Parallel Database Systems: What Do We Need to Know?

Wenlong Zhang
Computer Science Department
San Jose State University
San Jose, CA 95192
408-924-1000
walkerzhang@ymail.com

ABSTRACT
In these years, data has become to ‘Big Data’. That means the volume and the variety of existing data has a significantly increase. Traditional database system may not satisfies the size of data and the speed of transaction process. To keep pace with it, we need a better solution. Parallel processing is a great technique to utilize; therefore, we create Parallel Database System. Parallel Database System really improves the performance by using parallel processing. At the same time, this kind of database system involves different type architectures and parallelisms.
In paper, it will introduce Parallel Database System about the hardware structure and parallelism techniques.
1. [image: image1.png]running tHme o7
ORTngTmeots,

INTRODUCTION

Parallel Database System is one kind of database system that has the ability to run operations in parallel; therefore, it can improve the performances by scaling up and speeding up. In this case, scaleup refers to more throughput within same amount of time on larger system. In other word, we have smaller System Ss is running smaller Task Ts and larger System Sl which is x times of Ss is running larger Task Tl which x times of Ts. But the ratio of the running time of Ss to the running time of Sl is 1. And speedup refers to faster completion on larger system. Assume we have same two systems from previous case, Ss and Sl, and we let them run same amount of tasks. But the ratio of the running time of Ss to the running time of Sl is x, which is the multiple of larger system to smaller system.

scaleup = running time of Ss / running time of Sl = 1

speedup = running time of Ss / running time of Sl = x
2. HARDWARE ARCHITECTURES
2.1 Shared Memory
In shared memory system (see Figure 1), it contains multiple processors, one shared memory, and multiple disks. Each processor connects to shared memory throught high-speed interconnection network and can directly access any disks.

[image: image3.png]e E& L ®

< Interconnection Network >

Shared Memory

] e -

This kind of structure is easy to build up and has good load balancing. Since all data is shared, we can distribute tasks equally to every processors. Also, the shared memory makes a significant efficient communication between each processor. On ther other hand, when some errors occur in shared memory, they will affect multiple processors, which it’s bad usability. And there is also a downside – scalability. This architecture limits the size of processors, usually cannot exceed 32 or 64 because of shared memory and interconnection network, where they create too many interferences between each processor. Thus, Shared Memory Architecture is not very scalable.

[image: image4.png]</Interconnection Netwoh

()

&

Memory)|

Memory|

Disk

Disk

(®)

Memory|

T

Disk

2.2 Shared Disk
Compare to shared memory system, each processor has its own memory in shared disk system (see Figure 2). Memory is isolated with processor so that there’s no direct messages or data exchanging between each processor, but they still can access all storage disks through interconnection network.
Since all processors have separate memory, memory obviously is no more an issue compare to shared memory structure. What’s more, each processor can run independently. Hence, if one or more processors are down and cannot continue working, the rest functional processors can replace them. And this architecture has a better scalability than shared memory, but still cannot be more than several hundred processors due to interference.

[image: image5.png]Memory| |Memory “ee Memory|

e @

< Interconnection Network

2.3 Shared Nothing
In shared nothing system (see Figure 3), it is constructed with multiple independent nodes and each node has its own processor, memory, and storage disk. Thus, each processor can use its own memory to operate its own data. And the interconnection network will connect all nodes.
On the other hand, we can treat each node as a small database system and multiple nodes can become a distributed parallel database system. Because every processor has its own memory and disk, there’s no contention about them and it will have higher overall performancendependentructed with multiple nodes and each node has its own processor, memory, and storage diskreplace them.

. This structure also has a great scalability. We just need to add an extra node to the network. However, it is not easy to construct this hardware architecture and it distribute tasks base on data’s physical location, not the actual load balance. It’s hard to make a good load balancing if new node is added. Furthermore, the only place to connect all nodes is the high-speed interconnection network so the communication between each node is very week, especially for non-local disk.
2.4 Comparison
Different type of architecture has different advantages and disadvantages (see Table 3). Therefore, we’d better to consider deep enough before actually build up the system.
3. PARALLELISM

There are two different query executing plans – parallel plan and sequential plan. If one of the parallel plans and one of the sequential plan in a query corresponding to same operation tree, then we can say this parallel plan is one parallelism plan for this sequential plan. And the progress from sequential plan to parallel plan is parallelism.
For instance, Example 1 is a simple query that sum all points that students received and sort by total points. In this case, GROUP operation and ORDER operation can run in parallel. So we gain parallelism from this part.
3.1 Forms

There are two forms of parallelism in database system. One is pipelined parallelism and one is independent/partitioned parallelism.
3.1.1 Pipelined Parallelism

Pipelined parallelism refers to two operators can work in series if the output of one operator streams into the input of another one [2]. We can say one operation depends on another one if it has to wait until another operation finished all execution. For example, one query contains SELECT and ORDER BY operations. Before ORDER BY sorts the results, it must wait the scan operation to retrieve the required results. Then it send the results to ORDER BY to sort.
3.1.2 Independent/Partitioned Parallelism

“By partitioning the input data among multiple processors and memories, an operator can often be split into many independent operators each working on a part of the data. This partitioned data and execution gives partitioned parallelism” [2]. What DeWitt and Gary mean is two operations can run in parallel if there is no dependency between them. In other words, multiple sub-operations can run on multiple processor at the same time within one or more operations.
3.2 Granularity
“Fine-grained parallelism means individual tasks are relatively small in terms of code size and execution time” [3]. Base on the size of granularity, there are four types of parallelisms.
3.2.1 Inter-query Parallelism
Inter-query parallelism has biggest granularity and it refers to execute multiple queries concurrently on multiple processors [1]. This parallelism is the easier one to implement. Since it allows multiple processes or threads simultaneously handle users’ requests, it increases throughput significantly and supports more parallel users.
3.2.2 Intra-query Parallelism

Intra-query parallelism refers to execute one query concurrently on multiple processors. Usually, this parallelism also utilizes inter-operation parallelism and intra-operation parallelism, maybe both of them at the same time.
3.2.3 Inter-operation Parallelism

In one query, different operations somehow can run in parallel and this gives inter-operation parallelism. It will use the two forms of parallelisms: pipelined and independent parallelism [4]. For instance, we have 6 tables join together: R1 JOIN R2 JOIN R3 JOIN R4 JOIN R5 JOIN R6.
Pipelined:

Result1 = R1 JOIN R2
Result2 = Result1 JOIN R3

Result3 = Result2 JOIN R3

Result4 = Result3 JOIN R4

Result5 = Result4 JOIN R5

Result = Result5 JOIN R6

Independent:

Result1 = R1 JOIN R2

Result2 = R3 JOIN R4

Result3 = R5 JOIN R6

Result4 = Result1 JOIN Result2

Result = Result4 JOIN Result3

As we can see, both two parallelism will have same result. In pipelined parallelism each operation has to wait for previous one to be finished. But in independent parallelism, it goes ahead and executes three JOINs simultaneously: R1 JOIN R2, R3 JOIN R4, and R5 JOIN R6. After we get Result 1, Result 2, and Result3, it cannot use the same way to join so it goes back to pipelined parallelism.
3.2.4 Intra-operation Parallelism

Intra-operation parallelism has smallest granularity. It divides a single operation into multiple sub-operations and executes them in parallel on multiple processors. Intra-operation parallelism raises some operations such as parallel join, parallel sort, parallel search, and parallel aggregate [4].
4. CONCLUSION
Compare to Distributed Database System, Parallel Database System mostly focus on increasing the performance and usability of whole system. Hence, it requires a high-speed network to connect all nodes and these nodes are not completely independent.
Three types of hardware architectures have their own advantages and disadvantages and Table 3 displays a good overall among these three structures. Seven parallelisms that are involved in Parallel Database Systems are completely different from each other. We should understand them before implement them.
5. REFERENCES

[1] Chopra, R. Database Management System. S. Chand, 2010.
[2] DeWitt D.J. and Gray J. Parallel Database Systems: The Future of High Performance Database Systems. Communications of the ACM, June 1992.
[3] Granularity. http://en.wikipedia.org/wiki/Granularity.
[4] Taniar, D., Leung, C.H.C., Rahayu, W., and Goel, S. High Performance Parallel Database Processing and Grid Databases. John Wiley & Sons, 2008
Figure 1. Shared Memory Architecture

Figure 2. Shared Disk Architecture

1 SELECT id, SUM (point) AS total

2 FROM student

3 GROUP BY id

4 ORDER BY total;

Example 1. Simple Query

Figure 3. Shared Nothing Architecture

Table 3. Compare Three Types of Architectures

�
Shared Memory�
Shared Disk�
Shared Nothing�
�
�
Usability�
Low�
High�
Good�
�
�
Scalability�
Low�
High�
Good�
�
�
Load Balancing�
Easy�
Easy�
Hard�
�
�
Implementation�
Easy�
Relatively Hard�
Hard�
�
�
Number of Processors�
Several Dozens�
Several Hundreds�
Several Thousands�
�
�
Cost�
High�
Relatively Low�
Low�
�
�
Scale�
Small to Medium�
Small to Medium�
Large�
�
�
Performance�
High�
Good�
Good�
�
�

Figure 4. Parallelisms Raise

PAGE

