Research and Application of Distributed Parallel Search with Hadoop and Apache spark

Veebha Nivas Padavkar
Computer Science Department
San Jose State University
San Jose, CA 95192
veebha.padavkar@sjsu.edu

ABSTRACT

Hadoop and Apache Spark are open source distributed parallel computing big data analytics platforms, which are mainly composed of parallel distributed algorithms on clusters and distributed file system. This paper introduces Hadoop and Apache Spark related technologies, discusses in detail the idea and basic framework of underlying MapReduce algorithm, together with the parallelization methods and feasibility with the massive data involved. The paper also puts forward a comparison between parallel processing algorithms of Hadoop and Apache Spark in application of distributed parallel search.
1. INTRODUCTION

Hadoop is the most popular buzzword used for the content classification tool in Internet search, since it can also solve a number of problems that require maximum scalability. In the traditional system, it will take a long time. But taking into account these problems in design, Hadoop can greatly improve the efficiency in terms of performance.

Hadoop is reliable in case of storage failure, as it is maintains multiple working copy of the data, which ensures distributed processing in case of a node failure. Hadoop is efficient, because it uses the parallel way by parallel processing, processing speed. In addition , Hadoop costs is relativey low as it relies on the community server, and anyone can use. A long term goal of Hadoop is to provide world class distributed computing tools, but also for the next generation services (such as search results analysis) to provide support for extended Web Services.

Hadoop is mainly composed of two parts, a distributed file system, Hadoop Distributed File System and MapReduce algorithm implementation.
1. 1 Hadoop Distributed File System [HDFS]:

The Hadoop Distributed File System (HDFS) is a file system designed in such a way which runs on commodity hardware. It has many similarities with existing distributed file systems. However, it does have certain significant differences from other distributed file systems. HDFS is highly fault-tolerant and is designed to be deployed on low-cost hardware.
HDFS provides high throughput access to application data and is very much suitable for applications that have large data sets.
[image: image1.png]Meiadqla ops

Read Datanodes

Replication

Figure 1: Hadoop Distributed File System Architecture

HDFS generally has a master/slave architecture. The HDFS cluster consists of a single NameNode, a master server which is responsible for managing the file system namespace and also ensures regulation of file access by clients. In addition, there are a number of DataNodes, usually one per node in the cluster, which manages storage of the nodes to which it is attached and on which they run on. HDFS exposes a file system namespace and allows user data to be stored in files. Internally, a file is split into one or more blocks and these blocks are stored in a set of DataNodes. The NameNode is responsible for executing file system namespace operations like opening, closing, and renaming files and directories. Along with executing mentioned operations, Name node determines mapping of blocks to DataNodes. The DataNodes are responsible for serving read and write requests from the file system’s clients. In addition the DataNodes are also responsible for performing operations on block such as creation, deletion, and replication upon instruction given by the NameNode.[2]

HDFS stores each file as a sequence of blocks; all blocks in a file except the last block are the same size. The blocks of a file are replicated which ensures fault tolerance.

HDFS supports a traditional hierarchical file organization. It enables user or an application to create directories and also store files inside these directories. The file system namespace hierarchy is similar to most other existing file systems; one can create and remove files, move a file from one directory to another, or rename a file. HDFS does not yet implement user quotas or access permissions. HDFS does not support hard links or soft links. However, the HDFS architecture does not preclude implementing these features. The NameNode maintains the file system namespace. Any change to the file system namespace or its properties is recorded by the NameNode. It also allows the application to specify number of replicas of a file that should be maintained by HDFS. The number of copies of a file is called the replication factor of that file. This information is stored by the NameNode.[10]
1.2 MapReduce

 MapReduce points to two separate and distinct tasks that Hadoop programs perform. The first is the map job, which takes a set of data and converts it into another set of data, where individual elements are broken down into tuples (key/value pairs). Then the reduce job comes into picture and takes the output produced by the map job as input and combines those data tuples into a smaller set of tuples. As the sequence of the name “MapReduce” it implies, that the reduce job is always performed after the map job.

Table 1: Analogy of MapReduce and Unix Pipeline
	Unix
Pipeline
	cat input
	grep
	sort
	unique -c
	cat > output

	MapReduce
	Input
	Map
	Shuffle & Sort
	Reduce
	Output

Hadoop MapReduce framework is highly efficient for applications which process vast amounts of data e.g; multi-terabyte data-sets in-parallel on large clusters (thousands of nodes) of commodity hardware in a reliable, fault-tolerant manner. MapReduce is also useful in a wide range of applications, including distributed pattern-based searching, distributed sorting, web link-graph reversal, Singular Value Decomposition, web access log stats, inverted index construction, document clustering, machine learning, and statistical machine translation. Moreover, the MapReduce model has been adapted to several computing environments like multi-core and many-core systems, desktop grids, volunteer computing environments, dynamic cloud environments and mobile environments.
MapReduce jobs are responsible for splitting the input data-set into independent chunks which are then processed by the map tasks in a completely parallel manner. And then the framework sorts the outputs of the maps, which then are served as input to the reduce tasks. Typically both the input and the output of the job are stored in a file-system.

[image: image2.png]Input data

=)
-
B =

Output data

it Sot Merge
KLVl bykl [kl [v1,v2,v3..]]

Figure 2: Generic Depiction of MapReduce

It is helpful to think about this implementation as a MapReduce engine, because that is exactly how it works. You provide input (fuel), the engine converts the input into output quickly and efficiently, and you get the answers you need. Hadoop MapReduce includes several stages, each with an important set of operations helping to get to your goal of getting the answers you need from big data. The process starts with a user request to run a MapReduce program and continues until the results are written back to the HDFS.

1.3 Apache Spark

Apache Spark is an open-source data analytics cluster computing framework originally developed in the AMPLab at UC Berkeley. Spark fits into the Hadoop open-source community, which build on top of the Hadoop Distributed File System (HDFS). However, Spark is not tied to the two-stage MapReduce paradigm, and promises performance up to 100 times faster than Hadoop MapReduce for certain applications mainly applications which involve run time data. The major significance of spark is it provides primitives for in-memory cluster computing that allows user programs to load data into a cluster's memory and query it repeatedly.

The main abstraction in Spark, is resilient distributed dataset (RDD), which represents a read-only collection of objects partitioned across a set of machines that can be rebuilt if a partition is lost. Users can explicitly cache an RDD in memory across different machines and reuse it in multiple MapReduce-like parallel operations. RDDs achieve fault tolerance through a notion of lineage: if a partition of an RDD is lost, the RDD has enough information about how it was derived from other RDDs to be able to rebuild just that partition.

A second abstraction in Spark is use of shared variables which are useful for parallel operations and improve the overall efficiency. By default, when Spark runs a function in parallel as a set of tasks on different nodes, it ships a copy of each variable used in the function to each task. Sometimes, a variable needs to be shared across tasks, or between tasks and the driver program. Spark supports two types of shared variables: broadcast variables, which can be used to cache a value in memory on all nodes, and accumulators, which are variables that are only “added” to, such as counters and sums.

Spark applications run as independent sets of processes on a cluster, which are controlled and monitored by the SparkContext object in the main program called the driver program. To run on a cluster, the SparkContext can connect to several types of cluster managers (either Spark’s own standalone cluster manager or Mesos/YARN), which allocate resources across applications. Once connected, Spark acquires executors on nodes in the cluster, which are processes that run computations and store data for your application. Next, it sends your application code (defined by JAR or Python files passed to SparkContext) to the executors. Finally, SparkContext sends tasks for the executors to run.

[image: image3.png]Worker Node

Executor | Cache

Driver Program Task || Task
SparkContext (——> Cluster Manager T
Worker Node 1

Figure 3: Apache Spark Architecture

As shown in the above figure there are various things to be noted about this architecture. Each application gets its own executor processes, which stay up for the duration of the whole application and run tasks in multiple threads. This has the benefit of isolating applications from each other, on both the scheduling side (each driver schedules its own tasks) and executor side (tasks from different applications run in different JVMs). However, it also means that data cannot be shared across different Spark applications (instances of SparkContext) without writing it to an external storage system.

Spark is agnostic to the underlying cluster manager. As long as it can acquire executor processes, and these communicate with each other, it is relatively easy to run it even on a cluster manager that also supports other applications (e.g. Mesos/YARN). Because the driver schedules tasks on the cluster, it should be run close to the worker nodes, preferably on the same local area network. If you’d like to send requests to the cluster remotely, it’s better to open an RPC to the driver and have it submit operations from nearby than to run a driver far away from the worker nodes.

Apache Spark can process data from a variety of data repositories, including the Hadoop Distributed File System (HDFS), NoSQL databases and relational data stores such as Apache Hive. In addition, Spark can handle more than the batch processing applications that MapReduce is limited to running. The core Spark engine functions partly as an application programming interface (API) layer and underpins a set of related tools for managing and analyzing data, including a SQL query engine, library of machine algorithms, graph processing system and streaming data processing software.[8]
2. DISTRIBUTED PARALLEL SEARCH
 AND COMPUTATION FOR INVERTED
 INDEX WITH HADOOP MAP REDUCE
 AND APACHE SPARK

2.1 Inverted Index

An inverted index (also referred to as postings file or inverted file) is an index data structure storing a mapping from content, such as words or numbers, to its locations in a database file, or in a document or a set of documents. The purpose of an inverted index is to allow fast full text searches, at a cost of increased processing when a document is added to the database.

An inverted index consists of a collection of postings lists, one associated with each unique term in the collection. Each postings list consists of a number of individual postings. Each posting holds a document identifier (document number) and the frequency (number of occurrences) of the term in that document.

[image: image4.png]postings

s e Ple] e o{e] e o] e
] o Jo{ea] » Jo{e] 2 o{ee]
oo Pla] e ool e o] o

Figure 4: Simple illustration of an inverted index. Each term is associated with a list of postings. Each posting is comprised of a document id and a payload, denoted by p in this case. An inverted index provides quick access to documents ids that contain a term.[
Example :

Suppose there are 3 documents, each document is populated as follows :

Document 1 [ID : 1]: Sky is blue

Document 2 [ID : 2]: Sky is red
Document 3[ID: 3]: Sky is neither blue not red
Inverted index computed from above documents would appears as given below : [Syntax - Keyword : (ID, count)]
Sky : (1, 1), ​ (2, 1), ​ (3,1)

is : (1, 1), (2, 1), (3, 2)
blue : (1, 1), (3, 1)
red : ​ (2, 1), (3, 1)
neither: (3, 1)
not : (3, 1)
2.2 Distributed Parallel Search with Hadoop
 MapReduce for computing an Inverted Index

For the Internet presence of massive pages, how to carry on the rapid establishment of inverted index is an important research point, because if the inverted index update speed, is based on the keyword search results returned cannot contain additional or modified page, may also return to the old or already nonexistent page. Let us consider the use of MapReduce parallel to generate all the pages of the inverted index.[10]

First of all, we need to document preprocessing, i.e. extracted every word in the document, and the calculation of the word in the document appeared a number of times. In Map phase, we each encounter a word, just output < word document, < ID >, 1. Because the Hadoop platform to ensure all the same key corresponding to the value list will be the same received by the reducer node, so the REDUCE stage, can be collected in the same word all relevant information (document and number 1), and they add up to get the sum of.

Psuedo code for Mapper and Reducer :

Mapper :

map(DocumentID, DocumentText)

foreach word W in DocumentText
emit(W, DocumentID);

done

Reducer :

reduce(word, values):

foreach DocumentID in values:

AddToOutputList(DocumentID);

done

emit_Final(FormattedDocumentIDListForWord);

MAPPER algorithm description and analysis are as

follows:

1: class MAPPER
2: method MAP(ID, Document)
3: H _ new ASSOCIATIVEARRAY
4: for all term t _ doc d do
5: H{t} _ H{t} + 1
6: for all term t _ H do
7: EMIT(tuple <t, n>, tf H{t})

In the MAP phase, each computing node input a document and document content d id n First of all, the map function will create an associative container H, Then the document D appear in each of a word will be in H T, total T occurrence. The H of every element output. The output of the key is a two tuple < T ID n > value, document, document frequency list.[12]
REDUCER algorithm description and analysis are as

follows:

1: class REDUCER
2: method INITIALIZE
3: tprev _ null
4: P new POSTINGLIST
5: method REDUCE(tuple <t,n>, tf [f])
6: if t != tprev AND tprev != null
7: then EMIT(term t, postings P)
8: P.RESET()
9: P.ADD(<n,f>)
10: tprev _ t
11: method CLOSE
12: EMIT(term t, postings P)

In the REDUCE phase, each computing node receives a key is a two tuple < T ID n > words, document, value is the corresponding document frequency list. The INITIALIZE function is first created a list PostingList, subsequently received on each input processing. If the input is a new word, it will have the output list. If you still keep a distance is the same word, the document ID and document frequency is added to the list PostingList. Finally all the words and the corresponding PostingList full output.[11]

MapReduce through the massive data set is divided into small pieces and documents distributed to other nodes in the network are processed, Then each node periodically the calculation results back, so as to achieve the purpose of distributed processing, solve the problem of large-scale data processing efficiency. In the inverted index document structuring, splitter put massive positive index document data set was divided into blocks, and then distributed to different machines on the Map processing, to produce respective inverted index document. Reduce finally put those indexed documents were merged, to generate uniform inverted index document, so use distributed solution to the centralized processing efficiency problems.
All values are processed independently, MAP() functions runs in parallel, creating different intermediate values from different input data sets . REDUCE() functions also run in parallel, each working on a different output key.
2.3 Distributed Parallel Search and Computation
 for Inverted Index with Apache Spark

MAPPER and REDUCER Scala Code Description and Analysis :
1. It begins the Workflow by declaring a SparkContext. Then it reads one or more text files. Spark will process all of them (in parallel if running a distributed configuration; they will be processed synchronously.)[2]
val sc = new SparkContext("local", "Inverted Index")

sc.textFile("data/crawl")

.map { line => val array = line.split("\t", 2) (array(0), array(1)) }

.flatMap { case (path, text) => text.split("""\W+""")
2. Then, sc.textFile returns an RDD with a string for each line of input text. So, the first thing we do is map over these strings to extract the original document id (i.e., file name), followed by the text in the document, all on one line. Let's assume tab is the separator. “(array(0), array(1))” returns a two-­‐element “tuple”. Think of the output RDD has having a schema “String fileName, String text”.

.map { line => val array = line.split("\t", 2) (array(0), array(1)) }

.flatMap { case (path, text) => text.split("""\W+""") map {word => (word, path) }

.map { case (w, p) => ((w, p), 1) }

.reduceByKey { case (n1, n2) => n1 + n2 }

.map { case ((w, p), n) => (w, (p, n)) }

.groupBy { case (w, (p, n)) => w }
3. .flatMap maps over each of these 2-­‐element tuples. Then split the text into words on non-­‐alphanumeric characters, then output collecEons of word (our ulEmate, final “key”) and the path. Each line is converted to a collecEon of (word,path) pairs, so flatMap converts the collecEon of collecEons into one long “flat” collecEon of (word,path) pairs. Then map over these pairs and add a single count of 1.

.flatMap { case (path, text) => text.split("""\W+""") map {

word => (word, path) } }

.map { case (w, p) => ((w, p), 1) }

.reduceByKey { case (n1, n2) => n1 + n2 }

.map { case ((w, p), n) => (w, (p, n)) }

.groupBy { case (w, (p, n)) => w}
4. reduceByKey does an implicit “group by” to bring together all occurrences of the same (word, path) and then sums up their counts. Note the input to the next map is now ((word, path), n), where n is now >= 1. We transform these tuples into the form we actually want, (word, (path,n)).
.reduceByKey { case (n1, n2) => n1 + n2 }

.map { case ((w, p), n) => (w, (p, n)) }

.groupBy { case (w, (p, n)) => w }

.map { case (w, seq) => val seq2 = seq map {

case (_, (p, n)) => (p, n) }

(w, seq2.mkString(", "))

}

.saveAsTextFile(arg)
5. It will do an explicit group by to bring all the same words together. The output will be (word, (word, (path1, n1)), (word, (path2, n2)), ...). The last map removes the redundant “word” values in the sequences of the previous output. It outputs the sequence as a final string of comma-­‐ separated (path,n) pairs. Then it will finish by saving the output s text file(s) and stopping the workflow.
.groupBy { case (w, (p, n)) => w }

.map { case (w, seq) => val seq2 = seq map {
case (_, (p, n)) => (p, n)

}

(w, seq2.mkString(", "))

}

.saveAsTextFile(argz.outpath)

sc.stop()

}

}

In case of Apache Spark as well, all values are processed independently, MAP() functions runs in parallel, creating different intermediate values from different input data sets REDUCE() functions also run in parallel, each working on a different output key. However, the key difference would be the whole processing would take place in-memory reducing the overall I/O and at the same time utilizing the RDDs for efficient and fault tolerant processing. Another, point to note would be, to convert psuedo code written for Hadoop MapReduce into actual Java code could result in hundreds of lines of code. Whereas the given code given code in Scala for Apache spark is the actual code that will produce a running application of Inverted Index hence, Apache Spark provides and efficient way of developing the domain specific applications considering the Scala's Domain Specific Language specification.

3. DISCUSSION ON NOTABLE DIFFERENCES BETWEEN HADOOP MAP REDUCE AND APACHE SPARK
1. Data Sharing : In case of Hadoop MapReduce The data
between Mappers and Reducers is stored to HDFS before passing to further processes. It results in I/O overhead along with delayed processing due to HDFS Read and Write.

The Apache Spark, performs all the processing and data sharing in-memory letting processes utilize the system memory to large extent and ensuring optimization to overall effective throughput. Following Diagram, depicts the data sharing phenomenon of Hadoop MapReduce & Apache Spark.
[image: image5.png]* MapReduce

HDFS HDFS HDFS HDFS

read write, . read write
ﬁ .ﬁ % T
Input

* Spark

Input

Figure 5: Data Sharing Framework Hadoop MapReduce and
 Apache Spark

2. Hadoop MapReduce is a Batch Processing oriented
framework hence does not effectively support the stream processing. And every operation to be performed has to be a part of job in a batch. However, Apache Spark supports Batch as well as Stream Processing using a common API, enabling applications
to allow clients perform large scale batch operations along with real time parallel search / computation with stream analysis.
3. As compared to Hadoop, Spark offers certain additional
features that are considerably vital in increasing multi-structural data. The features are a native graph processing library called GraphX and a machine learning library called MLlib.

4. Spark SQL gives the ability to run SQL queries over any Spark collection, so there’s no additional tool or query framework required like Hive / Pig when it comes to Hadoop MapReduce. SQL queries on Cassandra tables, or log data, or text files–like Hive without needing an extra component.

5. Spark gives the ability to join datasets across multiple disparate data sources. It enables the applications to join across Cassandra, Mongo, and HDFS data in a single job and also support the SQL across that joined data for distributed parallel search and computation.

4. CONCLUSION

It is an inevitable trend of large-scale data processing to combine distributed parallel technology with information retrieval. To make full use of distributed parallel computing, researchers on both sides need to work together to play to their full advantages. This paper briefly introduced the basic principle of distributed and parallel retrieval technology Hadoop and Apache Spark using the classical Inverted Index algorithm as an example, elaborates the realization of it by applying parallel method based on MapReduce model in the Hadoop platform similar algorithm with efficient processing in the Apache Spark Platform by emphasizing the notable features and differences of both the distributed parallel search and computing platforms.
5. REFERENCES
[1]. Hadoop Site，http://hadoop.apache.org/
[2]. Hadoop Wiki，http://en.wikipedia.org/wiki/Hadoop
[3]. Tom White. Hadoop: The Definitive Guide. O`RELLY Press.

[4]. http://en.wikipedia.org/wiki/Inverted_index
[5]. MapReduce: Simplified Data Processing on Large Clusters.
 Google Inc.

[6]. Jim Lin, Chris Dyer. Data-Intensive Text Processing with
 MapReduce. University of Maryland, College Park.
[7]. Wubaogui etc.Research of D istr ibuted Search Eng ine Ba
 sed on Map /Reduce,New technology of library and
 information service,2007.8

[8]. https://spark.apache.org/
[9]. http://hadoop.apache.org/
[10]. AiLing Duan, 2012 International Conference on Systems and Informatics (ICSAI 2012)
PAGE

