. The Count Distribution method follows a data-parallel strategy and statically partitions the database into horizontal partitions that are independently scanned for the local counts of all candidate itemsets on each process. At the end of iteration, the local counts will be summed up across all processes into the global counts so that frequent itemsets can be found.

[image: image10.png](a) Database Partitioning (b) Mining Frequent I-itemsets (c) Mining Frequent 2—itemsets

D ;‘:s Process Number Local Counts | Global N Local Counts | Globall
: Teb < PO e o] p1] e Cout Fritemset o] o1] po | Couat
3 (adb || a 0 2 2 4 ab 0 1 [1
T Jacfe P1 b 2 1 [3 ac 0 1 1 2
toae clofl1|1] 2 ad o1 1] 2
6 lacte P2 d 1 1 1 3 ae 0 1 2 3

e 2 1 2 5 af 0 1 1 2

f 2 1 1 4 be 0 [[0

bd 1 1 [2

(d) Mining Frequent 3-itemsets be |2]0]o] 2

Local Counts | Global bf 2 [[2

Stemset [T T | Count od ofofol o

e o112 (€) Mining Frequent 4itemsets e oty 2

af | o |1 1] 2 o S

Local Counts | Global de 1ol 2

ade [[1 1 4-itemset. Count

aef o 1 1 2 PO P1| P2 df 1 [[1

bde 1 0 0 1 acef o 1 1 2 ef 2 1 1 4
bef 2 [o 2
cef [1 1 2

Figure 9. Count Distribution method for parallel Apriori algorithm

The steps for the Count Distribution method are generalized as follows for distributed-memory multiprocessors.

Step 1: Divide the database evenly into horizontal partitions and distribute them among all processes

Step 2: Each process scans its local database partition to collect the local count of each item

Step 3: All processes sum up the local counts and then exchange it with other process to get the global counts of all items and find frequent 1-itemsets

Step 4: Set level k = 2

Step 5: From the mined frequent itemsets, processes generate candidate k-itemsets

Step 6: Each process scans its local database partition to collect the local count of each candidate k-itemset;

Step 7: All processes sum up the local counts and then exchange it with other process to get the global counts of all items and find frequent k-itemsets

Step 8: Repeat Step 5 to Step 8 with k = k + 1. Stop when no more frequent itemsets are found.

The Count Distribution algorithm will scan the database 4 times to count the occurrences of candidate 1-itemsets, 2-itemsets, 3-itemsets, and 4-itemsets respectively. However, the workload is divided among three processes and each of the process scans only the assigned partition to find the local count. The global count is then found by summing up the local counts obtained from each of the local process.

3.5 Pattern-Growth Method

The pattern-growth method derives frequent itemsets directly from the database with the use of a novel frequent-pattern tree (FP-tree) structure where the repetitive transactions are compacted. The Pattern-Growth method organizes the transaction itemset in frequency-ordered prefix tree such that they share common prefix part and re-occurrences of items/itemsets are automatically counted. Then the FP-tree is traversed to mine all frequent patterns. Once all the frequent patterns are extracted from the database, conditional pattern bases are mined using a divide and conquer strategy. Conditional pattern base for each item basically consists of the set of other items that frequently occur along with the item. The conditional pattern base is then converted to a conditional FP-tree which can be processed using a recursive FP-growth algorithm.

For achieving parallelism in pattern-growth method, the database is divided into equal partitions of transactions. These partitions can then be assigned to different process. Each of the process will be generating a FP-tree using its local database of transactions. The FP-trees can then be used to derive conditional pattern bases and transform them into conditional FP-trees for all frequent items. Since, each of the FP-trees can be processed independently; parallelism can be very well achieved in this method.

[image: image11.png]Local
Database
Partition

Local
FP-tree

TID

1
2
3

Header Table

Items (sorted)
efbd

efb
abd

TID Items (sorted)
4 cafe
5 cad
6 cafe
Good
Header Table T
&5 -]
E I
~Ca3
£i4 -l =
- B RN / \
. cf%) LD
2 -~

P1

Figure 10. Parallelization of FP-growth method by constructing local FP-trees
The FP-growth pattern can be parallelized using following below steps:

Step 1: All the processes are assigned equal partitions of transaction database.

Step 2: All processes scan their local transaction database in parallel and mine all frequent items;

Step 3: Each process constructs a local FP-tree from its local database partition with respect to the global frequent items. Items are sorted by frequencies in descending order within each scanned transaction;

Step 4: Each process generates local conditional pattern bases for all frequent items from local FP-tree;

Step 5: Assign frequent items to processes;

Step 6: For each frequent item, all its local conditional pattern bases are accumulated and transformed into the conditional FP-tree on the designated process;

Step 7: Each process recursively traverses each of the assigned conditional FP-trees to mine frequent itemsets in the presence of the given item.

[image: image12.png]Process
Number

PO

P1

Item

Conditional
Pattern.
Base

Conditional
FP-tree

Frequent
Ttemsets

Figure 11. Constructing Pattern Bases and conditional FP-trees
There are two stages for achieving parallelism in FP-growth method. In the first stage, the algorithm proceeds through Step 1 to Step 3 constructing local FP-trees. In the second stage, Step 4 to Step 7 is executed in which all the frequent itemsets are mined using conditional pattern bases and conditional FP-trees. The mining process starts with a bottom-up traversal of the local FP-trees to generate the conditional pattern bases starting from their respective items in the header tables. Each entry of a conditional pattern base is a list of items that precede a certain item on a path of a FP-tree up to the root, with the count of each item set to be that of the considered item node along that path.
For each frequent item, as each local FP-tree will derive only part of the conditional pattern base, building the global conditional FP-tree needs the accumulation of local conditional pattern bases from all processes. Then a call to the recursive FP-growth procedure on each conditional FP-tree will generate all the conditional patterns on the designated process independently. If on a shared-memory machine, since the multiple FP-trees can be made accessible to all processes, the conditional pattern base and conditional FP-tree can be generated on the fly for the designated process to mine the conditional patterns, for one frequent item after another. This can largely reduce memory usage by not generating all conditional pattern bases and conditional FP-trees for all frequent items at one time.
In parallel FP-growth, once all the transaction information has been built into the FP-trees, the databases no longer require scanning. As a result, the disk I/O is minimized by scanning the original database only twice. The major communication/synchronization overhead lies in the exchange of local conditional pattern bases across all processes. Since the repetitive patterns are already merged, the total size of the conditional pattern bases is usually much smaller than the original database, resulting in relatively low communication/synchronization cost.

4. CONCLUSION
With the tremendous increase in the volumes of data, the single processor machines fail to deliver the results in reasonable amount of time. Hence, the scientists and business decision-makers are relying on parallel data mining techniques to extract the concise, meaningful information from the data in acceptable amount of time. The approaches and systems mentioned above have to led to great prosperity in the fields of research. However, in spite of tremendous success in scaling data mining techniques, it still remains an active research area, where many unsolved issues need to be addressed and different innovative approaches has to be explored.

5. REFERENCES
[1] Free Parallel Data Mining by Bin Li.
https://cs.nyu.edu/web/Research/Theses/li_bin.pdf
[2] Parallel Data Mining Algorithms for Association Rules and Clustering
http://users.eecs.northwestern.edu/~yingliu/papers/para_arm_cluster.pdf

[3] Scaling up Data Mining Techniques by Frederic Stahl and Mohamed Medhat Gaber and Max Bramer.

[4] Decision Tree – Classification.

http://www.saedsayad.com/decision_tree.htm

[5] MapReduce for App Engine.

https://cloud.google.com/appengine/docs/python/dataprocessing/
[6] Apriori Algorithm for Data Mining.

http://nikhilvithlani.blogspot.com/2012/03/apriori-algorithm-for-data-mining-made.html

(poodle, muffy)

(beagle, dotty)�(collie, pancakes)�(beagle, esther)�(collie, lassie)�(poodle, albert)�(poodle, muffy)�(collie, lassie)

(poodle, muffy)�(poodle, albert)�(poodle, muffy)�(beagle, dotty)�(beagle, esther)�(collie, pancakes)�(collie, lassie)�(collie, lassie)

(poodle, [muffy, albert, muffy])�(beagle, [dotty, esther])�(collie, [pancakes, lassie, lassie])

(collie, [pancakes, lassie, lassie])

collie: lassie

� EMBED Excel.Sheet.8 ���

� EMBED Excel.Sheet.8 ���

PAGE

_1474561443

_1474807802.xls
Sheet1

		Transaction ID		Items Bought

		1		Shoes, Shirt, Jacket

		2		Shoes,Jacket

		3		Shoes, Jeans

		4		Shirt, Sweatshirt

_1474808017.xls
Sheet1

		Frequent Itemset		Support

		{Shoes}		75%

		{Shirt}		50%

		{Jacket}		50%

		{Shoes, Jacket}		50%

_1474561368

