Automatic Conversion of Sequential Software to Parallel Systems

David Robert Smith
Computer Science Department
San Jose State University
San Jose, CA 95192
408-924-1000
davidrobertsmith@comcast.net

ABSTRACT

With the move from single core systems, to multi-core processors, how does software change to take advantage of this extra, albeit divided up power? The answer is by adding multithreading to software. However, how does software that was originally written in a sequential manner become multithreaded? This paper covers general topics about how sequentially written software is converted into parallel software through a technique known as automatic parallelization.
1. INTRODUCTION

Computer systems used to have only a single core. It made sense to write software in a sequential manner since it both easier and more straightforward. More recently, in order to increase computer speed, computers have been built with increasingly more cores in CPUs. This has created the need for software to run in a parallel way in order to utilize the speed gains of having multiple cores.
Software that is written with multithreading is well suited to use on a multi-core system. Traditional multi-threading creates multiple threads that all run on the same CPU where concurrency is simulated by quickly switching between the threads. On a multicore system, instead of a single CPU switching quickly between threads, each core can process a thread, so that the threads are truly running concurrently. Software that is written with multithreading is considered to be parallel software if it is running on a multicore system.

1.1 Moving Toward Multi-threading

Some programmers are moving towards writing software that utilizes multi-core with multithreading. OpenMP, Pthreads, MPI are all APIs that serve as the building blocks for writing multithreaded code that works on parallel processors.
However, there are still many more programmers who haven’t adapted this way of programming yet. Multithreaded programming is much more complicated. Programming with parallelization requires the programmer to be mindful of a number of factors including which tasks are independent and can thus run at the same time in their own threads. They must also use semaphores or mutex variables for when threads share data.
1.2 Challenges
Utilizing the speed of the multicore system isn’t as simple as snapping your fingers. Many programmers who have years of experience with programming sequentially don’t have the know-how of starting to write multithreaded code. Even for those who know how to do it, they may just not have the time. Multithreaded programming takes a lot longer because it’s much more complex. There’s so much more to keep track of, such as mutexs, scheduling. In addition to the burden of time and complexity, writing software in a parallel way is much more error prone than writing sequential software. Many programmers simply don’t want to do it.
There is also the issue of legacy software that was written long before parallel programming became popular.
To help deal with these issues, there are ways to convert sequentially written code automatically into multithreaded code so that it can run on multicore systems.

2. AUTOMATION
Automatic conversion of sequential software to run in a parallel way is typically called automatic parallelization. The goal is for sequential software to be converted into code that runs with multiple threads so that it can run on a multicore system utilizing its full speed and potential.
2.1 APIs for Parallel Programming
Many of the automatic conversion tools take an input of sequential C source code and parallelize using code from common APIs. OpenMP is the most popular.
2.1.1 OpenMP

OpenMP is an API that uses code to allow multithreading. It was originally implemented in Fortran but has more recently been added to the more popular languages of C and C++. It runs on most popular operating systems. It uses shared memory by default.

Using OpenMP can be as simple as adding a line of code before a code block to fork it into multiple threads. For example, adding something like #pragma omp parallel before a line of code will cause that bit of code to be run on all of the cores, each in their own thread.
2.1.2 POSIX Threads

POSIX Threads, or PThreads is an IEEE standard for implementing threads in C in UNIX. Another common but not as popular API.

2.1.3 MPI

MPI is less popular than OpenMP, one of the main reasons being that it doesn’t have shared memory. Typically when converting sequential software, you’ll want shared memory as that is something sequential software would innately have. However, there are certain circumstances, where using MPI in conversion is beneficial.
2.2 Automatic Parallelization Tools
Automatic Parallelization tools are a relatively new thing, really only starting to become practical around the turn of the decade. However, the number of available tools has been increasing. What all the tools seem to have in common is that they take some sort of either Fortran or C source code. Here are a few that seem worth mentioning.
2.2.1 ParallWare

ParallWare is a commercial automatic parallelization tool. As is common with most of these tools, it is source-to-source. That means that you provide it with your uncompiled source code, and it will also output uncompiled source code with threading API code added appropriately. It uses the OpenMP API and C code as its basis. Source-to-source is now and probably will always be important. It allows the user the opportunity to make adjustments after automatic parallelization has taken place.
I mention ParallWare here because although most of these tools have been developed through Universities and for various academic purposes, this tool shows that automatic parallelization is entering the commercial domain as well. Both now and in the future, it clearly has important business purposes as well. As time goes on, I imagine the number of commercial tools for this sort of conversion will only increase.

2.2.2 Polaris
Polaris is one of the earliest automatic parallelization tools to be effective. It uses Fortran source code. It’s worth mentioning as it provides the foundation for Cetus, one of the more popular tools.
2.2.3 Cetus

Cetus is a source-to-source automatic parallelization tool. It is an evolution from Polaris and works with the more popular C source code. Like many of the other tools, it inserts code from the OpenMP API.

2.2.4 Intel C++ Compiler

This compiler comes with a built automatic parallelization tool. It’s worth mentioning here because it’s both simple enough to use for explaining how it parallelization works, and also it comes with its own performance evaluation tool. This is important because not all parallelization improves performance. In fact, some parallelization actually diminishes performance. The evaluation tool allows the user to compare before and after and use the results to decide if parallelization should take place.
3. PARALLELIZATION
The following steps are used for parallelization. These steps in general are the same whether a computer or a human is doing the conversion:

· Scan

· Analyze

· Schedule

· Generate Code

We’ll discuss each of these steps in more detail in regards to how an automatic tool would go about doing each.
3.1 Scan

The initial phase is scanning the original code to find blocks of code that may potentially be parallelized. Portions of code can be turned in to symbols to make comparing them for dependency easier in the analysis phase. The main condition an automatic process looks for while scanning is loops.
3.2 Analyze

When analyses takes place, the two big questions that arise are:

· Can a section of code run in parallel with one or more other sections of code?

· Is running this code in parallel worth the effort required to convert it and execute it?

The simplest way to determine if a piece of code can be run in parallel is to check its dependencies. For example, does another block of code need to execute before this block of code can run. If so, they cannot be run in parallel.

And is parallelization of a block worth the effort? Not always. Sometimes it will actually decrease the speed. Simulation analysis can be done by attempting to run a piece of code both with parallelization and without it. Performance evaluation can then be applied to see which is actually faster. If there is no speedup from parallelization, or if there is even a slowdown, it is better not to apply it.
3.3 Schedule

After it has been determined exactly what can be parallelized, this step determines the order that things should be placed in. For example, if two sections of code have been determined they can run at the same, but only after another piece of code has run, then this these details are noted in the schedule. Finally, when the schedule is complete, we will know how the code knows to be laid out to optimize parallelization.
3.4 Code Generation

The final step to parallelization is generating the new code. Part of this may include re-organizing the order of the original code if the schedule deems this necessary. More importantly, it means adding code at the front the parallel blocks to activate multithreading. So, if the source code is C, and the API being used is OpenMP, the code being added may be a simple line such as the above mentioned #pragma omp parallel.
4. LOOPS
When scanning through code to find potentially parallelizable sections, the type of code block that is primarily looked for is loops. This is true of all the tools mentioned. It makes sense when you think about it, as the majority of execution time takes place while inside loops. There may be a few lines of code before a loop, but consider that loops themselves can iterate dozens, hundreds, thousands times or more. This is a perfect candidate for parallelization as each iteration of the loop could potential execute in a different thread concurrently with other iterations.

Of course, the contents of the loop must be analyzed to make sure that it can safely be parallelized. Safely means that doing parallelization will achieve all the exact same outcomes during and after execution save for the time it takes to do it.

4.1 Loop Analysis

The automatic parallelization tool that is included with Intel’s C++ Compiler is simple enough that I will use its general method for explaining how loops are determined to be good candidates for parallelization.

4.1.1 Fixed Loop Iterations

When analyzing a loop, the first thing to look at is the number of loop iterations. Is it a fixed number? If it, this makes parallelization much simpler because the program then knows how to distribute the iterations across the threads. If the number of loops isn’t known until run-time, then it becomes much more difficult to parallelize. So, while loops or for loops that have variable ranges don’t make good candidates for parallelization. It is not impossible, but Intel’s C++ Compiler, for example, does not bother with it.

4.1.2 Loop Jumps

Does the loop have a capacity for breaking or jumping in half-way through? For example, if scanning the code inside the loop reveals a break command, then the answer is yes. This makes it much more difficult to parallelize. Like the number of loop iterations example above, if breaking is possible, then the number of loops may not be known until run time. Again, this makes parallelization difficult as the software won’t know ahead of time which loops should belong to which to threads. Intel’s converting tool also tends to ignore these cases.

4.1.3 Loop Iteration Independence

Is each loop iteration independent from the rest? In other words, can any iteration of the loop execute regardless of what might happen in another iteration of the loop? If the loops are not independent, there still may be ways to parallelize them, but it’s not always best to so. Intel’s automatic parallelization tool won’t attempt to parallelize loops with dependent iterations.
4.2 Independent Loop
Here is an example of a loop that contains independent iterations:

for i = 1 to 100 do:

x[i] = y[i]

The important thing to note is that no iteration of the loop relies on the results of past iterations or affects the iterations that may follow. For example x[20] = y[20] could executed at any time regardless of when x[19]=x[19] is executed or what its results may be.
This is a very short and simple example. The code blocks inside the loop can be much longer and still be considered independent loop iterations.

Loops like this are often referred to as DOALL loops. They are the prime candidate for parallelization. For example, if the source code for the above loop was written in C, and the automatic parallelization tool used the OpenMP API, you might expect that the output source code would look something like this:

#pragma omp parallel for

for (i = 1; i<=100; i++)

x[i] = y[i];

4.3 Dependent Loop

Here is an example of loop that contains dependent iterations:

for i = 1 to 100 do:

x[i] = x[i-1] + y[i]

In particular, notice that every iteration depends on the value obtained from the previous iteration, and every iteration needs to be processed before the next. Loops such as these are often called DOACROSS loops and they do not make good candidates for parallelization.
It is however, not impossible to parallelize loops such as these. It is possible to rewrite the code so that the loops become independent. For example, it can be re-written in a way similar to how a carry-lookahead adder calculates carry bits of other additions before they happen. This can make for complicated code, however, and may be beyond the scope of an automatic tool. And the more complex code may actually take longer to run then the original sequential code.

The Intel C++ Compiler does not attempt to parallelize loops like these.

4.4 Cyclic vs. Pipelined Multi-threading

Once a loop has been determined to be parallelizable, there is another choice for how the loop can be parallelized: cyclic or pipelined.

4.4.1 Cyclic Multi-threading

With cyclic multi-threading, each thread executes an entire iteration of the loop on its own. For shorter code blocks, such as in the example above, this definitely makes sense. It can also be the more effective choice for longer blocks too, but not always. Like much of parallelization choices are based on what performs better.
4.4.2 Pipelined Multi-threading

Pipelining wouldn’t work with the above example since there is only one line of code inside the for loop, but if there were several, it might be the ideal choice. Pipelining means that each thread takes a specific chunk of the code, and always processes the same chunk on every iteration. Take this loop example:

for i = 1 to 100 do:

x[i] = w[i]

y[i] = x[i] + 5

z[i] = y[i] + 10

With pipelining, each thread would take a different line of the code. So, thread 1 would be x[i] = w[i] and thread 2 would be y[i] = x[i] + 5, etc. Note that these individual lines of code are actually dependent on each other even though the loop iteration is not independent of the rest. So, the pipelining does have to be done in order. Thread 1 has to execute iteration 1 before thread 2 can execute iteration 1. However, while thread 2 is executing iteration 1, thread 1 can be busy off executing its part of iteration 2.

The possible advantage of using a pipeline instead of cyclic multithreading is that the throughput will probably be at more frequent intervals. Cyclic is likely to have all threads finish at the same time, where pipelining will have them come out one at a time. This may be advantageous depending on what the code is attempting to do next. However, it may not be quicker, and again, this is why performance evaluation is important.

4.5 Pitfalls of Loop Analysis

When analyzing loops to determine whether they can be parallelized, there are few things the automatic conversion tool needs to be mindful of.

4.5.1 Pointers

If there are any pointers inside the loop, there may be a possibility that a piece of data somewhere is being altered that is not readily apparent. So, it’s possible that even if a loop appears to be a DOALL loop, because of the pointer, it actually is a DOACROSS loop and the order of the iterations matter. Because it is difficult to tell what kind of changes a pointer might be making, it is often better to avoid attempting parallelization of loops that contain them.
4.5.2 External Functions

Similar to pointers, if a loop contains an external function, then it is possible that values are being changed that aren’t apparent. It is also best to not try parallelizing these sorts of loops.

4.5.3 Nested Loops

for i = 1 to 100 do:

for j = 1 to 100 do:

x[i][j] = y[i][j]

Nested loops can be tricky because it is not always obvious whether the inner loops should have their iterations dispersed to different threads or if the outer loop should be parallelized or maybe all of the above. Again, it can depend on performance evaluation, but typically, the consensus has been to only parallelize the outer loop of nested loops.

5. CONCLUSION

In general, it is certainly worth it to parallelize software. The speed-up it provides because of proper utilization of the multi-cores, typically far outweighs any overhead of parallelization.
Writing code with parallel architecture in the first place is probably the ideal for moving forward, but for times where writing sequential code was appropriate, parallelization helps pick up the pace.

Converting sequential software to parallel software by hand currently is still the preferred way of parallelization because it allows for better optimization. However, automatic parallelization tools are getting better all the time. Not long ago, the idea of automatically converting tools was still only a concept, and now we have tools that can actually do it. We’ll probably see more and more commercial tools that provide this purpose.

6. REFERENCES

[1] Wolfram Schulte, Nikolai Tillmann. Automatic Parallelization of Programming Languages: Past, Present and Future. http://research.microsoft.com/pubs/131698/iwmse-keynote.pdf
[2] Wikipedia. Automatic Parallelization. http://en.wikipedia.org/wiki/Automatic_parallelization

[3] Wikipedia. Automatic Parallelization Tool. http://en.wikipedia.org/wiki/Automatic_parallelization_tool

[4] Wikipedia. OpenMP. http://en.wikipedia.org/wiki/OpenMP
[5] Blaise Barney, Lawrence. Livermore National Laboratory. POSIX Threads Programming. https://computing.llnl.gov/tutorials/pthreads/
[6] Wikipedia. POSIX Threads. http://en.wikipedia.org/wiki/POSIX_Threads
[7] Wikipedia. Vectorization (Parallel Computing). http://en.wikipedia.org/wiki/Vectorization_(parallel_computing)

[8] ParallWare. http://www.appentra.com/products/parallware/
[9] Intel. Automatic Parallelization with Intel Compilers. https://software.intel.com/en-us/articles/automatic-parallelization-with-intel-compilers
[10] Chirag Dave, Hansang Bae, Seung-Jai Min, Seyong Lee, Rudolf Eigenmann, Samuel Midkiff. Cetus: A Source-to-Source Compiler Infrastructure for Multicores. IEEE Computer, vol. 42, no. 12, pp 36-42, Dec. 2009. PDF
PAGE

